1. Consider a Markov chain on $S=\{0,1,2, \ldots\}$ whose non-zero transition probabilities are as listed below:

$$
P(0,1)=1, \quad P(m, m+1)=\frac{m}{m+1} \quad \text { and } \quad P(m, 0)=\frac{1}{m+1}, \quad m \geq 1
$$

Let T_{0} be the first return time to state 0 .
(a) Compute $\mathbf{P}_{0}\left(T_{0}=n\right)$ for any $n \geq 1$.
(b) Show that $\mathbf{P}_{0}\left(T_{0}<\infty\right)=1$ and hence 0 is a recurrent state.
(b) Show that $\mathbf{E}_{0}\left[T_{0}\right]=\infty$ and hence 0 is a null recurrent state.
2. Find all stationary distributions of the Markov chain with the following transition matrix:

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{1}$	0	0	0	1	0	0	0
$\mathbf{2}$	0.1	0	0.3	0	0	0	0.6
$\mathbf{3}$	0	0.7	0	0	0	0	0.3
$\mathbf{4}$	1	0	0	0	0	0	0
$\mathbf{5}$	0	0	0	0	0.2	0.8	0
$\mathbf{6}$	0	0	0	0	0.4	0.6	0
$\mathbf{7}$	0	0.3	0.4	0	0.3	0	0

