
(January 14, 2009)

[11.1] Let ζ be a primitive nth root of unity in a field of characteristic 0. Let M be the n-by-n matrix with
ijth entry ζij . Find the multiplicative inverse of M .

Some experimentation (and an exercise from the previous week) might eventually suggest consideration of
the matrix A having ijth entry 1

n ζ
−ij . Then the ijth entry of MA is

(MA)ij =
1
n

∑
k

ζik−kj =
1
n

∑
k

ζ(i−j)k

As an example of a cancellation principle we claim that

∑
k

ζ(i−j)k =
{

0 (for i− j 6= 0)
n (for i− j = 0)

The second assertion is clear, since we’d be summing n 1’s in that case. For i − j 6= 0, we can change
variables in the indexing, replacing k by k + 1 mod n, since ζa is well-defined for a ∈ Z/n. Thus,∑

k

ζ(i−j)k =
∑

k

ζ(i−j)(k+1) = ζi−j
∑

k

ζ(i−j)k

Subtracting,
(1− ζi−j)

∑
k

ζ(i−j)k = 0

For i− j 6= 0, the leading factor is non-zero, so the sum must be zero, as claimed. ///

[11.2] Let µ = αβ2 +βγ2 +γα2 and ν = α2β+β2γ+γ2α. Show that these are the two roots of a quadratic
equation with coefficients in Z[s1, s2, s3] where the si are the elementary symmetric polynomials in α, β, γ.

Consider the quadratic polynomial

(x− µ)(x− ν) = x2 − (µ+ ν)x+ µν

We will be done if we can show that µ+ ν and µν are symmetric polynomials as indicated. The sum is

µ+ ν = αβ2 + βγ2 + γα2 + α2β + β2γ + γ2α

= (α+ β + γ)(αβ + βγ + γα)− 3αβγ = s1s2 − 3s3

This expression is plausibly obtainable by a few trial-and-error guesses, and examples nearly identical to this
were done earlier. The product, being of higher degree, is more daunting.

µν = (αβ2 + βγ2 + γα2)(α2β + β2γ + γ2α)

= α3 + αβ4 + α2β2γ2 + α2β2γ2 + β3γ3 + αβγ4 + α4βγ + α2β2γ2 + α3γ3

Following the symmetric polynomial algorithm, at γ = 0 this is α3β3 = s2(α, β)3, so we consider

µν − s32
s3

= α3 + β3 + γ3 − 3s3 − 3(µ+ ν)

where we are lucky that the last 6 terms were µ + ν. We have earlier found the expression for the sum of
cubes, and we have expressed µ+ ν, so

µν − s32
s3

= (s31 − 3s1s2 + 3s3)− 3s3 − 3(s1s2 − 3s3) = s31 − 6s1s2 + 9s3
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and, thus,
µν = s32 + s31s3 − 6s1s2s3 + 9s23

Putting this together, µ and ν are the two roots of

x2 − (s1s2 − 3s3)x+ (s32 + s31s3 − 6s1s2s3 + 9s23) = 0

(One might also speculate on the relationship of µ and ν to solution of the general cubic equation.) ///

[11.3] The 5th cyclotomic polynomial Φ5(x) factors into two irreducible quadratic factors over Q(
√

5). Find
the two irreducible factors.

We have shown that
√

5 occurs inside Q(ζ), where ζ is a primitive fifth root of unity. Indeed, the discussion
of Gauss sums in the proof of quadratic reciprocity gives us the convenient

ζ − ζ2 − ζ3 + ζ4 =
√

5

We also know that [Q(
√

5) : Q] = 2, since x2 − 5 is irreducible in Q[x] (Eisenstein and Gauss). And
[Q(ζ) : Q] = 4 since Φ5(x) is irreducible in Q[x] of degree 5− 1 = 4 (again by Eisenstein and Gauss). Thus,
by multiplicativity of degrees in towers of fields, [Q(ζ) : Q(

√
5)] = 2.

