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1. Adjoining things

The general intention of adjoining a new element α to a field k is arguably clear: k itself does not contain a
root of an equation, and we want to enlarge k so that it does include such a root. The possibility or legitimacy
of doing so may seem to depend upon one’s philosophical outlook, but the situation is more robust than
that. [1]

Let k be a field. Let k ⊂ K where K is a bigger field. For α ∈ K, define the field extension (in K) over
k generated by α [2]

k(α) =
⋂

fields E⊂K, E⊃k, α∈E

E

It is easy to check that the intersection of subfields of a common field is a field, so this intersection is a field.
Rather than a single element, one could as well adjoin any subset of the over-field K. [3]

Before studying k(α) in more detail, consider a different procedure of adjoining something: for a commutative

[1] In the 19th century there was widespread confusion or at least concern over issues of existence of quantities having

various properties. Widespread belief in the legitimacy of the complex numbers was not in place until well into that

century, and ironically was abetted by pictorial emphasis on complex numbers as two-dimensional things. The advent

of the Hamiltonian quaternions in mid-century made the complex numbers seem innocent by comparison.

[2] The notation here is uncomfortably fragile: exchanging the parentheses for any other delimiters alters the meaning.

[3] This definition does not give a good computational handle on such field extensions. On the other hand, it is

unambiguous and well-defined.
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92 Fields I

ring R with 1 which is a subring of an R-algebra A, for α ∈ A, one might attempt to define [4]

R[α] = { polynomials in α}

One probably understands the intent, that this is

R[α] = {c0 + c1α+ . . .+ cnα
n : ci ∈ R}

More precisely, a proper definition would be

R[α] = the image in A of the unique R-algebra homomorphism sending x to α

where we invoke the universal mapping property of R[x].

Specialize R again to be a field k, and let A be a (not necessarily commutative) k-algebra, α ∈ A. Then the
natural homomorphism

ϕ : k[x] −→ k[α] (by x −→ α)

has a kernel which is a principal ideal 〈f〉. [5] By the usual Isomorphism Theorem the map ϕ descends to
the quotient by the kernel, giving an isomorphism

ϕ : k[x]/〈f〉 ≈ k[α]

If f = 0, that is, if the kernel is trivial, then k[α] of course inherits properties of the polynomial ring. [6]

At this point we need to begin using the fact that a k-algebra A is a k-vectorspace. [7] The degree of A
over k is

[A : k] = degree of A over k = dimension of A as k-vectorspace

If k[α] ≈ k[x], then, for example, the various powers of α are linearly independent over k, and k[α] is infinite-
dimensional as a k-vectorspace. And there is no polynomial P (x) ∈ k[x] such that P (α) = 0. Especially in
the simple situation that the k-algebra A is a field, such elements α with k[α] ≈ k[x] are transcendental
over k. [8]

On the other hand, a perhaps more interesting situation is that in which the kernel of the natural

k[x] −→ k[α]

has non-zero kernel 〈f〉, with f monic without loss of generality. This f is the minimal polynomial of α
(in A) over k.

Although our immediate concern is field extensions, there is at least one other useful application of this
viewpoint, as follows. Let V be a k-vectorspace, and let A be the k-algebra

A = EndkV

[4] Note again the fragility of the notation: k(α) is generally quite different from k[α], although in some useful cases

(as below) the two can coincide.

[5] ... since k[x] is a principal ideal domain for k a field. For more general commutative rings R the corresponding

discussion is more complicated, though not impossible.

[6] ... to which it is isomorphic by the just-demonstrated isomorphism!

[7] By forgetting the multiplication in A, if one insists.

[8] This is an essentially negative definition: there are no relations.
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of k-linear maps (i.e., endomorphisms) of V to itself. For T : V −→ V a k-linear map, we can consider
the natural k-algebra map

k[x] −→ EndkV (by x −→ T )

We give EndkV a k-vectorspace structure value-wise by

(α · T )(v) = α · (Tv)

for v ∈ V and α ∈ k. If V is finite-dimensional, then EndkV is also finite-dimensional. [9] In particular,
the kernel of the natural map from k[x] cannot be just 0. Let f be the non-zero monic generator for the
kernel. Again, [10] this monic is the minimal polynomial for T . The general construction shows that for
any P (x) ∈ k[x],

