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Uniform distribution of sequences

A sequence (xn) is uniformly distributed in [0, 1] iff

for any interval I ⊂ [0, 1] : lim
N→∞

#{n ≤ N : xn ∈ I}
N

= |I|

Equivalently, for all continuous f on [0, 1]:
1
N

∑N
n=1 f(xn) −→

∫ 1
0 f(x) dx as N →∞.

Weyl Criterion (1916):
(xn) is uniformly distributed in [0, 1] iff for all k ∈ Z,
k 6= 0:

lim
N→∞

1

N

N∑
n=1

e2πikxn = 0

The sequence {nθ} is uniformly distributed in [0, 1] iff θ is
irrational.

For any subsequence (nk) of integers, the sequence {nkθ} is
uniformly distributed for a.e. θ.
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Discrepancy

Discrepancy of a sequence

For a sequence ω = (ωn)∞n=1 and an interval I ⊂ [0, 1] consider
the quantity

∆N,I = ]{ωn : ωn ∈ I;n ≤ N} −N |I|.

Define
DN = sup

I⊂[0,1]

∣∣∆N,I

∣∣.

A sequence (ωn)∞n=1 is u.d. in [0, 1] if and only if

lim
N→∞

DN

N
= 0.
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Erdős-Turan inequality

Theorem (Erdős-Turan)

For any sequence ω ⊂ [0, 1] we have

DN (ω) .
N

m
+

m∑
h=1

1

h

∣∣∣∣∣
N∑
n=1

e2πihωn

∣∣∣∣∣
for all natural numbers m.

Folklore: misses optimal estimates by a logarithm.

E.g., for a badly approximable irrational θ, Erdős-Turan
yields DN ({nθ}) . log2N , while in fact

DN ({nθ}) . logN.

For ω = {nθ} sharper bounds can be obtained using
continued fractions.
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Irregularities of distribution

Can discrepancy stay small?

Consider a sequence ω = (ωn)∞n=1 ⊂ [0, 1].

van der Corput (1934): Can DN (ω) be bounded as N →∞?

van Aardenne-Ehrenfest (1945): NO!

Theorem (K. Roth, 1954)

The following are equivalent:
(i) For every ω = (ωn)∞n=1 ⊂ [0, 1],

DN (ω) & f(N)

for infinitely many values of N .
(ii) For any distribution PN ⊂ [0, 1]2 of N points,

sup
R− rectangle

∣∣∣#PN ∩R−N · |R|∣∣∣ & f(N)
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Irregularities of Distribution: simplest example

X – roll of a single die

∣∣∣X − EX
∣∣∣ ≥ 1

2
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Geometric Discrepancy

PN – a set of N points in [0, 1]d

R –a geometric family (e.g. axis-parallel rectangles, all
rectangles, polytopes, balls, convex sets etc.)

Discrepancy of PN with respect to R ∈ R
D(PN , R) = ]{PN ∩R} −N · vol (R)

Discrepancy of PN with respect to R
D(PN ) = sup

R∈R
|D(PN , R)|

D(N) = inf
PN

D(PN )
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Discrepancy function

Consider a set PN ⊂ [0, 1]d consisting of N points:

Define the discrepancy function of the set PN as

DN (x) = ]{PN ∩ [0, x)} −Nx1x2 . . . xd
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Numerical integration

Koksma-Hlawka inequality:∣∣∣∣∣∣
∫
[0,1]d

f(x) dx− 1

N

∑
p∈PN

f(p)

∣∣∣∣∣∣ . 1

N
V (f) · ‖DN‖∞

V (f) is the Hardy-Krause variation of f

V (f) =

∫
[0,1]d

∣∣∣∣ ∂df

∂x1∂x2 . . . ∂xd

∣∣∣∣ dx1 . . . dxd
e.g., if f(x1, ..., xd) =

∫ 1
x1
...
∫ 1
xd
φ(y)dy
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Roth’s Theorem

Klaus Roth, October 29, 1925 – November 10, 2015

Theorem (ROTH, K. F. On irregularities of distribution,
Mathematika 1 (1954), 73–79.)

