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Uniform distribution of sequences

e A sequence (x,,) is uniformly distributed in [0, 1] iff

<N :: I
for any interval I C [0,1]: th #in < N T €1}

= |1
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Uniform distribution of sequences

e A sequence (zy,) is uniformly distributed in [0, 1] iff

<N:z,€l
for any interval I C [0,1]: ]\}im #{n < & xn €1}
— 00

= |1

e Equivalently, for all continuous f on [0, 1]:
1
% Zf:le f(zn) — .]0 f(z)dx as N — cc.
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Uniform distribution of sequences

e A sequence (zy,) is uniformly distributed in [0, 1] iff

<N:x,€el
for any interval I C [0,1]: lim #in < xn € I}

=|I
N—o0 N |‘

e Equivalently, for all continuous f on [0, 1]:
HN L Fzn) — fy f(z)dz as N — oco.

e Weyl Criterion (1916):
() is uniformly distributed in [0,1] iff for all k € Z,
k£ 0:

| N
lim — Z eZrikTn — ()
N—oo N

n=1
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Uniform distribution of sequences

e A sequence (zy,) is uniformly distributed in [0, 1] iff

<N:z,€l
for any interval I C [0,1]: ]\}im #{n < & xn €1}
— 00

= |1

e Equivalently, for all (iontinuous fon [0,1]:
% 27]:[:1 flzn) — fo f(x)dx as N — co.

e Weyl Criterion (1916):
(xy,) is uniformly distributed in [0,1] iff for all k € Z,
k #0:

1 N
lim — E e2mikTn —
N—oo N
n=1

@ The sequence {nf} is uniformly distributed in [0, 1] iff 6 is
irrational.
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Uniform distribution of sequences

e A sequence (zy,) is uniformly distributed in [0, 1] iff

<N:z,€l
for any interval I C [0,1]: ]\}im #{n < & xn €1}
— 00

= |1

e Equivalently, for all (iontinuous fon [0,1]:
% 27]:[:1 flzn) — fo f(x)dx as N — co.

e Weyl Criterion (1916):
(xy,) is uniformly distributed in [0,1] iff for all k € Z,
k #0:

1 N
lim — E e2mikTn —
N—oo N
n=1

@ The sequence {nf} is uniformly distributed in [0, 1] iff 6 is
irrational.

e For any subsequence (ny) of integers, the sequence {ny6} is
uniformly distributed for a.e. 6.
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Discrepancy

Discrepancy of a sequence

For a sequence w = (wy,)%; and an interval I C [0, 1] consider
the quantity

Anr=t#{wn: wp€;n <N} - N|I|.
Define

Dy = sup ‘AN71|.
IC[0,1]
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Discrepancy

Discrepancy of a sequence

For a sequence w = (wy,)%; and an interval I C [0, 1] consider
the quantity

Anr=t#{wn: wp€;n <N} - N|I|.
Define

Dy = sup ‘AN71|.
IC[0,1]

A sequence (wy)2 4 is u.d. in [0,1] if and only if

n=1
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Erdés-Turan inequality

Theorem (Erdés-Turan)

For any sequence w C [0, 1] we have

N &1 |E
2mihwn
DN(w)Sm—i-hz:lh Z:le
= n=

for all natural numbers m.
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Erdés-Turan inequality

Theorem (Erdés-Turan)

For any sequence w C [0, 1] we have

N &1 |E
2mihwn
DN(w)Sm—i-hz:lh Z:le
= n=

for all natural numbers m.

o Folklore: misses optimal estimates by a logarithm.
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Erdés-Turan inequality

Theorem (Erdés-Turan)

For any sequence w C [0, 1] we have

N
§ : 62m'hwn
n=1

N &1
DN(W)Sm—f-hz:lh

for all natural numbers m.

o Folklore: misses optimal estimates by a logarithm.

o E.g., for a badly approrimable irrational 6, Erdés-Turan
yields Dy ({n6}) < log? N, while in fact

Dy ({nf}) S log N.
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Erdés-Turan inequality

Theorem (Erdés-Turan)

For any sequence w C [0, 1] we have

N
§ : 62m'hwn
n=1

N &1
DN(W)Sm—f-hz:lh

for all natural numbers m.

o Folklore: misses optimal estimates by a logarithm.

o E.g., for a badly approrimable irrational 6, Erdés-Turan
yields Dy ({n6}) < log? N, while in fact

Dy ({nf}) S log N.

e For w = {n#} sharper bounds can be obtained using
continued fractions.
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Irregularities of distribution

Can discrepancy stay small?

