
26. Determinants I

26.1 Prehistory
26.2 Definitions
26.3 Uniqueness and other properties
26.4 Existence

Both as a careful review of a more pedestrian viewpoint, and as a transition to a coordinate-independent
approach, we roughly follow Emil Artin’s rigorization of determinants of matrices with entries in a field.
Standard properties are derived, in particular uniqueness, from simple assumptions. We also prove existence.
Soon, however, we will want to develop corresponding intrinsic versions of ideas about endomorphisms. This
is multilinear algebra. Further, for example to treat the Cayley-Hamilton theorem in a forthright manner,
we will want to consider modules over commutative rings, not merely vector spaces over fields.

1. Prehistory

Determinants arose many years ago in formulas for solving linear equations. This is Cramer’s Rule,
described as follows. [1] Consider a system of n linear equations in n unknowns x1, . . . , xn

a11x1 + a12x2 + . . . + a1nxn = c1
a21x1 + a22x2 + . . . + a2nxn = c2
a31x1 + a32x2 + . . . + a3nxn = c3

...
. . .

...
...

an1x1 + an2x2 + . . . + annxn = cn

[1] We will prove Cramer’s Rule just a little later. In fact, quite contrary to a naive intuition, the proof is very easy

from an only slightly more sophisticated viewpoint.
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380 Determinants I

Let A be the matrix with (i, j)th entry aij . Let A(`) be the matrix A with its `th column replaced by the
cis, that is, the (i, `)th entry of A(`) is c`. Then Cramer’s Rule asserts that

x` =
detA(`)

detA

where det is determinant, at least for detA 6= 0. It is implicit that the coefficients aij and the constants c`
are in a field. As a practical method for solving linear systems Cramer’s Rule is far from optimal. Gaussian
elimination is much more efficient, but is less interesting.

Ironically, in the context of very elementary mathematics it seems difficult to give an intelligible definition
or formula for determinants of arbitrary sizes, so typical discussions are limited to very small matrices. For
example, in the 2-by-2 case there is the palatable formula

det
(
a b
c d

)
= ad− bc

Thus, for the linear system
ax+ by = c1
cx+ dy = c2

by Cramer’s Rule

x =
det
(
c1 b
c2 d

)
det
(
a b
c d

) y =
det
(
a c1
c c2

)
det
(
a b
c d

)
In the 3-by-3 case there is the still-barely-tractable formula (reachable by a variety of elementary mnemonics)

det

 a11 a12 a13

a21 a22 a23

a31 a32 a33


= (a11a22a33 + a12a23a31 + a13a21a32)− (a31a22a13 + a32a23a11 + a31a21a12)

Larger determinants are defined ambiguously by induction as expansions by minors. [2]

Inverses of matrices are expressible, inefficiently, in terms of determinants. The cofactor matrix or
adjugate matrix Aadjg of an n-by-n matrix A has (i, j)th entry

Aadjg
ij = (−1)i+j detA(ji)

where Aji is the matrix A with jth row and ith column removed. [3] Then

A ·Aadjg = (detA) · 1n

where 1n is the n-by-n identity matrix. That is, if A is invertible,

A−1 =
1

detA
·Aadjg

[2] We describe expansion by minors just a little later, and prove that it is in fact unambiguous and correct.

[3] Yes, there is a reversal of indices: the (ij)th entry of Aadjg is, up to sign, the determinant of A with jth row and

ith column removed. Later discussion of exterior algebra will clarify this construction/formula.
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In the 2-by-2 case this formula is useful:(
a b
c d

)−1

=
1

ad− bc
·
(
d −b
−c a

)
Similarly, a matrix (with entries in a field) is invertible if and only if its determinant is non-zero. [4]

The Cayley-Hamilton theorem is a widely misunderstood result, often given with seriously flawed proofs.
[5] The characteristic polynomial PT (x) of an n-by-n matrix T is defined to be

PT (x) = det(x · 1n − T )

The assertion is that
PT (T ) = 0n

where 0n is the n-by-n zero matrix. The main use of this is that the eigenvalues of T are the roots of
PT (x) = 0. However, except for very small matrices, this is a suboptimal computational approach, and
the minimal polynomial is far more useful for demonstrating qualitative facts about endomorphisms.
Nevertheless, because there is a formula for the characteristic polynomial, it has a substantial popularity.