There exists Cd ≥ 0 such that for any N -point set PN ⊂ [0, 1]d

‖DN‖2 ≥ Cd(logN)
d−1
2 .
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Roth’s Theorem

According to Roth himself, this was his favorite result.

William Chen (private communication)

Kenneth Stolarsky (private communication)

Ben Green (comment on Terry Tao’s blog)
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Roth’s Theorem: legacy

Theorem (ROTH, K. F. On irregularities of distribution,
Mathematika 1 (1954), 73–79.)

There exists Cd ≥ 0 such that for any N -point set PN ⊂ [0, 1]d

‖DN‖2 ≥ Cd(logN)
d−1
2 .

4 papers by Roth (On irregularities of distribution. I–IV)

10 papers by W.M. Schmidt (On irregularities of
distribution. I–X)

2 by J. Beck (Note on irregularities of distribution. I–II)

4 by W. W. L. Chen (On irregularities of distribution.
I–IV)

2 by Beck and Chen (Note on irregularities of distribution.
I–II)

a book by Beck and Chen, “Irregularities of distribution”.
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Average case: Lp discrepancy, 1 < p <∞

Theorem (Roth, 1954 (p = 2); Schmidt, 1977 (1 < p < 2))

The following estimate holds for all PN ⊂ [0, 1]d with
#PN = N :

‖DN‖p & (logN)
d−1
2

Theorem (Davenport, 1956 (d = 2, p = 2); Roth, 1979 (d ≥ 3,
p = 2); Frolov, 1980 (p > 2, d = 2); Chen, 1983 (p > 2, d ≥ 3);
Chen, Skriganov, 2000’s)

There exist sets PN ⊂ [0, 1]d with

‖DN‖p . (logN)
d−1
2
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L∞: “worst-case” discrepancy

Conjecture

‖DN‖∞ � (logN)
d−1
2

Theorem (Schmidt, 1972; Halász, 1981)

In dimension d = 2 we have ‖DN‖∞ & logN

d = 2: Lerch, 1904; van der Corput, 1934

There exist PN ⊂ [0, 1]2 with ‖DN‖∞ ≈ logN
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Low discrepancy sets

The irrational (α =
√

2) lattice with N = 212 points(
n/N, {nα}

)
, n = 0, 1, ..., N − 1.

Discrepancy ≈ logN
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Low discrepancy sets

The van der Corput set with N = 2n points (here n = 12)(
0.x1x2...xn, 0.xnxn−1...x2x1

)
, xk = 0 or 1.

Discrepancy ≈ logN
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van der Corput set

van der Corput set with N = 23 points
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van der Corput set with N = 24 points
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van der Corput set

van der Corput set with N = 25 points
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van der Corput set

van der Corput set with N = 26 points
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van der Corput set with N = 27 points
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van der Corput set

van der Corput set with N = 28 points
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van der Corput set

van der Corput set with N = 29 points
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L∞ estimates

Conjecture

‖DN‖∞ � (logN)
d−1
2

Theorem (Schmidt, 1972; Halász, 1981)

In dimension d = 2 we have ‖DN‖∞ & logN

d = 2: Lerch, 1904; van der Corput, 1934

There exist PN ⊂ [0, 1]2 with ‖DN‖∞ ≈ logN

d ≥ 3, Halton, Hammersley (1960):

There exist PN ⊂ [0, 1]d with ‖DN‖∞ . (logN)d−1
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Conjectures and results

Conjecture 1

‖DN‖∞ & (logN)d−1

Conjecture 2

‖DN‖∞ & (logN)
d
2

Theorem (DB, M.Lacey, A.Vagharshakyan, 2008)

For d ≥ 3 there exists η > 0 such that the following estimate
holds for all N -point distributions PN ⊂ [0, 1]d:

‖DN‖∞ & (logN)
d−1
2

+η .
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Connections between problems

Dmitriy Bilyk Uniform distribution: discrete vs. continuous



Lower and upper bounds in dimension d = 2

LOWER BOUND UPPER BOUND

Axis-parallel rectangles

D(N,A) logN logN

D2(N,A)
√

logN
√

logN

Rotated rectangles

N1/4
N1/4

√
logN

Circles

N1/4
N1/4

√
logN

Convex Sets

N1/3
N1/3 log4N
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Geometric discrepancy