Consider a sequence w = (wy )52 ; C [0, 1].
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Irregularities of distribution

Can discrepancy stay small?
Consider a sequence w = (wy )52 ; C [0, 1].

van der Corput (1934): Can Dy (w) be bounded as N — oo?
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Irregularities of distribution

Can discrepancy stay small?

Consider a sequence w = (wy )52 ; C [0, 1].
van der Corput (1934): Can Dy (w) be bounded as N — oo?
van Aardenne-Ehrenfest (1945): NO!
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Irregularities of distribution

Can discrepancy stay small?

Consider a sequence w = (wy )52 ; C [0, 1].
van der Corput (1934): Can Dy (w) be bounded as N — oo?
van Aardenne-Ehrenfest (1945): NO!

Theorem (K. Roth, 1954)

The following are equivalent:
(i) For every w = (wn); C [0,1],

Dy(w) 2 f(N)

for infinitely many values of N.
(ii) For any distribution Py C [0,1]? of N points,

sup |#PnNR—N-[R|l 2 f(N)

R— rectangle
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Irregularities of Distribution: simplest example

X —roll of a single die
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Irregularities of Distribution: simplest example

X —roll of a single die
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Geometric Discrepancy

Py — a set of N points in [0, 1]
R —a geometric family (e.g. axis-parallel rectangles, all
rectangles, polytopes, balls, convex sets etc.)

. . .
. *
. *R__°
- .
*
R . . o | *
* L]
. . . *
. - . L]
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Geometric Discrepancy

Py — a set of N points in [0, 1]
R —a geometric family (e.g. axis-parallel rectangles, all
rectangles, polytopes, balls, convex sets etc.)

Discrepancy of Py with respect to R € R
D(Pn,R) =#{PNNR} — N -vol (R)
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Geometric Discrepancy

Py — a set of N points in [0, 1]
R —a geometric family (e.g. axis-parallel rectangles, all
rectangles, polytopes, balls, convex sets etc.)

Discrepancy of Py with respect to R € R
D(Pn,R) =4{PnvN R} — N -vol (R)
Discrepancy of Py with respect to R
D(Pn) = sup |D(Pn, R)|
ReR
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Geometric Discrepancy

Py — a set of N points in [0, 1]
R —a geometric family (e.g. axis-parallel rectangles, all
rectangles, polytopes, balls, convex sets etc.)

Discrepancy of Py with respect to R € R
D(Pn,R) =4{PnvN R} — N -vol (R)
Discrepancy of Py with respect to R
D(Pn) = sup |D(Pn, R)|
ReR

D(N) = int D(Py)
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Discrepancy function

Consider a set Py C [0, 1]¢ consisting of N points:

o) e

Define the discrepancy function of the set Py as

DN($) = ﬁ{'PN N [0,1’)} — Nxixo... 24
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Numerical integration

Koksma-Hlawka inequality:

1 1
/[o,l]df (@)de =5 > J0)| £ 5 V() - 1Dyl

pEPN
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Numerical integration

Koksma-Hlawka inequality:

1 1
/[o,l]df (@)de =5 > J0)| £ 5 V() - 1Dyl

pEPN

e V(f) is the Hardy-Krause variation of f
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Numerical integration

Koksma-Hlawka inequality:

1 1
/[O,l]d flayde =< > F0)| S 5 Iforaally - [ Dnlloc

PEPN

e V(f) is the Hardy-Krause variation of f

otf
° V(f) a /[071101 83:18:1:2 e 8:Ed

e.g., if f(a1,.,q) = [, . [2 6(y)dy

dry...dzg
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Roth’s Theorem

Klaus Roth, October 29, 1925 — November 10, 2015

Theorem (ROTH, K. F. On irregularities of distribution,
Mathematika 1 (1954), 73-79.)

There exists Cq > 0 such that for any N-point set Py C [0, 1]¢

d—1
2 .