P (T ) = 0 ∈ EndkV if and only if f divides P

In particular, if the polynomial equation f(x) = 0 has a root λ in k, then [11] we can prove that T has
eigenvalue λ. That is, there is a non-zero vector v ∈ V (the λ-eigenvector) such that

Tv = λ · v

Indeed, let f(x) = (x − λ) · g(x) for some g(x) ∈ k[x]. Since g is not the minimal polynomial for T , then
there is a vector w ∈ V such that g(T ) · w 6= 0. We claim that v = g(T )w is a λ-eigenvector. Indeed,

0 = f(T ) · w = (T − λ) · g(T )w = (T − λ) · v

and by the previous comment v = g(T )w is not 0. [12]

Returning to field extensions: let K be a field containing a smaller field k, α ∈ K, and let f be the generator
for the kernel of the natural map k[x] −→ k[α]. We do assume that f is non-zero, so we can make f monic,
without loss of generality. Since f is non-zero, we do call it the minimal polynomial of α over k, and,
since α has a minimal polynomial over k, we say that α is algebraic over k. [13] If every element α of a
field extension K of k is algebraic over k, then say that the field extension K itself is algebraic over k.

Once again, given any polynomial P (x), there are unique Q(x) and R(x) with degR < deg f such that

P = Q · f +R

and
P (α) = Q(α) · f(α) +R(α) = Q(α) · 0 +R(α) = R(α)

[9] This is not hard to prove: let e1, . . . , en be a k-basis for V . Then the k-linearity T (
P
i ciei) =

P
i ciT (ei) shows

that T is determined completely by the collection of images Tei. And Tei =
P
j Tijej for some collection of n2

elements Tij of k. Thus, if V is n-dimensional then its endomorphism algebra is n2-dimensional.

[10] This is terminology completely consistent with linear algebra usage.

[11] From the fact that roots correspond perfectly to linear factors, for polynomials in one variable with coefficients

in a field.

[12] Even this brief discussion of minimal polynomials and linear operators should suggest, and correctly so, that use

of determinants and invocation of the Cayley-Hamilton theorem, concerning the characteristic polynomial of a linear

operator, is not exactly to the point.

[13] Again, this situation, where f(α) = 0 with a non-zero polynomial f , is in contrast to the case where α satisfies

no algebraic equation with coefficients in k.
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Letting n = deg f , this implies that 1, α, α2, . . . , αn−1 are a k-basis for k[α]. [14]

[1.0.1] Proposition: For α algebraic over k (all inside K), the ring k[α] is a field. [15] That is, for
α algebraic, k(α) = k[α]. The minimal polynomial f of α over k is irreducible in k[x]. And the degree
(dimension) of k(α) over k is

[k(α) : k] = dimk k(α) = deg f

Proof: First, from above,
k[α] ≈ k[x]/〈f〉

To prove irreducibility, suppose we can write f = g · h with g, h ∈ k[x] with proper factors. By minimality
of f , neither g(α) nor h(α) is 0. But f(α) = 0, so g(α and h(α) are zero-divisors, contradiction. [16]

Since k(α) is the smallest field inside the ambient field K containing α and k, certainly k[α] ⊂ k(α). To
prove equality, it would suffice to show that non-zero elements of k[α] have multiplicative inverses in k[α].
For polynomial g(x) ∈ k[x], g(α) 6= 0 if and only if the minimal polynomial f(x) of α over k does not divide
g(x). Since f is irreducible and does not divide g, there are polynomials r, s in k[x] such that

1 = gcd(f, g) = r(x) · f(x) + s(x) · g(x)

so, mapping x to α,

1 = r(α) · f(α) + s(α) · g(α) = r(α) · 0 + s(α) · g(α) = s(α) · g(α)

That is, s(α) is a multiplicative inverse to g(α), and k[α] is a field. The degree is as asserted, since the
polynomials of degree < deg f are irredundant representatives for the equivalence classes of k[x]/〈f〉.
///

2. Fields of fractions, fields of rational functions

For k ⊂ K fields and α ∈ K transcendental over k, it is not true that k[α] ≈ k(α), in complete contrast to
the case that α is algebraic, discussed just above. [17]

But from elementary mathematics we have the idea that for indeterminate [sic] x

k(x) = field of rational functions in x = { g(x)
h(x)

: g, h ∈ k[x], h 6= 0}

We can reconcile this primitive idea with our present viewpoint.

