Homework 6

MATH 5652 Fall 2017
October 18, 2017

1. Consider a branching process with offspring distribution given by $p_{0}=\frac{1}{3}, p_{1}=\frac{1}{3}$ and $p_{3}=\frac{1}{3}$ and $X_{0}=1$. Determine
(a) the expectation of X_{5}, the population at generation 5 ,
(b) the probability that the branching process dies by generation 3 , but not by generation 2 , and
(c) the probability that the process ever dies out.
2. A population consists of X_{n} individuals at times $n=0,1,2, \ldots$. Between time n and time $n+1$ each of these individuals dies with probability p independently of the others; and the population at time $n+1$ consists of the survivors together with an independent random Poisson (λ) number of immigrants. Let X_{0} have arbitrary distribution. What happens to the distribution of X_{n} as $n \rightarrow \infty$?
[Hint: Remember for a MC if $X_{0} \sim \pi$ and $X_{1} \sim \pi$, then π is a stationary distribution. If X_{0} has Poisson (α) distribution for some $\alpha>0$, what is the distribution of X_{1} ?]
3. A fair die with faces marked $1,2,3,4,5,6$ is rolled repeatedly. Show that the average number of throws need to get 1000 consecutive occurrences of one of the six numbers is

$$
\frac{6^{1000}-1}{6-1}
$$

[Hint: Form a Markov chain with states $1,2, \ldots, 1000$ with state i representing the length of the current run.]

