
(January 14, 2009)

[04.1] (Lagrange interpolation) Let α1, . . . , αn be distinct elements in a field k, and let β1, . . . , βn be any
elements of k. Prove that there is a unique polynomial P (x) of degree < n in k[x] such that, for all indices i,

P (αi) = βi

Indeed, letting

Q(x) =
n∏

i=1

(x− αi)

show that

P (x) =
n∑

i=1

Q(x)
(x− αi) ·Q′(αi)

· βi

Since the αi are distinct,
Q′(αi) =

∏
j 6=i

(αi − αj) 6= 0

(One could say more about purely algebraic notions of derivative, but maybe not just now.) Evaluating
P (x) at x→ αi,

Q(x)
(x− αj)

evaluated at x→ αi =
{

1 (for j = i)
0 (for j = i)

Thus, all terms but the ith vanish in the sum, and the ith one, by design, gives βi. For uniqueness, suppose
R(x) were another polynomial of degree < n taking the same values at n distinct points αi as does Q(x).
Then Q−R is of degree < n and vanishes at n points. A non-zero degree ` polynomial has at most ` zeros,
so it must be that Q−R is the 0 polynomial.

[04.2] (Simple case of partial fractions) Let α1, . . . , αn be distinct elements in a field k. Let R(x) be any
polynomial in k[x] of degree < n. Show that there exist unique constants ci ∈ k such that in the field of
rational functions k(x)

R(x)
(x− α1) . . . (x− αn)

=
c1

x− α1
+ . . .+

cn
x− αn

In particular, let

Q(x) =
n∏

i=1

(x− αi)

and show that

ci =
R(αi)
Q′(αi)

We might emphasize that the field of rational functions k(x) is most precisely the field of fractions of the
polynomial ring k[x]. Thus, in particular, equality r/s = r′/s′ is exactly equivalent to the equality rs′ = r′s
(as in elementary school). Thus, to test whether or not the indicated expression performs as claimed, we
test whether or not

R(x) =
∑

i

(
R(αi)
Q′(αi)

· Q(x)
x− αi

)
One might notice that this is the previous problem, in case βi = R(αi), so its correctness is just a special
case of that, as is the uniqueness (since degR < n).

[04.3] Show that the ideal I generated in Z[x] by x2 + 1 and 5 is not maximal.

We will show that the quotient is not a field, which implies (by the standard result proven above) that the
ideal is not maximal (proper).
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Paul Garrett: (January 14, 2009)

First, let us make absolutely clear that the quotient of a ring R by an ideal I = Rx+Ry generated by two
elements can be expressed as a two-step quotient, namely

(R/〈x〉)/〈ȳ〉 ≈ R/(Rx+Ry)

where the 〈ȳ〉 is the principal ideal generated by the image ȳ of y in the quotient R/〈x〉. The principal ideal
generated by y in the quotient R/〈x〉 is the set of cosets

〈ȳ〉 = {(r +Rx) · (y +Rx) : r ∈ R} = {ry +Rx : r ∈ R}

noting that the multiplication of cosets in the quotient ring is not just the element-wise multiplication of the
cosets. With this explication, the natural map is

r + 〈x〉 = r + 〈x〉 → r + 〈x〉+ 〈y〉′ = r + (Rx+Rx)

which is visibly the same as taking the quotient in a single step.

Thus, first
Z[x]/〈5〉 ≈ (Z/5)[x]

by the map which reduces the coefficients of a polynomial modulo 5. In (Z/5)[x], the polynomial x2 + 1 does
factor, as

x2 + 1 = (x− 2)(x+ 2)

(where these 2s are in Z/5, not in Z). Thus, the quotient (Z/5)[x]/〈x2 + 1〉 has proper zero divisors x̄ − 2
and x̄ + 2, where x̄ is the image of x in the quotient. Thus, it’s not even an integral domain, much less a
field.

[04.4] Show that the ideal I generated in Z[x] by x2 + x+ 1 and 7 is not maximal.

As in the previous problem, we compute the quotient in two steps. First,

Z[x]/〈7〉 ≈ (Z/7)[x]

by the map which reduces the coefficients of a polynomial modulo 7. In (Z/7)[x], the polynomial x2 + x+ 1
does factor, as

x2 + x+ 1 = (x− 2)(x− 4)

(where 2 and 4 are in Z/7). Thus, the quotient (Z/7)[x]/〈x2 + x + 1〉 has proper zero divisors x̄ − 2 and
x̄− 4, where x̄ is the image of x in the quotient. Thus, it’s not even an integral domain, so certainly not a
field.
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