Thus, since none of the 4 primitive fifth roots of 1 lies in Q(
√

5), each is necessarily quadratic over Q(
√

5),
so has minimal polynomial over Q(

√
5) which is quadratic, in contrast to the minimal polynomial Φ5(x) over

Q. Thus, the 4 primitive fifth roots break up into two (disjoint) bunches of 2, grouped by being the 2 roots
of the same quadratic over Q(

√
5). That is, the fifth cyclotomic polynomial factors as the product of those

two minimal polynomials (which are necessarily irreducible over Q(
√

5)).

In fact, we have a trick to determine the two quadratic polynomials. Since

ζ4 + ζ3 + ζ2 + ζ + 1 = 0

divide through by ζ2 to obtain
ζ2 + ζ + 1 + ζ−1 + ζ−2 = 0

Thus, regrouping, (
ζ +

1
ζ

)2

+
(
ζ +

1
ζ

)2

− 1 = 0

Thus, ξ = ζ + ζ−1 satisfies the equation
x2 + x− 1 = 0

and ξ = (−1±
√

5)/2. Then, from

ζ +
1
ζ

= (−1±
√

5)/2

multiply through by ζ and rearrange to

ζ2 − −1±
√

5
2

ζ + 1 = 0

Thus,

x4 + x3 + x2 + x+ 1 =

(
x2 − −1 +

√
5

2
x+ 1

)(
x2 − −1−

√
5

2
x+ 1

)

Alternatively, to see what can be done similarly in more general situations, we recall that Q(
√

5) is the
subfield of Q(ζ) fixed pointwise by the automorphism ζ → ζ−1. Thus, the 4 primitive fifth roots of unity
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should be paired up into the orbits of this automorphism. Thus, the two (irreducible inQ(
√

5)[x]) quadratics
are

(x− ζ)(x− ζ−1) = x2 − (ζ + ζ−1)x+ 1

(x− ζ2)(x− ζ−2) = x2 − (ζ2 + ζ−2)x+ 1

Again, without imbedding things into the complex numbers, etc., there is no canonical one of the two square
roots of 5, so the ±

√
5 just means that whichever one we pick first the other one is its negative. Similarly,

there is no distinguished one among the 4 primitive fifth roots unless we imbed them into the complex
numbers. There is no need to do this. Rather, specify one ζ, and specify a

√
5 by

ζ + ζ−1 =
−1 +

√
5

2

Then necessarily

ζ2 + ζ−2 =
−1−

√
5

2
And we find the same two quadratic equations again. Since they are necessarily the minimal polynomials of
ζ and of ζ2 over Q(

√
5) (by the degree considerations) they are irreducible in Q(

√
5)[x]. ///

[11.4] The 7th cyclotomic polynomial Φ7(x) factors into two irreducible cubic factors over Q(
√
−7. Find

the two irreducible factors.

Let ζ be a primitive 7th root of unity. Let H = 〈τ〉 be the order 3 subgroup of the automorphism group
G ≈ (Z/7)× of Q(ζ) over Q, where τ = σ2 is the automorphism τ(ζ) = ζ2, which has order 3. We have
seen that Q(

√
−7) is the subfield fixed pointwise by H. In particular, α = ζ + ζ2 + ζ4 should be at most

quadratic over Q. Recapitulating the earlier discussion, α is a zero of the quadratic polynomial

(x− (ζ + ζ2 + ζ4))(x− (ζ3 + ζ6 + ζ5))

which will have coefficients in Q, since we have arranged that the coefficients are G-invariant. Multiplying
out and simplifying, this is

x2 + x+ 2

with zeros (−1±
√
−7)/2.

The coefficients of the polynomial

(x− ζ)(x− τ(ζ))(x− τ2(ζ)) = (x− ζ)(x− ζ2)(x− ζ4)

will be H-invariant and therefore will lie in Q(
√
−7). In parallel, taking the primitive 7th root of unity ζ3

which is not in the H-orbit of ζ, the cubic

(x− ζ3)(x− τ(ζ3))(x− τ2(ζ3)) = (x− ζ3)(x− ζ6)(x− ζ5)

will also have coefficients in Q(
√
−7). It is no coincidence that the exponents of ζ occuring in the two cubics

are disjoint and exhaust the list 1, 2, 3, 4, 5, 6.