The easiest false proof of the Cayley-Hamilton Theorem is to apparently compute

PT (T ) = det(T · 1n − T ) = det(T − T ) = det(0n) = 0

The problem is that the substitution x · 1n −→ T · 1n is not legitimate. The operation cannot be any
kind of scalar multiplication after T is substituted for x, nor can it be composition of endomorphisms (nor
multiplication of matrices). Further, there are interesting fallacious explanations of this incorrectness. For
example, to say that we cannot substitute the non-scalar T for the scalar variable x fails to recognize that
this is exactly what happens in the assertion of the theorem, and fails to see that the real problem is in the
notion of the scalar multiplication of 1n by x. That is, the correct objection is that x · 1n is no longer a
matrix with entries in the original field k (whatever that was), but in the polynomial ring k[x], or in its field
of fractions k(x). But then it is much less clear what it might mean to substitute T for x, if x has become
a kind of scalar.

Indeed, Cayley and Hamilton only proved the result in the 2-by-2 and 3-by-3 cases, by direct computation.

Often a correct argument is given that invokes the (existence part of the) structure theorem for finitely-
generated modules over PIDs. A little later, our discussion of exterior algebra will allow a more direct
argument, using the adjugate matrix. More importantly, the exterior algebra will make possible the long-
postponed uniqueness part of the proof of the structure theorem for finitely-generated modules over PIDs.

[4] We prove this later in a much broader context.

[5] We give two different correct proofs later.
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2. Definitions

For the present discussion, a determinant is a function D of square matrices with entries in a field k, taking
values in that field, satisfying the following properties.

• Linearity as a function of each column: letting C1, . . . , Cn in kn be the columns of an n-by-n matrix C,
for each 1 ≤ i ≤ n the function

Ci −→ D(C)

is a k-linear map kn −→ k. [6] That is, for scalar b and for two columns Ci and C ′i

D(. . . , bCi, . . .) = b ·D(. . . , Ci, . . .)

D(. . . , Ci + C ′i, . . .) = D(. . . , Ci, . . .) +D(. . . , C ′i, . . .)

• Alternating property: [7] If two adjacent columns of a matrix are equal, the determinant is 0.

• Normalization: The determinant of an identity matrix is 1:

D


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
0 0 0 . . . 1

 = 1

That is, as a function of the columns, if the columns are the standard basis vectors in kn then the value of
the determinant is 1.

3. Uniqueness and other properties

• If two columns of a matrix are interchanged the value of the determinant is multiplied by −1. That is,
writing the determinant as a function of the columns

D(C) = D(C1, . . . , Cn)

we have

D(C1, . . . , Ci−1, Ci, Ci+1, Ci+2, . . . , Cn) = −D(C1, . . . , Ci−1, Ci+1, Ci, Ci+2, . . . , Cn)

Proof: There is a little trick here. Consider the matrix with Ci+Cj at both the ith and jth columns. Using
the linearity in both ith and jth columns, we have

0 = D(. . . , Ci + Cj , . . . , Ci + Cj , . . .)

[6] Linearity as a function of several vector arguments is called multilinearity.

[7] The etymology of alternating is somewhat obscure, but does have a broader related usage, referring to rings that

are anti-commutative, that is, in which x · y = −y · x. We will see how this is related to the present situation when

we talk about exterior algebras. Another important family of alternating rings is Lie algebras, named after Sophus

Lie, but in these the product is written [x, y] rather than x · y, both by convention and for functional reasons.
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= D(. . . , Ci, . . . , Ci, . . .) +D(. . . , Ci, . . . , Cj , . . .)

+ D(. . . , Cj , . . . , Ci, . . .) +D(. . . , Cj , . . . , Cj , . . .)

The first and last determinants on the right are also 0, since the matrices have two identical columns. Thus,

0 = D(. . . , Ci, . . . , Cj , . . .) +D(. . . , Cj , . . . , Ci, . . .)

as claimed. ///

[3.0.1] Remark: If the characteristic of the underlying field k is not 2, then we can replace the requirement
that equality of two columns forces a determinant to be 0 by the requirement that interchange of two columns
multiplies the determinant by −1. But this latter is a strictly weaker condition when the characteristic is 2.

• For any permutation π of {1, 2, 3, . . . , n} we have

D(Cπ(1), . . . , Cπ(n)) = σ(π) ·D(C1, . . . , Cn)

where Ci are the columns of a square matrix and σ is the sign function on Sn.

Proof: This argument is completely natural. The adjacent transpositions generate the permutation group
Sn, and the sign function σ(π) evaluated on a permutation π is (−1)t where t is the number of adjacent
transpositions used to express π in terms of adjacent permutations. ///

• The value of a determinant is unchanged if a multiple of one column is added to another. That is, for
indices i < j, with columns Ci considered as vectors in kn, and for b ∈ k,

D(. . . , Ci, . . . , Cj , . . .) = D(. . . , Ci, . . . , Cj + bCi, . . .)