[ Dnll2 > Cq(log N)
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th’s Theorem

According to Roth himself, this was his favorite result.

e William Chen (private communication)
o Kenneth Stolarsky (private communication)

e Ben Green (comment on Terry Tao’s blog)

12 comments

Comments feed for this article &Y
12 November, 2015 at 9:55 am I did meet Roth, in Inverness around 7 Hvim
Ben Green years ago. I asked him what his favourite g ,am

proof (among his results was) and he said
the lower bound for the L~2 discrepancy of point sets with respect to axis parallel
boxes. It is a very elegant argument, nicely described in Bernard Chazelle’s book
“Discrepancy Theory”, Later in his career he became qguite interested in the
“Heilbronn triangle problem”, which came up in conversation the other day: given
n peints in the unit square, what's the smallest area of triangle they are

guaranteed to span. I believe that ,,—2+0(1} is conjectured, and that Roth was the
first to improve on the trivial bound ({1 /n ). Subsequently bounds of the farm
((n~17¢) were obtained.

17 €5 9 @ Rate This
Reply

continuous



Roth’s Theorem: legacy

Theorem (ROTH, K. F. On irregularities of distribution,
Mathematika 1 (1954), 73-79.)

There exists Cq > 0 such that for any N-point set Py C [0, 1]%

d—1
|IDnll2 > Cy(log N) 2.

4 papers by Roth (On irregularities of distribution. I-IV)

10 papers by W.M. Schmidt (On irregularities of
distribution. I-X)

2 by J. Beck (Note on irregularities of distribution. I-IT)

4 by W. W. L. Chen (On irregularities of distribution.
I-1V)

2 by Beck and Chen (Note on irregularities of distribution.
I-1I)

a book by Beck and Chen, “Irregularities of distribution”.

(]

(]
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Average case: P discrepancy, 1 < p < oo

Theorem (Roth, 1954 (p = 2); Schmidt, 1977 (1 < p < 2))

The following estimate holds for all Py C [0,1]¢ with
#Pn =N:

d—1
2

IDnllp 2 (log N)
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Average case: LP discrepancy, 1 < p < oo
g pancy

Theorem (Roth, 1954 (p = 2); Schmidt, 1977 (1 < p < 2))

The following estimate holds for all Py C [0,1]¢ with
#Pn = N:
%

IDnllp 2 (log N)

Theorem (Davenport, 1956 (d = 2, p = 2); Roth, 1979 (d > 3,
p = 2); Frolov, 1980 (p > 2, d = 2); Chen, 1983 (p > 2, d > 3);

Chen, Skriganov, 2000’s)
There exist sets Py C [0,1]¢ with

d—1
IDnllp S (log N) =2
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L°°: “worst-case” discrepancy

Conjecture

d—1
DN loc > (log N) =
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L°°: “worst-case” discrepancy

Conjecture

|Dnlloo > (log N)

d—1
2

Theorem (Schmidt, 1972; Halasz, 1981)

In dimension d = 2 we have |Dy||s 2 log N

~Y
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L°°: “worst-case” discrepancy

Conjecture

|Dnlloo > (log N)

d—1
2

Theorem (Schmidt, 1972; Halasz, 1981)

In dimension d = 2 we have |Dy||s 2 log N

d = 2: Lerch, 1904; van der Corput, 1934

There exist Py C [0, 1]? with || Dy|leo &~ log N
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Low discrepancy sets

1.0

0.8

0.6

0.4

0.2

0.2 0.4 0.6 08 1.[]

The irrational (o = v/2) lattice with N = 22 points

(n/N, {na}), n=0,1,....,N — 1.
Discrepancy ~ log N
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Low discrepancy sets

The van der Corput set with N = 2" points (here n = 12)
(O.mlxg...a:n, O.xnmn,l...xgml), zr =0 or 1.
Discrepancy ~ log N

ontinuous



van der Corput set

08
06
04 -

02F

0.2 04 0.6 08

van der Corput set with N = 23 points
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van der Corput set

06

04k

0.2 04 0.6 08

van der Corput set with N = 2% points
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van der Corput set

08
06+

04

" PSP | S
0.2 0.4 0.6 0.8

van der Corput set with N = 25 points
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van der Corput set

10
08
06
04

0.2F
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van der Corput set

1o0f
ol
osf "
oat

0.2F
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van der Corput set

1o}
o8l *
asl
o4t

02t ,
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van der Corput set

1o}
0B

osl . 3
0.4 —_.- 2

oz, *

Uniform distribution: di . continuous



van der Corput set

wof o, .
Dl CeE i

T A

. '
oale "
: P P P
02E" o *
T Full T el T I. 1 it | I ll. b a Tiw ll- 1 1
0.2 04 06 08 10

van der Corput set with N = 20 points

Uniform distribution: di . continuous



van der Corput set

Uniform distribution: di e vs. continuous



van der Corput




van der Corput set

continuous



L™ estimates

Conjecture

d—1
DN loc > (log N) =

Theorem (Schmidt, 1972; Halasz, 1981)

