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1. Some simple results

Several observations should be made. Once stated explicitly, the proofs are easy. [1]

• The intersection of a (non-empty) set of subspaces of a vector space V is a subspace.

Proof: Let {Wi : i ∈ I} be a set of subspaces of V . For w in every Wi, the additive inverse −w is in Wi.
Thus, −w lies in the intersection. The same argument proves the other properties of subspaces. ///

The subspace spanned by a set X of vectors in a vector space V is the intersection of all subspaces
containing X. From above, this intersection is a subspace.

• The subspace spanned by a set X in a vector space V is the collection of all linear combinations of vectors
from X.

Proof: Certainly every linear combination of vectors taken from X is in any subspace containing X. On
the other hand, we must show that any vector in the intersection of subspaces containing X is a linear
combination of vectors in X. Now it is not hard to check that the collection of such linear combinations
is itself a subspace of V , and contains X. Therefore, the intersection is no larger than this set of linear
combinations. ///

[1] At the beginning of the abstract form of this and other topics, there are several results which have little

informational content, but, rather, only serve to assure us that the definitions/axioms have not included phenomena

too violently in opposition to our expectations. This is not surprising, considering that the definitions have endured

several decades of revision exactly to address foundational and other potential problems.
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86 Linear algebra I: dimension

A linearly independent set of vectors spanning a subspace W of V is a basis for W .

[1.0.1] Proposition: Given a basis e1, . . . , en for a vector space V , there is exactly one expression for
an arbitrary vector v ∈ V as a linear combination of e1, . . . , en.

Proof: That there is at least one expression follows from the spanning property. On the other hand, if∑
i

aiei = v =
∑

i

biei

are two expressions for v, then subtract to obtain∑
i

(ai − bi)ei = 0

Since the ei are linearly independent, ai = bi for all indices i. ///

2. Bases and dimension

The argument in the proof of the following fundamental theorem is the Lagrange replacement principle. This
is the first non-trivial result in linear algebra.

[2.0.1] Theorem: Let v1, . . . , vm be a linearly independent set of vectors in a vector space V , and let
w1, . . . , wn be a basis for V . Then m ≤ n, and (renumbering the vectors wi if necessary) the vectors

v1, . . . , vm, wm+1, wm+2, . . . , wn

are a basis for V .

Proof: Since the wi’s are a basis, we may express v1 as a linear combination

v1 = c1w1 + . . .+ cnwn

Not all coefficients can be 0, since v1 is not 0. Renumbering the wi’s if necessary, we can assume that c1 6= 0.
Since the scalars k are a field, we can express w1 in terms of v1 and w2, . . . , wn

w1 = c−1
1 v1 + (−c−1

1 c2)w2 + . . .+ (−c−1
1 c2)wn

Replacing w1 by v1, the vectors v1, w2, w3, . . . , wn span V . They are still linearly independent, since if v1
were a linear combination of w2, . . . , wn then the expression for w1 in terms of v1, w2, . . . , wn would show
that w1 was a linear combination of w2, . . . , wn, contradicting the linear independence of w1, . . . , wn.

Suppose inductively that v1, . . . , vi, wi+1, . . . , wn are a basis for V , with i < n. Express vi+1 as a linear
combination

vi+1 = a1v1 + . . .+ aivi + bi+1wi+1 + . . .+ bnwn

Some bj is non-zero, or else vi is a linear combination of v1, . . . , vi, contradicting the linear independence
of the vj ’s. By renumbering the wj ’s if necessary, assume that bi+1 6= 0. Rewrite this to express wi+1 as a
linear combination of v1, . . . , vi, wi+1, . . . , wn

wi+1 = (−b−1
i+1a1)v1 + . . .+ (−b−1

i+1ai)vi + (b−1
i+1)vi+1

+ (−b−1
i+1bi+2)wi+2 + . . .+ (−b−1

i+1bn)wn
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Thus, v1, . . . , vi+1, wi+2, . . . , wn span V . Claim that these vectors are linearly independent: if for some
coefficients aj , bj

a1v1 + . . .+ ai+1vi+1 + bi+2wi+2 + . . .+ bnwn = 0

then some ai+1 is non-zero, because of the linear independence of v1, . . . , vi, wi+1, . . . , wn. Thus,
rearrange to express vi+1 as a linear combination of v1, . . . , vi, wi+2, . . . , wn. The expression for wi+1

in terms of v1, . . . , vi, vi+1, wi+2, . . . , wn becomes an expression for wi+1 as a linear combination of
v1, . . . , vi, wi+2, . . . , wn. But this would contradict the (inductively assumed) linear independence of
v1, . . . , vi, wi+1, wi+2, . . . , wn.