Multiplying out the first cubic, it is

(x− ζ)(x− ζ2)(x− ζ4) = x3 − (ζ + ζ2 + ζ4)x2 + (ζ3 + ζ5 + ζ6)x− 1

= x3 −
(
−1 +

√
−7

2

)
x2 +

(
−1−

√
−7

2

)
x− 1

for a choice of ordering of the square roots. (Necessarily!) the other cubic has the roles of the two square
roots reversed, so is

(x− ζ3)(x− ζ6)(x− ζ2) = x3 − (ζ3 + ζ5 + ζ6)x+ (ζ + ζ2 + ζ4)x− 1
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= x3 −
(
−1−

√
−7

2

)
x2 +

(
−1 +

√
−7

2

)
x− 1

Since the minimal polynomials of primitive 7th roots of unity are of degree 3 overQ(
√
−7) (by multiplicativity

of degrees in towers), these cubics are irreducible over Q(
√
−7). Their product is Φ7(x), since the set of all

6 roots is all the primitive 7th roots of unity, and there is no overlap between the two sets of roots. ///

[11.5] Let ζ be a primitive 13th root of unity in an algebraic closure of Q. Find an element α in Q(ζ)
which satisfies an irreducible cubic with rational coefficients. Find an element β in Q(ζ) which satisfies an
irreducible quartic with rational coefficients. Determine the cubic and the quartic explicitly.

Again use the fact that the automorphism group G of Q(ζ) over Q is isomorphic to (Z/13)× by a → σa

where σa(ζ) = ζa. The unique subgroup A of order 4 is generated by µ = σ5. From above, an element
α ∈ Q(ζ) fixed by A is of degree at most |G|/|A| = 12/4 = 3 over Q. Thus, try symmetrizing/averaging ζ
itself over the subgroup A by

α = ζ + µ(ζ) + µ2(ζ) + µ3(ζ) = ζ + ζ5 + ζ12 + ζ8

The unique subgroup B of order 3 in G is generated by ν = σ3. Thus, necessarily the coefficients of

(x− α)(x− ν(α))(x− ν2(α))

are in Q. Also, one can see directly (because the ζi with 1 ≤ i ≤ 12 are linearly independent over Q) that
the images α, ν(α), ν2(α) are distinct, assuring that the cubic is irreducible over Q.

To multiply out the cubic and determine the coefficients as rational numbers it is wise to be as economical
as possible in the computation. Since we know a priori that the coefficients are rational, we need not drag
along all the powers of ζ which appear, since there will necessarily be cancellation. Precisely, we compute
in terms of the Q-basis

1, ζ, ζ2, . . . , ζ10, ζ11

Given ζn appearing in a sum, reduce the exponent n modulo 13. If the result is 0, add 1 to the sum. If the
result is 12, add −1 to the sum, since

ζ12 = −(1 + ζ + ζ2 + . . .+ ζ11)

expresses ζ12 in terms of our basis. If the reduction mod 13 is anything else, drop that term (since we know it
will cancel). And we can go through the monomial summand in lexicographic order. Using this bookkeeping
strategy, the cubic is(

x− (ζ + ζ5 + ζ12 + ζ8)
) (
x− (ζ3 + ζ2 + ζ10 + ζ11)

) (
x− (ζ9 + ζ6 + ζ4 + ζ7)

)
= x3 − (−1)x2 + (−4)x− (−1) = x3 + x2 − 4x+ 1

Yes, there are 3·42 terms to sum for the coefficient of x, and 43 for the constant term. Most give a contribution
of 0 in our bookkeeping system, so the workload is not completely unreasonable. (A numerical computation
offers a different sort of check.) Note that Eisenstein’s criterion (and Gauss’ lemma) gives another proof of
the irreducibility, by replacing x by x+ 4 to obtain

x3 + 13x2 + 52x+ 65

and noting that the prime 13 fits into the Eisenstein criterion here. This is yet another check on the
computation.