In dimension d = 2 we have |Dy||s 2 log N

~

d = 2: Lerch, 1904; van der Corput, 1934

There exist Py C [0, 1]? with || Dy|leo &~ log N
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L™ estimates

Conjecture

d—1
DN loc > (log N) =

Theorem (Schmidt, 1972; Halasz, 1981)
2 log N

~

In dimension d = 2 we have || Dy||co

d = 2: Lerch, 1904; van der Corput, 1934
There exist Py C [0, 1]? with || Dy|

0o ~ log N

d > 3, Halton, Hammersley (1960):

There exist Py C [0,1]? with | Dyl < (log N)3—1
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Conjectures and results

Conjecture 1

1Dyl 2 (log N)4~*
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Conjectures and results

Conjecture 2

d
IDN o 2 (log V)2
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Conjectures and results

Conjecture 2

d
IDN o 2 (log V)2

Theorem (DB, M.Lacey, A.Vagharshakyan, 2008)

For d > 3 there exists n > 0 such that the following estimate
holds for all N-point distributions Py C [0,1]%:

d—1
IDnlloo 2 (log N) "2 7.
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Connections between problems

N N Small Ball Conjecture
Discrepancy estimates
. e d=z | n
Dyl 2 (log M) SN DY ufefm‘z 227 3 sl
=27 oo R:|R|=2""
lower bound lower bound

Small deviations for the Brownian sheet Metric entropy of MW?
— 10g]F’(||BHO(:[]:1_-d_\_, <e) ~e2(log1/e)? log N(g,2,d) = e (log1/e)?1/?

Kuelbs, Li, 93
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Lower and upper bounds in dimension d = 2

LOWER BOUND UPPER BOUND
Axis-parallel rectangles
D(N,A) log N log N
Do(N,A)  IogN Viog N
Rotated rectangles
N1/4 NY4/log N
Circles
N1/4 NY4/log N
Convex Sets

N1/3 NY3log N

Dmitriy Bilyk

Uniform distribution: discrete vs. continuous



Geometric discrepancy

o No rotations: discrepancy =~ log N

=L

]

o All rotations: discrepancy ~ N1/4
(J. Beck, H. Montgomerry)

o Partial rotations
(lacunary sets, sets of small Minkowski dimension, etc)
DB, X.Ma, C. Spencer, J. Pipher (2009-2011)
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Higher dimensions: d > 3

LOWER BOUND UPPER BOUND
Axis-parallel boxes

I°  (logN)= ™ (log N)®~!

L? (log N)% (log N)%

Rotated boxes

1 1

N2"2 N2~2i\/log N
Balls

1 1

N2~z Nz~21,/log N
Convex Sets

2

R N @ log® N
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Transference: geometric to combinatorial discrepancy

S — a set with N elements, H — a collection of subset of 5,
x: S —{-1,1} — 2-coloring (red-blue)

Combinatorial di . dise(#) = mi
ombinatorial discrepancy isc(H) chlnglgﬁ‘;X(xH

Dmitriy Bilyk Uniform distribution: discrete vs. continuous



Transference: geometric to combinatorial discrepancy

S — a set with N elements, H — a collection of subset of 5,
x: S —{-1,1} — 2-coloring (red-blue)

Combinatorial discrepancy:  disc(H) = min max ‘ Z x(z
X AeH oA

Combinatorial discrepancy generated by geometric systems:
Let A be a family of measurable sets and Sy a set of N points.

disc(Sn, A) = disc({SvNA: Ae A})

disc(N, A) = sup disc(Sn, A)
SnC[0,1]%#SNy=N
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Transference: geometric to combinatorial discrepancy

S — a set with N elements, H — a collection of subset of 5,
x: S —{-1,1} — 2-coloring (red-blue)

Combinatorial discrepancy:  disc(H) = min max ‘ Z x(z

AeH
X €A

Combinatorial discrepancy generated by geometric systems:
Let A be a family of measurable sets and Sy a set of N points.

disc(Sn, A) = disc({SvNA: Ae A})

disc(N, A) = sup disc(Sn, A)
SnC[0,1]%#SNy=N

Lemma (S6s; Beck; Lovasz, Spencer, Vesztergombi; ...

