15. Symmetric polynomials

15.1 The theorem
15.2 First examples

15.3 A variant: discriminants
1. The theorem
Let S, be the group of permutations of {1,...,n}, also called the symmetric group on n things.
For indeterminates x;, let p € S,, act on Z[z1,...,z,] by
p(xi) = Tp()
A polynomial f(x1,...,2z,) € Z[z1,...,x,] is invariant under S, if for all p € S,
f(p(‘rl)a cee 7p(53n)) = f(x17 cee axn)

The elementary symmetric polynomials in x1,...,x, are

51 = si(x1, ., Tn) = > T

S = 82(3?1, cee ,xn) = Zi<]‘ T;Tj

s3 = s3(x1,...,mn) = i<j<k TiTjTk

s4 = s4(x1,...,7n) = i<j<k<t TiTjTrLe

St = st(xl,...,xn) = Zi1<i2<.“<it Ty Ly -+ - Ty

Sn = Sp(®1,...,Tn) = X1Tax3...Ty
[1.0.1] Theorem: A polynomial f(zy,...,x,) € Z[zy,...,,] is invariant under S,, if and only if it is a
polynomial in the elementary symmetric functions s, ..., sy.

[1.0.2] Remark: In fact, the proof shows an algorithm which determines the expression for a given
Sp-invariant polynomial in terms of the elementary ones.
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214 Symmetric polynomials
Proof: Let f(x1,...,2,) be S,-invariant. Let
q:Zx1, .. X1, T — DXy, .. Tp1]

be the map which kills off z,,, that is

If f(z1,...,2,) is Sp-invariant, then

q(f(l‘l, R axn—lvxn)) = f(x17 ce 7'rn—1) O)
is S,,_1-invariant, where we take the copy of S,,_1 inside S,, that fixes n. And note that

STno1) (1<i<n)

(1 T _ Si(l'l,..
R i

By induction on the number of variables, there is a polynomial P in n — 1 variables such that

q(f(xlv ;xn)) = P(S1(.T1,...,l'n_l),...,Sn_l(l'l,...,.’[n_1))

Now use the same polynomial P but with the elementary symmetric functions augmented by insertion of
Tn, by
g1, .., xn) = P(s1(x1, ., Tn)y ooy Sn—1(T1, .- ., 20))

By the way P was chosen,
Q(f(xla"'axn) 79(1'13"'750%)) =0

That is, mapping x,, — 0 sends the difference f — g to 0. Using the unique factorization in Z[z1, ..., z,],
this implies that x,, divides f — g. The S,-invariance of f — g implies that every z; divides f — ¢g. That is,
by unique factorization, s,(x1,...,z,) divides f — g.

The total degree of a monomial cx7* ... x5 is the sum of the exponents
total degree (czf'...xi")=e1+...+ ey,

The total degree of a polynomial is the maximum of the total degrees of its monomial summands.

Consider the polynomial
f—g9 [y, @) —g(x1,...,20)

Sn Sn(mla"'axn)

It is of lower total degree than the original f. By induction on total degree (f — g)/s,, is expressible in terms
of the elementary symmetric polynomials in x1, ..., z,. ///

[1.0.3] Remark: The proof also shows that if the total degree of an S,-invariant polynomial
flx1,...,xn_1,2,) in n variables is less than or equal the number of variables, then the expression for
flz1,...,24-1,0) in terms of s;(z1,...,Tn—1) gives the correct formula in terms of s;(x1,...,Zn—1,Zyn).

2. First examples

[2.0.1] Example: Consider

flzy, ..., =a7 +... + 22
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The induction on n and the previous remark indicate that the general formula will be found if we find the
formula for n = 2, since the total degree is 2. Let q : Z[z,y] — Z[x] be the Z-algebra map sending © — =

and y — 0. Then

q(a® +y°) =2 = s1(x)’

Then, following the procedure of the proof of the theorem,
(@ +y%) = s1(z,9)* = (2° +9%) — (z +y)* = —2ay
Dividing by sa(z,y) = 2y we obtain —2. (This is visible, anyway.) Thus,

2

z® +y? = s1(2,y)° — 2s2(z,y)

The induction on the number of variables gives

22 =s(wy,. ., 2n)? = sa(my, . 2)

[2.0.2] Example: Consider
flay,...,z,) = Z x}

Since the total degree is 4, as in the remark just above it suffices to determine the pattern with just 4
variables 1, %2, x3,x4. Indeed, we start with just 2 variables. Following the procedure indicated in the
theorem, letting g be the Z-algebra homomorphism which sends y to 0,

gzt +y*) = 2" = s1(2)*

so consider
(z* +y*) — s1(z,9)* = —dady — 622y — day® = —s1 (2, y) - (422 + 62y + 4y?)
The latter factor of lower total degree is analyzed in the same fashion:
q(42% + 6xy + 4y?) = 42% = 451 (2)?

so consider
(422 + 62y + 4y?) — 4s1(2,y)* = —2xy

Going backward,

1‘4 + y4 = Sl(xay)4 - 51(x7y) : (451($7y)2 - 282($,y))

Passing to three variables,
q(lA + y4 + 24) - 1‘4 + y4 = Sl(mvy)4 - 51(.’E, y) . (481($,y)2 - 282(.13, y))

so consider
(IA =+ y4 + Z4) - (31(337% Z)4 - 51(55’% Z) : (451(9079’ Z)2 - 252(5071% Z)))

Before expanding this, dreading the 15 terms from the (x 4+ y + 2)*, for example, recall that the only terms
which will not be cancelled are those which involve all of x,y, z. Thus, this is