Let R be an integral domain (with unit 1) [18] and define the field of fractions Q of R to be the collection
of ordered pairs (r, s) with r, s ∈ R and s 6= 0, modulo the equivalence relation [19]

(r, s) ∼ (r′, s′) if rs′ = sr′

[14] Indeed, the identity P = Qf + R shows that any polynomial in α is expressible as a polynomial of degree < n.

This proves spanning. On the other hand, a linear dependence relation
P
i ciα

i = 0 with coefficient ci in k is nothing

other than a polynomial relation, and our hypothesis is that any such is a (polynomial) multiple of f . Thus, the

monomials of degrees less than deg f are linearly independent.

[15] This should be a little surprising.

[16] Everything is taking place inside the larger field K.

[17] In particular, since k[α] ≈ k[x], k[α] is not a field at all.

[18] A definition can be made for more general commutative rings, but the more general definition has more

complicated features which are not of interest at the moment.

[19] This would be the usual requirement that two fractions r/s and r′/s′ be equal.
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The addition is suggested by the usual addition of fractions, namely that

(r, s) + (r′, s′) = (rs′ + r′s, ss′)

and the multiplication is the more obvious

(r, s) · (r′, s′) = (rr′, ss′)

One should verify that these operations are well-defined on the quotient Q by that equivalence relation, that
Q is a commutative ring with unit (the equivalence class of)(1, 1), that r −→ (r, 1) injects R to Q. This
constructs the field of fractions.

The latter construction is internal, in the sense that it constructs a concrete thing in set-theoretic terms,
given the original ring R. On the other hand, we can characterize the field of fractions externally, by
properties of its mappings to other rings or fields. In particular, we have

[2.0.1] Proposition: For an integral domain R with unit 1, its field of fractions Q, with the natural
inclusion i : R −→ Q, is the unique field (and inclusion of R into it) such that, for any injective ring
homomorphism ϕ : R −→ K with a field K, there is a unique ϕ̃ : Q −→ K such that

ϕ ◦ i = ϕ̃

Specifically, ϕ̃(r, s) = ϕ(r)/ϕ(s). [20]

[20] Implicitly we must claim that this is well-defined.
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Proof: Indeed, try to define [21]

ϕ̃(r, s) = ϕ(r)/ϕ(s)

where the quotient on the right-hand side is in the field K, and the injectivity of ϕ assure that s 6= 0 implies
that ϕ(s) 6= 0. This is certainly compatible with ϕ on R, since

ϕ̃(r, 1) = ϕ(r)/ϕ(1) = ϕ(r)

and the smallest subfield of K containing R certainly must contain all such quotients. The main thing to
check is that this definition really is well-defined, namely that if (r, s) ∼ (r′, s′), then

ϕ̃(r, s) = ϕ̃(r′, s′)

Do this as follows. The equivalence relation is that rs′ = r′s. Applying ϕ on R gives

ϕ(r)ϕ(s′) = ϕ(r′)ϕ(s)

Since ϕ is injective, for s, s′ nonzero in R their images are nonzero in K, so we can divide, to obtain

ϕ(r)/ϕ(s) = ϕ(r′)/ϕ(s′)

This proves the well-definedness. That multiplication is preserved is easy, and that addition is preserved is
straightforward. ///

To practice categorical arguments, we can also prove, without using formulas or explicit constructions:

[2.0.2] Proposition: Let Q′ be a field with inclusion i′ : R −→ Q′ such that, for every injective
homomorphism ϕ : R −→ K with a field K, there is a unique ϕ̃ : Q′ −→ K such that

ϕ ◦ i′ = ϕ̃

Then there is a unique isomorphism j : Q −→ Q′ of the field of fractions Q of R (with inclusion i : R −→ Q)
to Q′ such that

i′ = j ◦ i
That is, up to unique isomorphism, there is only one field of fractions of an integral domain.

Proof: First prove that any field map f : Q −→ Q such that f ◦ i = i must be the identity on Q. Indeed,
taking K = Q and f = i : R −→ K in the defining property, we see that the identity map idQ on Q has the
property idK ◦ i = i. The uniqueness property assures that any other f with this property must be idK .

