[04.1] (Lagrange interpolation) Let $\alpha_1, \ldots, \alpha_n$ be distinct elements in a field k, and let β_1, \ldots, β_n be any elements of k. Prove that there is a unique polynomial P(x) of degree < n in k[x] such that, for all indices i,

$$P(\alpha_i) = \beta_i$$

Indeed, letting

$$Q(x) = \prod_{i=1}^{n} (x - \alpha_i)$$

show that

$$P(x) = \sum_{i=1}^{n} \frac{Q(x)}{(x - \alpha_i) \cdot Q'(\alpha_i)} \cdot \beta_i$$

Since the α_i are distinct,

$$Q'(\alpha_i) = \prod_{j \neq i} (\alpha_i - \alpha_j) \neq 0$$

(One could say more about purely algebraic notions of derivative, but maybe not just now.) Evaluating P(x) at $x \to \alpha_i$,

$$\frac{Q(x)}{(x - \alpha_j)} \text{ evaluated at } x \to \alpha_i = \begin{cases} 1 & \text{(for } j = i) \\ 0 & \text{(for } j = i) \end{cases}$$

Thus, all terms but the i^{th} vanish in the sum, and the i^{th} one, by design, gives β_i . For uniqueness, suppose R(x) were another polynomial of degree < n taking the same values at n distinct points α_i as does Q(x). Then Q - R is of degree < n and vanishes at n points. A non-zero degree ℓ polynomial has at most ℓ zeros, so it must be that Q - R is the 0 polynomial.

[04.2] (Simple case of partial fractions) Let $\alpha_1, \ldots, \alpha_n$ be distinct elements in a field k. Let R(x) be any polynomial in k[x] of degree < n. Show that there exist unique constants $c_i \in k$ such that in the field of rational functions k(x)

$$\frac{R(x)}{(x-\alpha_1)\dots(x-\alpha_n)} = \frac{c_1}{x-\alpha_1} + \dots + \frac{c_n}{x-\alpha_n}$$

In particular, let

$$Q(x) = \prod_{i=1}^{n} (x - \alpha_i)$$

and show that

$$c_i = \frac{R(\alpha_i)}{Q'(\alpha_i)}$$

We might emphasize that the field of rational functions k(x) is most precisely the field of fractions of the polynomial ring k[x]. Thus, in particular, equality r/s = r'/s' is exactly equivalent to the equality rs' = r's (as in elementary school). Thus, to test whether or not the indicated expression performs as claimed, we test whether or not

$$R(x) = \sum_{i} \left(\frac{R(\alpha_i)}{Q'(\alpha_i)} \cdot \frac{Q(x)}{x - \alpha_i} \right)$$

One might notice that this is the previous problem, in case $\beta_i = R(\alpha_i)$, so its correctness is just a special case of that, as is the uniqueness (since deg R < n).

[04.3] Show that the ideal I generated in $\mathbb{Z}[x]$ by $x^2 + 1$ and 5 is not maximal.

We will show that the quotient is not a field, which implies (by the standard result proven above) that the ideal is not maximal (proper).

First, let us make absolutely clear that the quotient of a ring R by an ideal I = Rx + Ry generated by two elements can be expressed as a two-step quotient, namely

$$(R/\langle x \rangle)/\langle \bar{y} \rangle \approx R/(Rx + Ry)$$

where the $\langle \bar{y} \rangle$ is the principal ideal generated by the *image* \bar{y} of y in the quotient $R/\langle x \rangle$. The principal ideal generated by y in the quotient $R/\langle x \rangle$ is the set of cosets

$$\langle \bar{y} \rangle = \{ (r + Rx) \cdot (y + Rx) : r \in R \} = \{ ry + Rx : r \in R \}$$

noting that the multiplication of cosets in the quotient ring is *not* just the element-wise multiplication of the cosets. With this explication, the natural map is

$$r + \langle x \rangle = r + \langle x \rangle \rightarrow r + \langle x \rangle + \langle y \rangle' = r + (Rx + Rx)$$

which is visibly the same as taking the quotient in a single step.

Thus, first

$$\mathbb{Z}[x]/\langle 5 \rangle \approx (\mathbb{Z}/5)[x]$$

by the map which reduces the coefficients of a polynomial modulo 5. In $(\mathbb{Z}/5)[x]$, the polynomial $x^2 + 1$ does factor, as

$$x^2 + 1 = (x - 2)(x + 2)$$

(where these 2s are in $\mathbb{Z}/5$, not in \mathbb{Z}). Thus, the quotient $(\mathbb{Z}/5)[x]/\langle x^2+1\rangle$ has proper zero divisors $\bar{x}-2$ and $\bar{x}+2$, where \bar{x} is the image of x in the quotient. Thus, it's not even an integral domain, much less a field.

[04.4] Show that the ideal I generated in $\mathbb{Z}[x]$ by $x^2 + x + 1$ and 7 is not maximal.

As in the previous problem, we compute the quotient in two steps. First,

$$\mathbb{Z}[x]/\langle 7 \rangle \approx (\mathbb{Z}/7)[x]$$

by the map which reduces the coefficients of a polynomial modulo 7. In $(\mathbb{Z}/7)[x]$, the polynomial $x^2 + x + 1$ does factor, as

$$x^2 + x + 1 = (x - 2)(x - 4)$$

(where 2 and 4 are in $\mathbb{Z}/7$). Thus, the quotient $(\mathbb{Z}/7)[x]/\langle x^2+x+1\rangle$ has proper zero divisors $\bar{x}-2$ and $\bar{x}-4$, where \bar{x} is the image of x in the quotient. Thus, it's not even an integral domain, so certainly not a field.