—122%yz — 12y%22 — 122%0y + (vy +yz + 22) - (4(x +y + 2)? — 2(2y + y2z + 22)) + (irrelevant)
= —122%yz — 12y%x2 — 122%2y + (vy + yz + 2x) - (4a? + 4y® + 42 + 62y + 6yz + 622) + (irrelevant)
= —122%yz — 12022 — 12220y + day2® + dyza® + dzxy® + 6xy°2
+ 622%yz + 62%yz + 6xy2® + 62y° 2 + 62y2?
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= 4$y2($+y+2) = 483(1’,:1/72)'81(1',:[/,2)

Thus, with 3 variables,
ot oyt

= 51(33’?!72)4 - 32('7371/72) ' (451($,y72)2 - 282($,y72)) + 453(5'37%3) . 81(957%2)

Abbreviating s; = s;(z,y, 2z, w), we anticipate that
oyt 2wt - (s‘l1 — 45259 + 253 + 45153) = constant - xyzw

We can save a little time by evaluating the constant by taking z =y = z = w = 1. In that case

s1(1,1,1,1) = 4

82(1,1,1,1) = 6

s3(1,1,1,1) = 4
and

1+1+1+1—(4"-4-4*>-6+2-6>+4-4-4) = constant
or
constant =4 — (256 — 384 + 72 +64) = —4

Thus,

zt + y4 424wt = 3411 — 48%82 + 25% + 45183 — 484

By the remark above, since the total degree is just 4, this shows that for arbitrary n

ol 4t = st — 45255 4 252 + 4553 — 4sy
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3. A variant: discriminants
Let z1,...,z, be indeterminates. Their discriminant is

D:D(xl,...,xn):H(xiij)

1<J

Certainly the sign of D depends on the ordering of the indeterminates. But

D* =1 (w: — z)?

i#]

is symmetric, that is, is invariant under all permutations of the ;. Therefore, D? has an expression in terms
of the elementary symmetric functions of the x;.

[3.0.1] Remark: By contrast to the previous low-degree examples, the discriminant (squared) has as
high a degree as possible.

[3.0.2] Example: With just 2 indeterminates z,y, we have the familiar

D2:(m—y)2:a:2—2xy+y2:(x+y)2—4xy:s%—432

Rather than compute the general version in higher-degree cases, let’s consider a more accessible variation on
the question. Suppose that a, ..., «a, are roots of an equation

X"+aX+b=0

in a field k, with a,b € k. For simplicity suppose a # 0 and b # 0, since otherwise we have even simpler
methods to study this equation. Let f(X) = 2™ + aX + b. The discriminant

D(ay, ... ap) = H (0 — ;)

vanishes if and only if any two of the a; coincide. On the other hand, f(X) has a repeated factor in k[X]
if and only if ged(f, f’) # 1. Because of the sparseness of this polynomial, we can in effect execute the
Euclidean algorithm explicitly. Assume that the characteristic of k does not divide n(n — 1). Then

X 1
(X"+aX+b)—Z~(nX"_1+a):a(l—ﬁ)X—i—b

That is, any repeated factor of f(X) divides X + (niinl)a’ and the latter linear factor divides f'(X).

Continuing, the remainder upon dividing nX"~! + a by the linear factor X + (niﬁ)a is simply the value of

nX"~! + a obtained by evaluating at ﬁ, namely

n (m_—b?)a> b= ()T s (- ) ) (- D)

Thus, (constraining a to be non-zero)
nn(_l)n—lbn—l + (’I’L _ 1)n—1an =0

if and only if some o; — a; = 0.
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We obviously want to say that with the constraint that all the symmetric functions of the «; being 0 except
the last two, we have computed the discriminant (up to a less interesting constant factor).

A relatively graceful approach would be to show that R = Z[z1,...,x,] admits a universal Z-algebra
homomorphism ¢ : R — 2 for some ring () that sends the first n — 2 elementary symmetric functions

s1 = si(zy,..o,x,) = Do T

so = S2(x1,...,xp) = ZKJ. T; T

S3 = 83(1‘1,...,13") = i<j<k TiXj Tk

se = selxy,...,xn) = Zi1<...<u Tiy -e- Ty,
Sn—a = Sp—o(T1,...,Tn) = Zi1<...<in,2 Ly oee Tip

to 0, but imposes no unnecessary further relations on the images

a=(—1)""to(sp—1) b= (=1)"p(sn)

We do not have sufficient apparatus to do this nicely at this moment. 1 Nevertheless, the computation
above does tell us something.

Exercises

15.[3.0.1] Express 3 + 23 + ...+ 23 in terms of the elementary symmetric polynomials.

15.[3.0.2] Express dini Ti 2% in terms of the elementary symmetric polynomials.

15.[3.0.3] Let @, 8 be the roots of a quadratic equation axz? + bz + ¢ = 0, Show that the discriminant,
defined to be (o — )2, is b% — 4ac.

15.[3.0.4] Consider f(x) = 2* +ax +b as a polynomial with coefficients in k(a, b) where k is a field not of
characteristic 2 or 3. By computing the greatest common divisor of f and f’, give a condition for the roots

of f(z) =0 to be distinct.

15.[3.0.5] Express > ik distinet Ti T 77 in terms of elementary symmetric polynomials.

(11 The key point is that Zxy,...,xn] is integral over Z[s1, s2,. .., sn] in the sense that each z; is a root of the monic
equation X" — 1 X" 2 L X2 (—1)"_1sn_1X + (=1)"sp = 0 It is true that for R an integral extension
of a ring S, any homomorphism ¢, : S — € to an algebraically closed field Q2 extends (probably in more than one
way) to a homomorphism ¢ : R — . This would give us a justification for our hope that, given a,b € Q we can

n—1

require that ©o(s1) = @o($2) = ... = po(sn—2) = 0 while po(sn—1) = (=1)"""a  @o(sn) = (=1)"b.