Then let Q′ and i′ : R −→ Q′ be another pair satisfying the universal mapping condition. Taking
ϕ = i′ : R −→ Q′ yields ϕ̃ : Q −→ Q′ with ϕ = ϕ̃ ◦ i. Reversing the roles, taking ϕ′ = i : R −→ Q
yields ϕ̃′ : Q′ −→ Q with ϕ′ = ϕ̃′ ◦ i′. Then (by the previous paragraph) ϕ̃ ◦ ϕ̃′ : Q −→ Q must be the
identity on Q, and, similarly, ϕ̃′ ◦ ϕ̃ : Q′ −→ Q; must be the identity on Q′. Thus, ϕ̃ and ϕ̃′ are mutual
inverses. This proves the isomorphism of the two objects. [22] ///

Thus, without having a larger field in which the polynomial ring k[x] sits, we simply form the field of fractions
of this integral domain, and denote it [23]

k(x) = field of fractions of k[x] = rational functions in x

[21] What else could it be?

[22] The uniqueness of the isomorphism also follows from discussion, since if there were two isomorphisms h and h′

from Q to Q′, then h′ ◦ h−1 : Q −→ Q would be a non-identity map with the desired property, but only the identity

on Q has the universal mapping property.

[23] To say that these are rational functions is a bit of a misnomer, but no worse than to refer to polynomial functions,

which is also misleading but popular.
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Despite having this construction available, it still may be true that for fields k ⊂ K, there is α in K
transcendental over k, in the sense (above) that α satisfies no polynomial relation with coefficients in k. [24]

In that case, we have the more general definition of k(α) as the intersection of all subfields of K containing
k and containing α.

For notational consistency, we should check that k(α) is isomorphic to the field of fractions of k[α]. And,
indeed, since k[x] injects to k[α] (taking x to α), by the mapping property characterization the field of
fractions k(x) of k[x] has a unique injection j to the field k(α) extending the given map. Certainly
k(α) ⊂ j(k(x)), since k(α) is the intersection of all subfields of K containin k and α. Thus, the image
of the injective map j is exactly k(α), and j is an isomorphism of k(x) to k(α).

3. Characteristics, finite fields

The linear algebra viewpoint is decisive in understanding many elementary features of fields, for example,
the result below on possible cardinalities of finite fields.

First, observe that any ring R is a Z-algebra in a canonical [25] manner, with the action

n · r =


r + . . .+ r︸ ︷︷ ︸

n

(n > 0)

0R (n = 0)
−(r + . . .+ r︸ ︷︷ ︸

|n|

) (n < 0)

An easy but tedious induction proves that this Z-algebra structure deserves the name. [26] As evidence
for the naturality of this Z-structure, notice that if f : R −→ S is any ring homomorphism, then f is a
Z-algebra homomorphism when the above Z-algebra structures are put on R and S.

When a ring R has an identity 1R, there is a canonical Z-algebra homomorphism i : Z −→ R by

i : n −→ n · 1R

Granting that the Z-algebra structure on R works as claimed, the proof that this is a homomorphism is
nearly trivial:

i(m+ n) = (m+ n) · 1R = m · 1R + n · 1R = i(m) + i(n)

i(m · n) = (m · n) · 1R = m · (n · 1R) = m · (1R · (n · 1R)) = (m · 1R) · (n · 1R) = i(m) · i(n)

Now consider the canonical Z-algebra homomorphism i : Z −→ k for a field k. [27] If i is injective, then
it extends to an injection of the field of fractions Q of Z into k. In this case, say k is of characteristic
zero, and this canonical copy of Q inside k is the prime field inside k. If i is not injective, its kernel is a

[24] Again, more precisely, the condition that α be transcendental is that the natural map k[x] −→ k[α] by x −→ α

has trivial kernel.

[25] This sort of use of canonical is meant for the moment to insinuate that there is no whimsical choice involved. A

more precise formulation of what canonical could mean would require a category-theoretical set-up. We may do this

later.

[26] The arguments to prove this are of the same genre as those proving the so-called Laws of Exponents. Here, one

must show that (m+ n)r = mr + nr and (mn)r = m(nr) for m,n ∈ Z and r ∈ R, and m(rs) = (mr)s for s ∈ R.

[27] It is no coincidence that we begin our study of fields by considering homomorphisms of the two simplest interesting

rings, k[x] for a field k, and Z, into rings and fields.
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principal ideal in Z, say pZ with p > 0. Since the image i(Z) is inside a field, it is an integral domain, so
pZ is a (non-zero) prime ideal, which implies that p is prime. This integer p is the characteristic of k. We
know that Z/〈p〉 is a field. Then we see that (by the Isomorphism Theorem for rings) the homomorphism
i : Z −→ k with kernel pZ induces an isomorphism

Z/p ≈ i(Z) ⊂ k

This canonical copy of Z/p inside k is the prime field inside k.

