
(January 14, 2009)

[05.1] Gracefully verify that the octic x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1 factors properly in Q[x].

This octic is
x9 − 1
x− 1

=
x3 − 1)(x6 + x3 + 1)

x− 1
= (x2 + x+ 1) (x6 + x3 + 1)

for example. We might anticipate this reducibility by realizing that

x9 − 1 = Φ1(x) Φ3(x) Φ9(x)

where Φn is the nth cyclotomic polynomial, and the given octic is just (x9−1)/Φ1(x), so what is left at least
factors as Φ3(x) Φ9(x).

[05.2] Gracefully verify that the quartic x4 + x3 + x2 + x+ 1 is irreducible in F2[x].

Use the recursive definition of cyclotomic polynomials

Φn(x) =
xn − 1∏

d|n, d<n Φd(x)

Thus, the given quartic is Φ5(x). And use the fact that for the characteristic of the field k not dividing n,
Φn(α) = 0 if and only if α is of order n in k×. If it had a linear factor x− α with α ∈ F2, then Φ4(α) = 0,
and α would be of order 5 in F×2 . But F×2 is of order 1, so has no elements of order 5 (by Lagrange). (We
saw earlier that) existence of an irreducible quadratic factor of Φ4(x) in F2[x] is equivalent to existence of
an element α of order 5 in F×22 , but |F×22 | = 22 − 1 = 3, which is not divisible by 5, so (Lagrange) has no
element of order 5. The same sort of argument would show that there is no irreducible cubic factor, but we
already know this since if there were any proper factorization then there would be a proper factor of at most
half the degree of the quartic. But there is no linear or quadratic factor, so the quartic is irreducible.

[05.3] Gracefully verify that the sextic x6 + x5 + x4 + x3 + x2 + x+ 1 is irreducible in F3[x].

Use the recursive definition of cyclotomic polynomials

Φn(x) =
xn − 1∏

d|n, d<n Φd(x)

Thus, the given sextic is Φ7(x). And use the fact that for the characteristic of the field k not dividing n,
Φn(α) = 0 if and only if α is of order n in k×. If it had a linear factor x− α with α ∈ F3, then Φ7(α) = 0,
and α would be of order 7 in F×2 . But F×3 is of order 2, so has no elements of order 7 (Lagrange). Existence
of an (irreducible) quadratic factor of Φ7(x) in F3[x] is equivalent to existence of an element α of order 7 in
F×32 , but |F×32 | = 32 − 1 = 8, which is not divisible by 7, so (Lagrange) has no element of order 5. Similarly,
if there were an (irreducible) cubic factor, then there would be a root in a cubic extension F33 of F3, but
F×33 has order 33 − 1 = 26 which is not divisible by 7, so there is no such element. If there were any proper
factorization then there would be a proper factor of at most half the degree of the sextic. But there is no
linear, quadratic, or cubic factor, so the sextic is irreducible.

[05.4] Gracefully verify that the quartic x4 + x3 + x2 + x+ 1 in factors into two irreducible quadratics in
F19[x].

As above, we see that the quartic is the 5th cyclotomic polynomial. If it had a linear factor in F19[x] then
(since the characteristic 19 does not divide the index 5) there would be an element of order 5 in F×19, but the
latter group has order 19− 1 not divisible by 5, so (Lagrange) there is no such element. But the quadratic
extension F192 of F19 has multiplicative group with order 192 − 1 = 360 which is divisible by 5, so there is
an element α of order 5 there.

Since α ∈ F192 −F19, the minimal polynomial M(x) of α over F19 is quadratic. We have shown that in this
circumstance the polynomial M divides the quartic. (Again, the proof is as follows: Let

x4 + x3 + x2 + x+ 1 = Q(x) ·M(x) +R(x)
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with Q,R ∈ F19[x] and degR < degM . Evaluating at α gives R(α) = 0, which (by minimality of M) implies
R is the 0 polynomial. Thus, M divides the quartic.) The quotient of the quartic by M is quadratic, and
(as we’ve already seen) has no linear factor in F19[x], so is irreducible.

[05.5] Let f(x) = x6 − x3 + 1. Find primes p with each of the following behaviors: f is irreducible in
Fp[x], f factors into irreducible quadratic factors in Fp[x], f factors into irreducible cubic factors in Fp[x],
f factors into linear factors in Fp[x].

By the recursive definition and properties of cyclotomic polynomials, we recognize f(x) as the 18th cyclotomic
polynomial Φ18(x). For a prime p not dividing 18, zeros of Φ18 are exactly elements of order 18. Thus, if
pd − 1 = 0 mod 18 but no smaller exponent than d achieves this effect, then F×

pd (proven cyclic by now) has
an element of order 18, whose minimal polynomial divides Φ18(x).

We might observe that (Z/18)× is itself cyclic, of order ϕ(18) = ϕ(2)ϕ(32) = (3− 1)3 = 6, so has elements
of all possible orders, namely 1, 2, 3, 6.

For p = 1 mod 18, for example p = 19, already p− 1 = 0 mod 18, so f(x) has a linear factor in F19[x]. This
is the case of order 1 element in (Z/18)×.

A moment’s thought might allow a person to realize that 17 = −1 is an element (and the only element) of
order 2 in (Z/18)×. So any prime p = 17 mod 18 (for example p = 17 itself, by coincidence prime) will have
the property that F×p2 has elements of order 18. Indeed, by properties of cyclic groups, it will have ϕ(18) = 6
elements of order 18 there, each of whose minimal polynomial is quadratic. Thus (since a quadratic has at
most two zeros) there are at least 3 irreducible quadratics dividing the sextic Φ18(x) in Fp[x]. Thus, since
degrees add in products, these three quadratics are all the factors of the sextic.