Consider the possibility that m > n. Then, by the previous argument, v1, . . . , vn is a basis for V . Thus,
vn+1 is a linear combination of v1, . . . , vn, contradicting their linear independence. Thus, m ≤ n, and
v1, . . . , vm, wm+1, . . . , wn is a basis for V , as claimed. ///

Now define the (k-)dimension [2] of a vector space (over field k) as the number of elements in a (k-)basis.
The theorem says that this number is well-defined. Write

dimV = dimension of V

A vector space is finite-dimensional if it has a finite basis. [3]

[2.0.2] Corollary: A linearly independent set of vectors in a finite-dimensional vector space can be
augmented to be a basis.

Proof: Let v1, . . . , vm be as linearly independent set of vectors, let w1, . . . , wn be a basis, and apply the
theorem. ///

[2.0.3] Corollary: The dimension of a proper subspace of a finite-dimensional vector space is strictly
less than the dimension of the whole space.

Proof: Let w1, . . . , wm be a basis for the subspace. By the theorem, it can be extended to a basis
w1, . . . , wm, vm+1, . . . , vn of the whole space. It must be that n > m, or else the subspace is the whole
space. ///

[2.0.4] Corollary: The dimension of kn is n. The vectors

e1 = (1, 0, 0, . . . , 0, 0)
e2 = (0, 1, 0, . . . , 0, 0)
e3 = (0, 0, 1, . . . , 0, 0)

. . .
en = (0, 0, 0, . . . , 0, 1)

are a basis (the standard basis).

Proof: Those vectors span kn, since

(c1, . . . , cn) = c1e1 + . . .+ cnen

[2] This is an instance of terminology that is nearly too suggestive. That is, a naive person might all too easily

accidentally assume that there is a connection to the colloquial sense of the word dimension, or that there is an

appeal to physical or visual intuition. Or one might assume that it is somehow obvious that dimension is a well-

defined invariant.

[3] We proved only the finite-dimensional case of the well-definedness of dimension. The infinite-dimensional case

needs transfinite induction or an equivalent.



88 Linear algebra I: dimension

On the other hand, a linear dependence relation

0 = c1e1 + . . .+ cnen

gives
(c1, . . . , cn) = (0, . . . , 0)

from which each ci is 0. Thus, these vectors are a basis for kn. ///

3. Homomorphisms and dimension

Now we see how dimension behaves under homomorphisms.

Again, a vector space homomorphism [4] f : V −→ W from a vector space V over a field k to a vector
space W over the same field k is a function f such that

f(v1 + v2) = f(v1) + f(v2) (for all v1, v2 ∈ V )
f(α · v) = α · f(v) (for all α ∈ k, v ∈ V )

The kernel of f is
ker f = {v ∈ V : f(v) = 0}

and the image of f is
Imf = {f(v) : v ∈ V }

A homomorphism is an isomorphism if it has a two-sided inverse homomorphism. For vector spaces, a
homomorphism that is a bijection is an isomorphism. [5]

• A vector space homomorphism f : V −→ W sends 0 (in V ) to 0 (in W , and, for v ∈ V , f(−v) = −f(v).
[6]

[3.0.1] Proposition: The kernel and image of a vector space homomorphism f : V −→ W are vector
subspaces of V and W , respectively.

Proof: Regarding the kernel, the previous proposition shows that it contains 0. The last bulleted point was
that additive inverses of elements in the kernel are again in the kernel. For x, y ∈ ker f

f(x+ y) = f(x) + f(y) = 0 + 0 = 0

so ker f is closed under addition. For α ∈ k and v ∈ V

f(α · v) = α · f(v) = α · 0 = 0

so ker f is closed under scalar multiplication. Thus, the kernel is a vector subspace.