A finite field with q elements is often denoted Fq or GF (q). [28]

[3.0.1] Theorem: A finite field K has pn elements for some prime p and integer n. [29] In particular,
let n = [K : Fp] be the degree of K over its prime field Fp ≈ Z/p with prime p. Then

|K| = pn

Proof: Let Fp be the prime field in K. Let e1, . . . , en be a Fp-basis for the Fp-vectorspace K. Then there
are pn choices of coefficients ci ∈ Fp to form linear combinations

α =
n∑
i=1

ci ei ∈ K

so K has pn elements. ///

[28] This notation begs the question of uniqueness (up to isomorphism) of a finite field once its cardinality is specified.

We address this shortly.

[29] We will prove existence and uniqueness results for finite fields a bit later.
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4. Algebraic field extensions

The first of the following two examples is amenable to ad hoc manipulation, but the second is designed to
frustrate naive explicit computation.

[4.0.1] Example: Let γ be a root (in some field k of characteristic 0, thus containing the prime field Q)
of the equation

x2 −
√

2x+
√

3 = 0

Is γ a root of a polynomial equation with rational coefficients?

In the same spirit as completing the square, we can manipulate the equation x2 −
√

2x +
√

3 = 0 to make
the square roots disappear, as follows. Move the x2 to the opposite side and square both sides, to obtain

2x2 − 2
√

6x+ 3 = x4

Then move everything but the remaining square root to the right-hand side

−2
√

6x = x4 − 2x2 − 3

and square again
24x2 = x8 − 4x6 − 2x4 + 6x2 + 9

and then we find that γ is a root of

0 = x8 − 4x6 − 2x4 − 18x2 + 9

It is not so obvious that the original [30]

γ =
√

2±
√

2− 4
√

3
2

are roots. [31]

[4.0.2] Example: Let α be a root of the equation

x5 − x+ 1 = 0

and let β be a root of the equation
x7 − x+ 1 = 0

Then let γ be a root of the equation
x6 − αx+ β = 0

Is γ a root of a polynomial equation with rational coefficients?

In this second example manipulations at the level of the first example fail. [32] But one might speculate
that in answering an existential question it might be possible to avoid explicit computations entirely, as in
the proofs of the following results.

[30] Solving the original quadratic equation directly, by completing the square, for example.

[31] For that matter, it appears that the original equation has exactly two roots, while a degree 8 equation might have

8. Thus, we seem to have introduced 6 spurious roots in this process. Of course, an explanation for this is that there

are two different square roots of 2 and two different square roots of 3 in k, so really 2 · 2 = 4 versions of the original

quadratic equation, each with perhaps 2 roots in k.

[32] The provable limitations of familiar algebraic operations are packaged up in Galois theory, a bit later.
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[4.0.3] Proposition: Let k ⊂ K ⊂ L be fields, with [K : k] <∞ and [L : K] <∞. Then

[L : k] = [L : K] · [K : k] <∞

In particular, for a K-basis {Ei} of L, and for a k-basis ej of K, the set {Eiej} is a k-basis for L. [33]

Proof: On one hand, any linear relation ∑
ij

Aij Eiej = 0

with Aij ∈ k gives ∑
i

(
∑
j

Aij ej)Ei = 0

so for each i we have
∑
j Aij ej = 0, by the linear independence of the Ei. And by the linear independence

of the ej we find that Aij = 0 for all indices. On the other hand, given

β =
∑
i

biEi ∈ L

with bi ∈ K, write bi =
∑
j aijej with aij ∈ k, and then

β =
∑
i

(
∑
j

aijej)Ei =
∑
ij

aij Eiej

which proves the spanning property. Thus, the elements Eiej are a k-basis for L. ///

A field extension K of a field k is finite if the degree [K : k] is finite. Finite field extensions can be built up
by adjoining elements. To economize on parentheses and brackets, [34] write

k(α1, . . . , αn) for k(α1)(α2) . . . (αn)

and
k[α1, . . . , αn] for k[α1][α2] . . . [αn]

[4.0.4] Proposition: Let K be a field containing k, and suppose that [K : k] < ∞. Then any element
α in K is algebraic over k, and there are finitely-many α1, . . . , αn such that

K = k(α1, . . . , αn) = k[α1, . . . , αn]

In particular, finite extensions K are necessarily algebraic. [35]

Proof: Given α ∈ K, the countably many powers 1, α, α2, . . . cannot be linearly independent over k, since
the whole K is finite-dimensional over k. A linear dependence relation among these powers is a polynomial

[33] The first assertion is merely a qualitative version of the last. Note that this proposition does not mention field

elements explicitly, but rather emphasizes the vector space structures.