No rotations: discrepancy ≈ logN

All rotations: discrepancy ≈ N1/4

(J. Beck, H. Montgomerry)

Partial rotations
(lacunary sets, sets of small Minkowski dimension, etc)
DB, X.Ma, C. Spencer, J. Pipher (2009-2011)
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Higher dimensions: d ≥ 3

LOWER BOUND UPPER BOUND

Axis-parallel boxes

L∞ (logN)
d−1
2

+η
(logN)d−1

L2 (logN)
d−1
2 (logN)

d−1
2

Rotated boxes

N
1
2
− 1

2d N
1
2
− 1

2d
√

logN

Balls

N
1
2
− 1

2d N
1
2
− 1

2d
√

logN

Convex Sets

N1− 2
d+1 N1− 2

d+1 logcN
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Transference: geometric to combinatorial discrepancy

S – a set with N elements, H – a collection of subset of S,
χ : S → {−1, 1} – 2-coloring (red-blue)

Combinatorial discrepancy: disc(H) = min
χ

max
A∈H

∣∣∑
x∈A

χ(x)
∣∣

Combinatorial discrepancy generated by geometric systems:
Let A be a family of measurable sets and SN a set of N points.

disc(SN ,A) = disc
(
{SN ∩A : A ∈ A}

)
disc(N,A) = sup

SN⊂[0,1]d;#SN=N

disc(SN ,A)

Lemma (Sós; Beck; Lovász, Spencer, Vesztergombi; ... )

Combinatorial discrepancy “is larger than” the geometric
discrepancy

D(N,A) ≪ disc(N,A).
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Example: Tusnády’s problem

Let Rd = {axis-parallel rectangles}.

Tusnády’s problem:
What is the asymptotics of T (N) = disc(N,Rd) as N →∞?

d = 2: Matoušek; Beck

logN . T (N) . log5/2N

d ≥ 3: Nikolov, Matoušek, 2014; Beck

(logN)d−1 . T (N) . (logN)d+
1
2
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Spherical cap discrepancy

For x ∈ Sd ⊂ Rd+1, t ∈ [−1, 1] define spherical caps:

C(x, t) = {y ∈ Sd : 〈x, y〉 ≥ t}.
For a finite set Z = {z1, z2, ..., zN} ⊂ Sd define

Dcap(Z) = sup
x∈Sd,t∈[−1,1]

∣∣∣∣∣#
(
Z ∩ C(x, t)

)
N

− σ
(
C(x, t)

)∣∣∣∣∣ .
Theorem (Beck)

There exists an N -point set Z ⊂ Sd with

Dcap(Z) . N−
1
2
− 1

2d

√
logN.

Theorem (Beck)

For any N -point set Z ⊂ Sd

Dcap(Z) & N−
1
2
− 1

2d .

Dmitriy Bilyk Uniform distribution: discrete vs. continuous



Spherical caps: L2

Define the the spherical cap L2 discrepancy

D(2)
cap =

∫
Sd−1

∫ 1

−1

∣∣∣∣∣#
(
Z ∩ C(x, t)

)
N

− σ
(
C(x, t)

)∣∣∣∣∣
2

dt dσ(x)

 1
2

.

Theorem (Stolarsky invariance principle)

For any finite set Z = {z1, ..., zN} ⊂ Sd−1

1

N2

N∑
i,j=1

‖zi−zj‖ + cd

[
D(2)
cap

]2
= const

=

∫
Sd−1

∫
Sd−1

‖x− y‖ dσ(x)dσ(y).
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Tessellations of the sphere

x
y

Let x, y ∈ Sd and choose a random
hyperplane z⊥, where z ∈ Sd.

Then

P(z⊥ separates x and y)

= P(sign〈z, x〉 6= sign〈z, y〉)
= d(x, y),

where d is the normalized geodesic
distance on the sphere, i.e.

d(x, y) = cos−1〈x,y〉
π .
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Hamming distance

Consider a finite set of vectors Z = {z1, z2, ..., zN} on the sphere
Sd. Define the Hamming distance as

dH(x, y) :=
#
{
zk ∈ Z : sgn(x · zk) 6= sgn(y · zk)

}
N

,

i.e. the proportion of hyperplanes z⊥k that separate x and y.
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Uniform tessellations

Define
∆Z(x, y) := dH(x, y)− d(x, y).