Combinatorial discrepancy “is larger than” the geometric
discrepancy
D(N, A) « disc(N, A).
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Example: Tusnady’s problem

Let R4 = {axis-parallel rectangles}.

Tusnéady’s problem:
What is the asymptotics of T'(IN) = disc(N,R4) as N — oo?

o d = 2: Matousek; Beck
log N <T(N) <log®? N
o d > 3: Nikolov, Matousek, 2014; Beck

(log N)*! S T(N) < (log N)?+2
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Spherical cap discrepancy

For 2 € S ¢ R, ¢ € [~1,1] define spherical caps:
Clz,t) ={y € $: (x,y) > t}.
For a finite set Z = {21, 22, ..., 2n} C S? define
ZNC(x,t
Deop(2) = sup M —o(C(z,1))].
xeS te[—1,1] N

Theorem (Beck)

There exists an N -point set Z C S* with

Deap(Z) S N~2721,/log N.

Theorem (Beck)
For any N-point set Z C S¢

Deop(2) 2 N30,

A\
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Spherical caps: L?

Define the the spherical cap L? discrepancy

1
2 3
ZOC (x t)) dt do ()

—o(C(,1))

czzp

Sd—1
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Spherical caps: L?

Define the the spherical cap L? discrepancy

1
2 3
ZOC (x t)) dt do ()

—o(C(,1))

czzp

Sd-1

Theorem (Stolarsky invariance principle)

For any finite set Z = {z1,...,zn} C S1

1« 2
N2 Z |zi—z;|| + Cd[DEZH = const

i,j=1
— [ ] le= sl do@)dotw).
§d—1 Jgd—1
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Tessellations of the sphere

Let z, y € S% and choose a random
hyperplane z*, where z € S.
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Tessellations of the sphere

Let z, y € S% and choose a random
hyperplane z*, where z € S.

Then

P(z! separates x and ¥)
— P(sign{z, ) # sign(z, 3))
= d(z,y),

where d is the normalized geodesic
distance on the sphere, i.e.

cos~ Nz
d(w,y) = =2,

™

Dmitriy Bilyk Uniform distribution: discrete vs. continuous



Hamming distance

Consider a finite set of vectors Z = {z1, 29, ..., zx } on the sphere
S?. Define the Hamming distance as

dnla.y) = FHEL Sgn(x];,zk) #sen(y z)}

i.e. the proportion of hyperplanes z,i- that separate x and y.

Dmitriy Bilyk Uniform distribution: discrete vs. continuous



Uniform tessellations

Define
AZ(xvy) = dH(xvy) - d(.ﬁl?,y)
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Uniform tessellations

Define
AZ(xvy) = dH(xvy) - d(.ﬁl?,y)

Let K C S%
We say that Z is a d-uniform tessellation of K if

sup |Az(z,y)| < 4.
z,yeK

Dmitriy Bilyk Uniform distribution: discrete vs. continuous



Uniform tessellations

Define
AZ(xvy) = dH(xvy) - d(.ﬁl?,y)

Let K C S%
We say that Z is a d-uniform tessellation of K if

sup |Az(z,y)| < 4.
z,yeK

Question:
Given K C S% and 6 > 0, what is the smallest value of N so
that there exist a §-uniform tessellation of K by N hyperplanes?

Dmitriy Bilyk Uniform distribution: discrete vs. continuous



Motivation

@ Almost isometric embeddings of
subsets of S°.

Sn.—l

Picture from Baraniuk, Foucart, Needell, Plan,

Wooters
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Motivation

@ Almost isometric embeddings of
subsets of S°.

@ Tessellations with cells small
T diameter
Every cell of a d-uniform tessellation
of K by hyperplanes has diameter at
most §. If z and y are in the same
§n-1 cell then

Picture from Baraniuk, Foucart, Needell, Plan, d(l‘, y) — |d($7 y) _ dH ({E, y) ’ S 5

Wooters

=0
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Motivation

@ Almost isometric embeddings of
subsets of S°.