[34] On might worry that this notation glosses over potential issues. But, for example, one can prove that a polynomial

ring in two variables really is naturally isomorphic to a polynomial ring in one variable over a polynomial ring in one

variable.

[35] The converse is not true. That is, some fields k admit extensions K with the property that every element in K is

algebraic over k, but K is infinite-dimensional over k. The rational numbers Q can be proven to have this property,

as do the p-adic numbers Qp discussed later. It is not completely trivial to prove this.
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equation satisfied by α. [36] If K is strictly larger than k, take α1 ∈ K but not in k. Then [k(α1) : k] > 1,
and the multiplicativity

[K : k] = [K : k(α1)] · [k(α1) : k]

with [K : k] <∞ implies that
[K : k(α1)] < [K : k]

If K is still larger than k(α1), take α2 in K not in k(α1). Again,

[K : k(α1, α2)] < [K : k(α1)] < [K : k]

These degrees are positive integers, so a decreasing sequence must reach 1 in finitely-many steps (by Well-
Ordering). The fact [37] that k(α) = k[α] for α algebraic over k was proven earlier. ///

Let K and L be subfields of a larger field E. The compositum K · L of K and L is the smallest subfield
of E containing both K and L. [38]

[4.0.5] Proposition: Let k ⊂ E be fields. Let K,L be subfields of K containing k. Suppose that
[K : k] <∞ and [L : k] <∞. Then

[K · L : k] ≤ [K : k] · [L : k] <∞

In particular, if
K = k(α1, . . . , αm) = k[α1, . . . , αm]

L = k(β1, . . . , βn) = k[β1, . . . , βn]

then
K · L = k(α1, . . . , αm, β1, . . . , βn) = k[α1, . . . , αm, β1, . . . , βn]

Proof: From the previous proposition, there do exist the αi and βj expressing K and L as k with finitely
many elements adjoined as in the statement of the proposition. Recall that these mean that

K = intersection of subfields of E containing k and all αi

L = intersection of subfields of E containing k and all βi

On one hand, K · L contains all the αi and βj . On the other hand, since these elements are algebraic over
k, we do have

k(α1, . . . , αm, β1, . . . , βn) = k[α1, . . . , αm, β1, . . . , βn]

The left-hand side is a field, by definition, namely the smallest subfield [39] of E containing all the αi and
βj . Thus, it contains K, and contains L. Thus, we have equality. ///

[36] A more elegant argument is to map k[x] to K by x −→ α, and note that the kernel must be non-zero, since

otherwise the image would be infinite-dimensional over k.

[37] Potentially disorienting and quite substantial.

[38] As with many of these constructions, the notion of compositum does not make sense, or at least is not well-defined,

unless the two fields lie in a common larger field.

[39] This discussion would appear to depend perhaps too much upon the larger ambient field E. In one sense, this is

true, in that some larger ambient field is necessary. On the other hand, if K and L are both contained in a smaller

subfield E′ of E, we can replace E by E′ for this discussion. One may reflect upon the degree to which the outcome

genuinely depends upon any difference between E′ and E, and how to avoid this concern.
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[4.0.6] Proposition: Let k ⊂ E be fields, and K,L fields between k and E. Let α ∈ L be algebraic over
k. Then

[k(α) : k] ≥ [K(α) : K]

Proof: Since α is algebraic over k, k(α) = k[α], and the degree [k(α) : k] is the degree of the minimal
polynomial of α over k. This degree cannot increase when we replace k by the larger field K, and we obtain
the indicated inequality. ///

[4.0.7] Proposition: Let k be a field, K a field algebraic over k, and L a field containing K. Let β ∈ L
be algebraic over K. Then β is algebraic over k.