Let K ⊂ Sd.
We say that Z is a δ-uniform tessellation of K if

sup
x,y∈K

∣∣∆Z(x, y)
∣∣ ≤ δ.

Question:
Given K ⊂ Sd and δ > 0, what is the smallest value of N so
that there exist a δ-uniform tessellation of K by N hyperplanes?
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Motivation

Picture from Baraniuk, Foucart, Needell, Plan,

Wooters

Almost isometric embeddings of
subsets of Sd.

Tessellations with cells small
diameter
Every cell of a δ-uniform tessellation

of K by hyperplanes has diameter at

most δ. If x and y are in the same

cell then

d(x, y) = |d(x, y)− dH(x, y)︸ ︷︷ ︸
=0

| ≤ δ.

“One-bit” compressed sensing
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Tessellations and discrepancy

x
y

Wx,y

Hx = {z : 〈z, x〉 > 0}

Wxy = Hx4Hy

= {z ∈ Sd : sign〈z, x〉 6= sign〈z, y〉}

P(sign〈z, x〉 6= sign〈z, y〉)
= σ(Wxy) = d(x, y)

∆Z(x, y) = dH(x, y)− d(x, y) =
#(Z ∩Wxy)

N
− σ(Wxy)

∆(Z) =
∥∥∆Z(x, y)

∥∥
∞ = sup

x,y∈Sd

∣∣∣∣#(Z ∩Wxy)

N
− σ(Wxy)

∣∣∣∣ .
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Tessellation/“Wedge” discrepancy

Lemma (DB, Lacey)

There exists an N -point set Z ⊂ Sd with

∆(Z) ≤ CdN−
1
2
− 1

2d

√
logN.

Corollary

This implies that for δ > 0 there exists a δ-uniform tessellation
of Sd by N hyperplanes with

N ≤ C ′dδ
−2+ 2

d+1 ·
(

log
1

δ

) d
d+1

.
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Stolarsky principle for wedge discrepancy

Define the L2 discrepancy for wedges

∥∥∆Z(x, y)
∥∥2
2

=

∫
Sd

∫
Sd

(
1

N

N∑
k=1

1Wxy(zk)− σ(Wxy)

)2

dσ(x) dσ(y)

Theorem (Stolarsky principle for the tessellation of the sphere)

For any finite set Z = {z1, . . . , zN} ⊂ Sd∥∥∆Z(x, y)
∥∥2
2

=

1

N2

N∑
i,j=1

(
1

2
− d(zi, zj)

)2

−
∫
Sd

∫
Sd

(
1

2
− d(x, y)

)2

dσ(x) dσ(y).
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Frame potential

Z = {z1, . . . , zN} ⊂ Sd is a frame in Rd iff there exist
c, C > 0 such that for any x ∈ Rd+1

c‖x‖2 ≤
∑
k

|〈x, zk〉|2 ≤ C‖x‖2.

Z = {z1, . . . , zN} ⊂ Sd is a tight frame iff there exists
A > 0 such that for any x ∈ Rd+1∑

k

|〈x, zk〉|2 = A‖x‖2.

Theorem (Benedetto, Fickus)

A set Z = {z1, . . . , zN} ⊂ Sd is a tight frame in Rd+1 if and
only if Z is a local minimizer of the frame potential:

F (Z) =

N∑
i,j=1

|〈zi, zj〉|2.
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Spherical designs and Korevaar–Meyers conjecture

Z = {z1, . . . , zN} ⊂ Sd is a spherical design of order t if it
generates a cubature formula, which is exact for all
polynomials of degree t on Sd, i.e.

1

N

N∑
i=1

p(zi) =

∫
Sd

p(z)dσ whenever deg(p) = t.

Conjecture (Korevaar-Meyers, 1994): There exist spherical
designs of order t which consist of N = O(td) points.

Bondarenko, Radchenko, Viazovska (2012): The conjecture
is true! (non-constructive)
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