For the quartic, reverse the roles of µ and ν above, so put

β = ζ + ν(ζ) + ν2(ζ) = ζ + ζ3 + ζ9

4



Paul Garrett: (January 14, 2009)

and compute the coefficients of the quartic polynomial

(x− β)(x− µ(β))(x− µ2(β))(x− µ3(β))

=
(
x− (ζ + ζ3 + ζ9)

) (
x− (ζ5 + ζ2 + ζ6)

) (
x− (ζ12 + ζ10 + ζ4)

) (
x− (ζ8 + ζ11 + ζ7)

)
Use the same bookkeeping approach as earlier, to allow a running tally for each coefficient. The sum of the 4
triples is −1. For the other terms some writing-out seems necessary. For example, to compute the constant
coefficient, we have the product

(ζ + ζ3 + ζ9)(ζ5 + ζ2 + ζ6)(ζ12 + ζ10 + ζ4)(ζ8 + ζ11 + ζ7)

which would seem to involve 81 summands. We can lighten the burden by notating only the exponents which
appear, rather than recopying zetas. Further, multiply the first two factors and the third and fourth, leaving
a multiplication of two 9-term factors (again, retaining only the exponents)

( 6 3 7 8 5 9 1 11 2 ) ( 7 10 6 5 8 4 12 2 11 )

As remarked above, a combination of an exponent from the first list of nine with an exponent from the second
list will give a non-zero contribution only if the sum (reduced modulo 13) is either 0 or 12, contributing 1 or
−1 respectively. For each element of the first list, we can keep a running tally of the contributions from each
of the 9 elements from the second list. Thus, grouping by the elements of the first list, the contributions are,
respectively,

(1− 1) + (1) + (1− 1) + (1− 1) + (−1 + 1) + (1) + (1− 1) + (1)(−1 + 1) = 3

The third symmetric function is a sum of 4 terms, which we group into two, writing in the same style

( 1 3 9 5 2 6 ) ( 7 10 6 5 8 4 12 2 11 )

+ ( 6 3 7 8 5 9 1 11 2 ) ( 12 10 4 8 11 7 )

In each of these two products, for each item in the lists of 9, we tally the contributions of the 6 items in the
other list, obtaining,

(0 + 0− 1 + 0 + 1 + 1 + 1 + 0 + 0) + (1 + 1 + 0− 1 + 0 + 1 + 0 + 0 + 0) = 4

The computation of the second elementary symmetric function is, similarly, the sum

( 1 3 9 ) ( 5 2 6 12 10 4 8 11 7 )

+ ( 5 2 6 ) ( 12 10 4 8 11 7 ) + ( 12 10 4 ) ( 8 11 7 )

Grouping the contributions for each element in the lists 1, 3, 9 and 5, 2, 6 and 12, 10, 4, this gives

[(1− 1) + (1) + (1)] + [(1− 1) + (−1 + 1) + (1)] + [0 + 0 + (−1)] = 2

Thus, in summary, we have
x4 + x3 + 2x2 − 4x+ 3

Again, replacing x by x+ 3 gives
x4 + 13x3 + 65x2 + 143x+ 117

All the lower coefficients are divisible by 13, but not by 132, so Eisenstein proves irreducibility. This again
gives a sort of verification of the correctness of the numerical computation. ///
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[11.6] Let f(x) = x8 + x6 + x4 + x2 + 1. Show that f factors into two irreducible quartics in Q[x]. Show
that

x8 + 5x6 + 25x4 + 125x2 + 625

also factors into two irreducible quartics in Q[x].

The first assertion can be verified by an elementary trick, namely

x8 + x6 + x4 + x2 + 1 =
x10 − 1
x2 − 1

=
Φ1(x)Φ2(x)Φ5(x)Φ10(x)

Φ1(x)Φ2(x)

= Φ5(x)Φ10(x) = (x4 + x3 + x2 + x+ 1)(x4 − x3 + x2 − x+ 1)

But we do learn something from this, namely that the factorization of the first octic into linear factors
naturally has the 8 linear factors occurring in two bunches of 4, namely the primitive 5th roots of unity and
the primitive 10th roots of unity. Let ζ be a primitive 5th root of unity. Then −ζ is a primitive 10th. Thus,
the 8 zeros of the second polynomial will be

√
5 times primitive 5th and 10th roots of unity. The question is

how to group them together in two bunches of four so as to obtain rational coefficients of the resulting two
quartics.