Proof: Let M(x) be the monic irreducible in K[x] which is the minimal polynomial for β over K. Let
{α0, . . . , αn−1} be the finite set (inside K) of coefficients of M(x). Each field k(αi) is of finite degree over
k, so by the previous proposition their compositum k(α1, . . . , αn) is finite over k. The polynomial M(x) is
in k(α1, . . . , αn)[x], so β is algebraic over k(α1, . . . , αn). From above, the degree of k(α1, . . . , αn)(β) over k
is the product

[k(α1, . . . , αn)(β) : k] = [k(α1, . . . , αn)(β) : k(α1, . . . , αn)] · [k(α1, . . . , αn) : k] <∞

Thus, k(α1, . . . , αn)(β) is finite over k, and in particular β is algebraic over k.

///

[4.0.8] Corollary: Let k ⊂ K ⊂ L be fields, with K algebraic over k and L algebraic over K. Then L is
algebraic over k.

Proof: This is an element-wise assertion, and for each β in L the previous proposition proves the algebraicity.
///

[4.0.9] Remark: An arrangement of fields of the form k ⊂ K ⊂ L is sometimes called a tower of fields,
with a corresponding picture

L
|
K
|
k

The situation that K and L are intermediate fields between k and E, with compositum KL, is depicted as

E
|

KL
/ \
K L
\ /
k

5. Algebraic closures

A field K is algebraically closed if every non-constant polynomial f(x) ∈ k[x] has at least one root α ∈ k,
that is,

f(α) = 0
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Upon division, this algebraic closure property implies that any polynomial in K[x] factors into linear factors
in K[x].

Given a field k, a larger field K which is algebraically closed [40] and such that every element of K is
algebraic over k, is an algebraic closure of k. [41]

[5.0.1] Theorem: Any field k has an algebraic closure k, unique up to isomorphism. Any algebraic field
extension E of k has at least one injection to k (which restricts to the identity on k).

Proof: (Artin) Let S be the set of monic irreducibles in k[x], for each s ∈ S let xs be an indeterminate, and
consider the polynomial ring

R = k[. . . , xs, . . .] (s ∈ S)

in S-many variables. [42] We claim that there is at least one maximal proper ideal M in R containing every
f(xf ) for f ∈ S. First, one must be sure that the ideal F generated by all f(xf ) is proper in R. If F were
not proper, there would be elements ri ∈ R and irreducibles fi such that (a finite sum)

n∑
i=1

ri fi(xfi
) = 1

Make a finite field extension E of k such that all the finitely-many fi have roots αi in E, inductively, as
follows. First, let k1 = k[x]/〈f1〉. Then let F2 be an irreducible factor of f2 in k1, and let k2 = k1[x]/〈F2〉.
And so on, obtaining E = kn. Using the universal mapping property of polynomial rings, we can send xfi

to αi ∈ E, thus sending fi(xfi) to 0. [43] Then the relation becomes

0 = 1

Thus, there is no such relation, and the ideal F is proper.

Next, we claim that F lies in a maximal proper ideal M in R. This needs an equivalent of the Axiom of
Choice, such as Hausdorff Maximality or Zorn’s Lemma. In particular, among all chains of proper ideals
containing F

F ⊂ . . . ⊂ I ⊂ . . .

there exists a maximal chain. [44] The union of an ascending chain of proper ideals cannot contain 1, or
else one of the ideals in the chain would contain 1, and would not be proper. Thus, the union of the ideals in
a maximal chain is still proper. If it were not a maximal proper ideal then there would be a further (proper)

[40] Note that not only polynomials with coefficients in k must have roots in K, but polynomials with coefficients

in K. Thus, one can perhaps imagine a different universe in which one makes a large enough field K such that all

polynomials with coefficients in k have roots, but polynomials with coefficients in K need a larger field for their roots.

That this does not happen, and that the process of constructing algebraic closures terminates, is the content of the

theorem below.

[41] The second requirement is desirable, since we do not want to have algebraic closures be needlessly large. That is,

an algebraic closure of k should not contain elements transcendental over k.

[42] This ostentatiously extravagant construction would not have been taken seriously prior to Bourbaki’s influence

on mathematics. It turns out that once one sacrifices a little finiteness, one may as well fill things out symmetrically

and accept a lot of non-finiteness. Such extravagance will reappear in our modern treatment of tensor products, for

example.

[43] No, we have no idea what happens to the ri, but we don’t care.

