1. Consider a continuous time Markov Chain (CTMC) on state space $\{1,2,3\}$ with the following rate matrix

$$
Q=\left[\begin{array}{ccc}
-3 & 2 & 1 \\
3 & -7 & 4 \\
2 & 5 & -7
\end{array}\right]
$$

(a) Starting from state 1 at time $t=0$, what is the probability that the CTMC does not make any jump up to time $t=10$ ?
(b) Starting from state 2 at time $t=0$, what is the probability that the CTMC makes its first jump to state 1 ?
(c) Starting from state 2 at time $t=0$, what is the probability that the CTMC makes its first jump to state 1 AND the first jump happens before time $t=10$ ?
2. Consider a discrete time $\mathrm{MC}\left(Y_{n}\right)_{n \geq 0}$ on the state space $\{1,2\}$ with the transition matrix

$$
P=\left[\begin{array}{ll}
0.7 & 0.3 \\
0.6 & 0.4
\end{array}\right]
$$

and an independent Poisson process $(N(t))_{t \geq 0}$ with rate 10 . Find the rate matrix $Q$ of the CTMC $\left(X_{t}\right)_{t \geq 0}$ defined by

$$
X_{t}=Y_{N(t)}
$$