After a bit of trial and error, one will find an element of order 3 in (Z/18)×, such as 7. Thus, for p = 7 mod 18
(such as 7 itself, which by coincidence is prime), there is no element of order 18 in Fp or in Fp2 , but there is
one in Fp3 , whose minimal polynomial over Fp is therefore cubic and divides Φ18. Again, by properties of
cyclic groups, there are exactly ϕ(18) = 6 such elements in Fp3 , with cubic minimal polynomials, so there
are at least (and, thus, exactly) two different irreducible cubics in Fp[x] dividing Φ18(x) for such p.

After a bit more trial and error, one finds an element of order 6 in (Z/18)×, such as 5. (The other is 11.)
Thus, for p = 5 mod 18 (such as 5 itself, which by coincidence is prime), there is no element of order 18 in
Fp or in Fp2 , or Fp3 , but there is one in Fp6 . (By Lagrange, the only possible orders of p in (Z/18)× are
1, 2, 3, 6, so we need not worry about p4 or p5). The minimal polynomial of such an element is Φ18(x), which
is (thus, necessarily) irreducible in Fp[x].

[05.6] Explain why x4 + 1 properly factors in Fp[x] for any prime p.

As in the previous problems, we observe that x4 + 1 is the 8th cyclotomic polynomial. If p|8, namely p = 2,
then this factors as (x − 1)4. For odd p, if p = 1 mod 8 then F×p , which we now know to be cyclic, has an
element of order 8, so x4 + 1 has a linear factor. If p 6= 1 mod 8, write p = 2m+ 1, and note that

p2 − 1 = (2m+ 1)2 − 1 = 4m2 + 4m = m(m+ 1) · 4

so, if m is odd, m + 1 is even and p2 − 1 = 0 mod 8, and if m is even, the same conclusion holds. That is,
for odd p, p2 − 1 is invariably divisible by 8. That is, (using the cyclic-ness of any finite field) there is an
element of order 8 in Fp2 . The minimal polynomial of this element, which is quadratic, divides x4 + 1 (as
proven in class, with argument recalled above in another example).

[05.7] Explain why x8 − x7 + x5 − x4 + x3 − x + 1 properly factors in Fp[x] for any prime p. (Hint: It
factors either into linear factors, irreducible quadratics, or irreducible quartics.)

The well-read person will recognize this octic as Φ15(x), the fifteenth cyclotomic polynomial. For a prime
p not dividing 15, zeros of Φ15 in a field Fpd are elements of order 15, which happens if and only if
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pd − 1 = 0 mod 15, since we have shown that F×
pd is cyclic. The smallest d such that pd = 1 mod 15 is the

order of p in (Z/15)×. After some experimentation, one may realize that (Z/15)× is not cyclic. In particular,
every element is of order 1, 2, or 4. (How to see this? ) Granting this, for any p other than 3 or 5, the
minimal polynomial of an order 15 element is linear, quadratic, or quartic, and divides Φ15.

For p = 3, there is some degeneration, namely x3 − 1 = (x− 1)3. Thus, in the (universal) expression

Φ15(x) =
x15 − 1

Φ1(x) Φ3(x) Φ5(x)

we actually have

Φ15(x) =
(x5 − 1)3

(x− 1)2 (x5 − 1)
=

(x5 − 1)2

(x− 1)2
= (x4 + x3 + x2 + 1)2

For p = 5, similarly, x5 − 1 = (x− 1)5, and

Φ15(x) =
x15 − 1

Φ1(x) Φ3(x) Φ5(x)
=

(x3 − 1)5

(x3 − 1) (x− 1)4
=

(x3 − 1)4

(x− 1)4
= (x2 + x+ 1)4

[05.8] Why is x4 − 2 irreducible in F5[x]?

A zero of this polynomial would be a fourth root of 2. In F×5 , one verifies by brute force that 2 is of order
4, so is a generator for that (cyclic) group, so is not a square in F×5 , much less a fourth power. Thus, there
is no linear factor of x4 − 2 in F5[x].

The group F×52 is cyclic of order 24. If 2 were a fourth power in F52 , then 2 = α4, and 24 = 1 gives α16 = 1.
Also, α24 = 1 (Lagrange). Claim that α8 = 1: let r, s ∈ Z be such that r · 16 + s · 24 = 8, since 8 is the
greatest common divisor. Then

α8 = α16r+24s = (α16)r · (α24)s = 1

This would imply
22 = (α4)2 = α8 = 1

which is false. Thus, 2 is not a fourth power in F52 , so the polynomial x4 − 2 has no quadratic factors.

A quartic with no linear or quadratic factors is irreducible (since any proper factorization of a polynomial
P must involve a factor of degree at most half the degree of P ). Thus, x4 − 2 is irreducible in F5[x].

[05.9] Why is x5 − 2 irreducible in F11[x]?

As usual, to prove irreducibility of a quintic it suffices to show that there are no linear or quadratic factors.
To show the latter it suffices to show that there is no zero in the underlying field (for linear factors) or in a
quadratic extension (for irreducible quadratic factors).

First determine the order of 2 in F11: since |F×11| = 10, it is either 1, 2, 5, or 10. Since 2 6= 1 mod 11, and
22 − 1 = 3 6= 0 mod 11, and 25 − 1 = 31 6= 0 mod 11, the order is 10. Thus, in F11 it cannot be that 2 is a
fifth power.

The order of F×112 is 112 − 1 = 120. If there were a fifth root α of 2 there, then α5 = 2 and 210 = 1 imply
α50 = 1. Also, (Lagrange) α120 = 1. Thus, (as in the previous problem) α has order dividing the gcd of 50
and 120, namely 10. Thus, if there were such α, then

22 = (α5)2 = α10 = 1

But 22 6= 1, so there is no such α.
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