[44] Maximal in the sense that there is no other proper ideal J containing F that either contains or is contained in

every element of the (maximal) chain.



104 Fields I

ideal that could be added to the chain, contrary to assumption. Thus, we have a maximal ideal M in R.
Thus, K = R/M is a field.

By construction, for monic irreducible (non-constant) f the equation f(Y ) = 0 has a root in K, namely the
image of xf under the quotient map, since f(xf ) ∈M for all irreducibles f . This proves that all non-constant
polynomials in k[x] have roots in K.

Now we prove that every element in k is algebraic over k. Let αf be the image of xf in kbar. Since
αf is a zero of f it is algebraic over k. An element β of k is a polynomial in finitely-many of the αf s, say
αf1 , . . . , αfn. That is, β ∈ k[α1, . . . , αn], which is a field since each αi is algebraic over k. Since (for example)
the compositum (inside k) of the algebraic extensions k(αfi

) = k[αfi
] is algebraic, β is algebraic over k.

Next, we prove that non-constant F (x) ∈ k[x] has a zero in k (hence, it has all zeros in k). The coefficients
of F involve some finite list αf1 , . . . , αfn

out of all αf , and F (x) has a zero in k(αf1 , . . . , αfn
)[x]/〈F 〉. Thus,

since β is algebraic over an algebraic extension of k, it is algebraic over k, and, thus, is a root of a polynomial
in k[x].

Now consider an algebraic extension E of k, and show that it admits an imbedding into k. First, if α ∈ E,
let f be the minimal polynomial of α over k, and let β be a zero of f in k. Map k[x] −→ k by sending
x −→ β. The kernel is exactly the ideal generated by f , so (by an isomorphism theorem) the homomorphism
k[x] −→ k descends to an injection k[α] −→ k. This argument can be repeated to extend the inclusion k ⊂ k
to any extension E = k(α1, . . . , αn) with αi algebraic over k. We use an equivalent of the Axiom of Choice
to complete the argument: consider the collection of ascending chains of fields Ei (containing k) inside E
admitting families of injections ψi : Ei −→ k with the compatibility condition that

ψj |Ei
| = ψi for Ei ⊂ Ej

We can conclude that there is a maximal chain. Let E′ be the union of the fields in this maximal chain.
The field E′ imbeds in k by ψi on Ei, and the compatibility condition assures us that this is well-defined.
We claim that E′ = E. Indeed, if not, there is α ∈ E that is not in E′. But then the first argument shows
that E′(α) does admit an imbedding to k extending the given one of E′, contradiction. Thus, E′ = E and
we have, in fact, imbedded the whole algebraic extension E to k.

Last, we prove that any other algebraic closure K of k is isomorphic to k. [45] Indeed, since K and k are
algebraic over k, we have at least one injection K −→ k, and at least one injection k −→ K, but there
is no reason to think that our capricious construction assures that these are mutual inverses. A different
mechanism comes into play. Consider K imbedded into k. Our claim is that K is necessarily all of k. Indeed,
any element of k is algebraic over k, so is the zero of a polynomial f in k[x], say of degree n, which has all
n roots in the subfield K of k because K is algebraically closed. That is, every element of the overfield k is
actually in the subfield K, so the two are equal. ///

Exercises

6.[5.0.1] Let γ be a root of the equation x2 +
√

5x+
√

2 = 0 in an algebraic closure of Q. Find an equation
with rational coefficients having root γ.

6.[5.0.2] Let γ be a root of the equation x2 +
√

5x+ 3
√

2 = 0 in an algebraic closure of Q. Find an equation
with rational coefficients having root γ.

6.[5.0.3] Find a polynomial with rational coefficients having a root
√

2 +
√

3.

[45] Note that we do not claim uniqueness of the isomorphism. Indeed, typically there are many different maps of a

given algebraic closure k to itself that fix the underlying field k.
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6.[5.0.4] Find a polynomial with rational coefficients having a root
√

2 + 3
√

5.

6.[5.0.5] Let γ be a root of x5 − x+ 1 = 0 in an algebraic closure of Q. Find a polynomial with rational
coefficients of which γ +

√
2 is a root.

6.[5.0.6] Show that the field obtained by adjoining
√

2, 4
√

2, 8
√

2, 16
√

2, . . ., 2n√
2, . . ., to Q is not of finite

degree over Q.