@ Tessellations with cells small
T diameter
Every cell of a d-uniform tessellation
of K by hyperplanes has diameter at
most §. If z and y are in the same
§n-1 cell then

Picture from Baraniuk, Foucart, Needell, Plan, d(l‘, y) — |d($7 y) _ dH ({E, y) ’ S 5

Wooters

=0

@ “Omne-bit” compressed sensing
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Tessellations and discrepancy

H,={z : (z,z) >0}

Wy = HoAH,
= {z € S¢ : sign(z, x) # sign(z,y)}

Dmitriy Bilyk Uniform distribution: discrete vs. continuous



Tessellations and discrepancy

Dmitriy Bilyk

H,={z : (z,z) >0}

Wy = HoAH,
= {z € S¢ : sign(z, x) # sign(z,y)}

P(sign(z, x) # sign(z,y))
=0 (Way) = d(z,y)

Uniform distribution: discrete vs. continuous



Tessellations and discrepancy

H,={z : (z,z) >0}

Wy = HoAH,
= {z € S¢ : sign(z, x) # sign(z,y)}

P(sign(z, x) # sign(z,y))
=0 (Way) = d(z,y)

Dmitriy Bilyk

Uniform distribution: discrete vs. continuous



Tessellation/“Wedge” discrepancy

Lemma (DB, Lacey)
There exists an N-point set Z C S* with

A(Z) < C4N~272a,/log N.
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Tessellation/“Wedge” discrepancy

Lemma (DB, Lacey)
There exists an N-point set Z C S* with

A(Z) < C4N~272a,/log N.

This implies that for d > 0 there exists a d-uniform tessellation
of ST by N hyperplanes with

Dmitriy Bilyk Uniform distribution: discrete vs. continuous



Stolarsky principle for wedge discrepancy

Define the L? discrepancy for wedges

2
2 1
szl = [ [ (Nglwzxzk)—dwxy)) do(x) do()

sS4 sd
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Stolarsky principle for wedge discrepancy

Define the L? discrepancy for wedges

2
2 1
szl = [ [ (Nglwzy(Zk)—a(ny)> do(x) do()

sS4 sd

Theorem (Stolarsky principle for the tessellation of the sphere)

For any finite set Z = {z1,...,zy} C S%

1Az y)ll, =
35 (o) - [ (3 s
b= Sé sd
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Frame potential

o Z={z1,...,2n} CS%is a frame in R? iff there exist
¢,C > 0 such that for any 2 € R4*!

clel® <l z)? < Ollz)?.
k
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Frame potential

o Z={z1,...,2n} CS%is a frame in R? iff there exist
¢,C > 0 such that for any 2 € R4*!

clel® <l z)? < Ollz)?.
k

o Z=1{z,...,2y} CS?%is a tight frame iff there exists
A > 0 such that for any z € R%H!

>l z)l? = Alle|?.
k
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Frame potential

o Z={z1,...,2n} CS%is a frame in R? iff there exist
¢,C > 0 such that for any 2 € R4*!

clel® <l z)? < Ollz)?.
k

o Z=1{z,...,2y} CS?%is a tight frame iff there exists
A > 0 such that for any z € R%H!

>l z)l? = Alle|?.
k

Theorem (Benedetto, Fickus)

A set Z ={z,...,2n} CS? is a tight frame in RT if and
only if Z is a local minimizer of the frame potential:

N
F(Z)= ) [z 2zl

1,7=1
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Spherical designs and Korevaar—-Meyers conjecture

o Z={z,...,2y} C S?is a spherical design of order ¢ if it
generates a cubature formula, which is exact for all
polynomials of degree ¢t on S%, i.e.

sz 2 —/ z)do whenever deg(p) =t.
Sda
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Spherical designs and Korevaar—-Meyers conjecture

o Z={z,...,2y} C S?is a spherical design of order ¢ if it
generates a cubature formula, which is exact for all
polynomials of degree ¢t on S%, i.e.

sz 2 —/ z)do whenever deg(p) =t.
Sda

e Conjecture (Korevaar-Meyers, 1994): There exist spherical
designs of order ¢ which consist of N = O(t¢) points.
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Spherical designs and Korevaar—-Meyers conjecture

o Z={z,...,2y} C S?is a spherical design of order ¢ if it
generates a cubature formula, which is exact for all
polynomials of degree ¢t on S%, i.e.

N Zp zi) = / z)do whenever deg(p) =t.
Sda
e Conjecture (Korevaar-Meyers, 1994): There exist spherical
designs of order ¢ which consist of N = O(t¢) points.

e Bondarenko, Radchenko, Viazovska (2012): The conjecture
is true! (non-constructive)
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