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Based on fairly extensive hand calculations, one might imagine that all coefficients of all cyclotomic
polynomials are either +1, —1, or 0, but this is not true! It is true for n prime, and for n having at
most 2 distinct prime factors, but not generally.

The smallest n where ®,,(x) has an exotic coefficient is n = 105. It is no coincidence that 105 =3-5-7 is
the product of the first 3 primes above 2.

Part of the point in finding an exotic coefficient of @15 is demonstration that insightful hand calculation
can go much further than we might imagine, giving directly-human-verifiable information.
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Instead of polynomial computations, it suffices to do power series computations, imagining either that |z| < 1,
or that we are computing in formal power series rings. Thus,
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The degree of ®105(x) is ¢(105) = (3 —1)(5 — 1)(7 — 1) = 48, and the coefficients of cyclotomic polynomials
are the same back-to-front as front-to-back. Thus, in power series in x, to hunt for exotic coefficients of @15,
it suffices to ignore terms of degree above 24. That is, in Z[[x]]/(x25),
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Looking closely, we have a —2z7.