The automorphism group G of Q(ζ) over Q is isomorphic to (Z/10)×, which is generated by τ(ζ) = ζ3.
That is, taking a product of linear factors whose zeros range over an orbit of ζ under the automorphism
group G,

x4 + x3 + x2 + x+ 1 = (x− ζ)(x− ζ3)(x− ζ9)(x− ζ7)

has coefficients in Q and is the minimal polynomial for ζ over Q. Similarly looking at the orbit of −ζ under
the automorphism group G, we see that

x4 − x3 + x2 − x+ 1 = (x+ ζ)(x+ ζ3)(x+ ζ9)(x+ ζ7)

has coefficients in Q and is the minimal polynomial for −ζ over Q.

The discussion of Gauss sums in the proof of quadratic reciprocity gives us the convenient

ζ − ζ2 − ζ3 + ζ4 =
√

5

Note that this expression allows us to see what effect the automorphism σa(ζ) = ζa has on
√

5

σa(
√

5) = σa(ζ − ζ2 − ζ3 + ζ4) =
{ √

5 (for a = 1, 9)
−
√

5 (for a = 3, 7)

Thus, the orbit of
√

5ζ under G is

√
5ζ, τ(

√
5ζ) = −

√
5ζ3, τ2(

√
5ζ) =

√
5ζ4, τ3(

√
5ζ) = −

√
5ζ2

giving quartic polynomial
(x−

√
5ζ)(x+

√
5ζ3)(x−

√
5ζ4)(x+

√
5ζ2)

= x4 −
√

5(ζ − ζ2 − ζ3 + ζ4)x3 + 5(−ζ4 + 1− ζ3 − ζ2 + 1− ζ)x2 − 5
√

5(ζ4 − ζ2 + ζ − ζ3)x+ 25

= x4 − 5x3 + 15x2 − 25x+ 25

We might already be able to anticipate what happens with the other bunch of four zeros, but we can also
compute directly (perhaps confirming a suspicion). The orbit of −

√
5ζ under G is

−
√

5ζ, τ(−
√

5ζ) =
√

5ζ3, τ2(−
√

5ζ) = −
√

5ζ4, τ3(−
√

5ζ) =
√

5ζ2
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giving quartic polynomial
(x+

√
5ζ)(x−

√
5ζ3)(x+

√
5ζ4)(x−

√
5ζ2)

= x4 +
√

5(ζ − ζ2 − ζ3 + ζ4)x3 + 5(−ζ4 + 1− ζ3 − ζ2 + 1− ζ)x2 + 5
√

5(ζ4 − ζ2 + ζ − ζ3)x+ 25

= x4 + 5x3 + 15x2 + 25x+ 25

Thus, we expect that

x8 + 5x6 + 25x4 + 125x2 + 625 = (x4 − 5x3 + 15x2 − 25x+ 25) · (x4 + 5x3 + 15x2 + 25x+ 25)

Note that because of the sign flips in the odd-degree terms in the quartics, the octic can also be written as

x8 + 5x6 + 25x4 + 125x2 + 625 = (x4 + 15x2 + 25)2 − 25(x3 + 5x)2

(This factorization of an altered product of two cyclotomic polynomials is sometimes called an Aurifeuille-
LeLasseur factorization after two amateur mathematicians who studied such things, brought to wider
attention by E. Lucas in the late 19th century.) ///

[11.7] Let p be a prime not dividing m. Show that in Fp[x]

Φmp(x) = Φm(x)p−1

From the recursive definition,

Φpm(x) =
xpm − 1∏

d|m Φpεd(x) ·
∏

d|m, d<m Φpd(x)

In characteristic p, the numerator is (xm−1)p. The first product factor in the denominator is xm−1. Thus,
the whole is

Φpm(x) =
(xm − 1)p

(xm − 1) ·
∏

d|m, d<m Φpd(x)

By induction on d < m, in the last product in the denominator has factors

Φpd(x) = Φd(x)p−1

Cancelling,

Φpm(x) =
(xm − 1)p

(xm − 1) ·
∏

d|m, d<m Φd(x)p−1
=

(xm − 1)p−1∏
d|m, d<m Φd(x)p−1

=

(
xm − 1∏

d|m, d<m Φd(x)

)p−1

which gives Φm(x)p−1 as claimed, by the recursive definition. ///
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