(January 14, 2009)

[04.1] (Lagrange interpolation) Let aq,. .., , be distinct elements in a field k, and let 51,..., 3, be any
elements of k. Prove that there is a unique polynomial P(z) of degree < n in k[z] such that, for all indices 4,

P(ai) = 5
Indeed, letting

Q) = [ @ - )

i=1
show that

N Q(x) A
P(LL') - ; (x _ Oli) . Q/(ai) /61

Since the «; are distinct,
Qo) = [J(ei =) £ 0
J#i
(One could say more about purely algebraic notions of derivative, but maybe not just now.) Evaluating
P(z) at © — ay,
1 (for j =14)

evaluated at © — a; = {O (for j = i)

x)
(z —ay)
Thus, all terms but the i** vanish in the sum, and the i*” one, by design, gives 3;. For uniqueness, suppose
R(z) were another polynomial of degree < n taking the same values at n distinct points «; as does Q(z).
Then @ — R is of degree < n and vanishes at n points. A non-zero degree £ polynomial has at most £ zeros,
so it must be that @@ — R is the 0 polynomial.

th

[04.2] (Simple case of partial fractions) Let aq, ..., a, be distinct elements in a field k. Let R(x) be any
polynomial in k[z] of degree < m. Show that there exist unique constants ¢; € k such that in the field of
rational functions & (z)

R(m) C1 Cn
= +...+
(r—a1)...(z—a,) x— T —
In particular, let
Qlz)=]] @ — )
i=1
and show that
S (CD)
Q)

We might emphasize that the field of rational functions k(x) is most precisely the field of fractions of the
polynomial ring k[x]. Thus, in particular, equality /s = r’'/s’ is exactly equivalent to the equality rs’ = r's
(as in elementary school). Thus, to test whether or not the indicated expression performs as claimed, we

test whether or not R(o) Q(x)
R(z) =) (Q’(ai) - ai)

i

One might notice that this is the previous problem, in case 3; = R(«;), so its correctness is just a special
case of that, as is the uniqueness (since deg R < n).

[04.3] Show that the ideal I generated in Z[z] by 22 + 1 and 5 is not maximal.

We will show that the quotient is not a field, which implies (by the standard result proven above) that the
ideal is not maximal (proper).



Paul Garrett: (January 14, 2009)

First, let us make absolutely clear that the quotient of a ring R by an ideal I = Rx + Ry generated by two
elements can be expressed as a two-step quotient, namely

(R/(x))/{y) = R/(Rz + Ry)

where the (7) is the principal ideal generated by the image g of y in the quotient R/(xz). The principal ideal
generated by y in the quotient R/(z) is the set of cosets

() ={(r+ Rx)-(y+ Rx):r € R} ={ry+ Rx:r € R}

noting that the multiplication of cosets in the quotient ring is not just the element-wise multiplication of the
cosets. With this explication, the natural map is

r+{xy=r+ () —r+ )+ {y) =r+ (Rx + Rx)

which is visibly the same as taking the quotient in a single step.

Thus, first
Zlz)/(5) ~ (Z/5)[x]

by the map which reduces the coefficients of a polynomial modulo 5. In (%/5)[z], the polynomial 2% + 1 does
factor, as
1= (z—-2)(x+2)

(where these 2s are in Z/5, not in Z). Thus, the quotient (Z/5)[z]/(x* + 1) has proper zero divisors T — 2
and T + 2, where T is the image of x in the quotient. Thus, it’s not even an integral domain, much less a
field.

[04.4] Show that the ideal I generated in Z[z] by 2% + x + 1 and 7 is not maximal.

As in the previous problem, we compute the quotient in two steps. First,

Zlz]/(7) ~ (2)7)[x]

by the map which reduces the coefficients of a polynomial modulo 7. In (Z/7)[x], the polynomial 2% + z + 1
does factor, as
P rr+1l=(z-2)(z—4)

(where 2 and 4 are in Z/7). Thus, the quotient (Z/7)[z]/(z? + = + 1) has proper zero divisors & — 2 and
T — 4, where T is the image of = in the quotient. Thus, it’s not even an integral domain, so certainly not a
field.