Similarly, f(0) = 0 shows that 0 is in the image of f . For w = f(v) in the image of f and α ∈ k

α · w = α · f(v) = f(αv) ∈ Imf

[4] Or linear map or linear operator.

[5] In most of the situations we will encounter, bijectivity of various sorts of homomorphisms is sufficient (and certainly

necessary) to assure that there is an inverse map of the same sort, justifying this description of isomorphism.

[6] This follows from the analogous result for groups, since V with its additive structure is an abelian group.
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For x = f(u) and y = f(v) both in the image of f ,

x+ y = f(u) + f(v) = f(u+ v) ∈ Imf

And from above
f(−v) = −f(v)

so the image is a vector subspace. ///

[3.0.2] Corollary: A linear map f : V −→ W is injective if and only if its kernel is the trivial subspace
{0}.

Proof: This follows from the analogous assertion for groups. ///

[3.0.3] Corollary: Let f : V −→W be a vector space homomorphism, with V finite-dimensional. Then

dim ker f + dim Imf = dimV

Proof: Let v1, . . . , vm be a basis for ker f , and, invoking the theorem, let wm+1, . . . , wn be vectors in V such
that v1, . . . , vm, wm+1, . . . , wn form a basis for V . We claim that the images f(wm+1), . . . , f(wn) are a basis
for Imf . First, show that these vectors span. For f(v) = w, express v as a linear combination

v = a1v1 + . . .+ amvm + bm+1wm+1 + . . .+ bnwn

and apply f
w = a1f(v1) + . . .+ amf(vm) + bm+1f(wm+1) + . . .+ bnf(wn)

= a1 · 0 + . . .+ am · 0(vm) + bm+1f(wm+1) + . . .+ bnf(wn)

= bm+1f(wm+1) + . . .+ bnf(wn)

since the vis are in the kernel. Thus, the f(wj)’s span the image. For linear independence, suppose

0 = bm+1f(wm+1) + . . .+ bnf(wn)

Then
0 = f(bm+1wm+1 + . . .+ bnwn)

Then, bm+1wm+1 + . . . + bnwn would be in the kernel of f , so would be a linear combination of the vi’s,
contradicting the fact that v1, . . . , vm, wm+1, . . . , wn is a basis, unless all the bj ’s were 0. Thus, the f(wj)
are linearly independent, so are a basis for Imf . ///

Exercises

5.[3.0.1] For subspaces V,W of a vector space over a field k, show that

dimk V + dimk W = dimk(V +W ) + dimk(V ∩W )

5.[3.0.2] Given two bases e1, . . . , en and f1, . . . , fn for a vector space V over a field k, show that there is
a unique k-linear map T : V −→ V such that T (ei) = fi.

5.[3.0.3] Given a basis e1, . . . , en of a k-vectorspace V , and given arbitrary vectors w1, . . . , wn in a k-
vectorspace W , show that there is a unique k-linear map T : V −→ W such that Tei = wi for all indices
i.
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5.[3.0.4] The space Homk(V,W ) of k-linear maps from one k-vectorspace V to another, W , is a k-
vectorspace under the operation

(αṪ )(v) = α · (T (v))

for α ∈ k and T ∈ Homk(V,W ). Show that

dimk Homk(V,W ) = dimk V · dimk W

5.[3.0.5] A flag V1 ⊂ . . . ⊂ V` of subspaces of a k-vectorspace V is simply a collection of subspaces
satisfying the indicated inclusions. The type of the flag is the list of dimensions of the subspaces Vi. Let
W be a k-vectorspace, with a flag W1 ⊂ . . . ⊂W` of the same type as the flag in V . Show that there exists
a k-linear map T : V −→W such that T restricted to Vi is an isomorphism Vi −→Wi.

5.[3.0.6] Let V1 ⊂ V` be a flag of subspace inside a finite-dimensional k-vectorspace V , and W1 ⊂ . . . ⊂W`

a flag inside another finite-dimensional k-vectorspace W . We do not suppose that the two flags are of the
same type. Compute the dimension of the space of k-linear homomorphisms T : V −→ W such that
TVi ⊂Wi.