D(. . . , Ci, . . . , Cj , . . .) = D(. . . , Ci + bCj , . . . , Cj , . . .)

Proof: Using the linearity in the jth column,

D(. . . , Ci, . . . , Cj + bCi, . . .) = D(. . . , Ci, . . . , Cj , . . .) + b ·D(. . . , Ci, . . . , Ci, . . .)

= D(. . . , Ci, . . . , Cj , . . .) + b · 0 = D(. . . , Ci, . . . , Cj , . . .)

since a determinant is 0 if two columns are equal. ///

• Let
Cj =

∑
i

bijAi

where bij are in k and Ai ∈ kn. Let C be the matrix with ith column Ci, and let A the the matrix with ith

column Ai. Then

D(C) =

(∑
π∈Sn

σ(π) bπ(1),1 . . . , bπ(n),n

)
·D(A)

and also

D(C) =

(∑
π∈Sn

σ(π) b1,π(1),1 . . . , bn,π(n)

)
·D(A)
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Proof: First, expanding using (multi-) linearity, we have

D(. . . , Cj , . . .) = D(. . . ,
∑
ibijAi, . . .) =

∑
i1,...,in

bi1,1 . . . bin,nD(Ai1 , . . . , Ain)

where the ordered n-tuple i1, . . . , in is summed over all choices of ordered n-tupes with entries from {1, . . . , n}.
If any two of ip and iq with p 6= q are equal, then the matrix formed from the Ai will have two identical
columns, and will be 0. Thus, we may as well sum over permutations of the ordered n-tuple 1, 2, 3, . . . , n.
Letting π be the permutation which takes ` to i`, we have

D(Ai1 , . . . , Ain) = σ(π) ·D(A1, . . . , An)

Thus,

D(C) = D(. . . , Cj , . . .) =

(∑
π∈Sn

σ(π) bπ(1),1 . . . , bn,π(n)

)
·D(A)

as claimed. For the second, complementary, formula, since multiplication in k is commutative,

bπ(1),1 . . . bπ(n),n = b1,π−1(1) . . . bn,π−1(n)

Also,
1 = σ(1) = σ(π ◦ π−1) = σ(π) · σ(π−1)

And the map π −→ π−1 is a bijecton of Sn to itself, so∑
π∈Sn

σ(π) bπ(1),1 . . . , bn,π(n) =
∑
π∈Sn

σ(π) b1,π(1) . . . , bπ(n),n

which yields the second formula. ///

[3.0.2] Remark: So far we have not used the normalization that the determinant of the identity matrix
is 1. Now we will use this.

• Let cij be the (i, j)th entry of an n-by-n matrix C. Then

D(C) =
∑
π∈Sn

σ(π) cπ(1),1 . . . , cn,π(n)

Proof: In the previous result, take A to be the identity matrix. ///

• (Uniqueness) There is at most one one determinant function on n-by-n matrices.

Proof: The previous formula is valid once we prove that determinants exist. ///

• The transpose C> of C has the same determinant as does C

D(C>) = D(C)

Proof: Let cij be the (i, j)th entry of C. The (i, j)th entry c>ij of C> is cji, and we have shown that

D(C>) =
∑
π∈Sn

σ(π) c>π(1),1 . . . c
>
π(n),n
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Thus,
D(C>) =

∑
π∈Sn

σ(π) cπ(1),1 . . . cn,π(n)

which is also D(C), as just shown. ///

• (Multiplicativity) For two square matrices A,B with entries aij and bij and product C = AB with
entries cij , we have

D(AB) = D(A) ·D(B)

Proof: The jth column Cj of the product C is the linear combination

A1 · b1,j + . . .+An · bn,j

of the columns A1, . . . , An of A. Thus, from above,

D(AB) = D(C) =

(∑
π

σ(π) bπ(1),1 . . . bπ(n),1

)
·D(A)

And we know that the sum is D(B). ///

• If two rows of a matrix are identical, then its determinant is 0.

Proof: Taking transpose leaves the determinant alone, and a matrix with two identical columns has
determinant 0. ///

• Cramer’s Rule Let A be an n-by-n matrix with jth column Aj . Let b be a column vector with ith entry
bi. Let x be a column vector with ith entry xi. Let A(`) be the matrix obtained from A by replacing the jth

column Aj by b. Then a solution x to an equation

Ax = b

is given by

x` =
D(A(`))
D(A)

if D(A) 6= 0.

Proof: This follows directly from the alternating multilinear nature of determinants. First, the equation
Ax = b can be rewritten as an expression of b as a linear combination of the columns of A, namely

b = x1A1 + x2A2 + . . .+ xnAn

Then
D(A(`)) = D(. . . , A`−1,

∑
j

xjAj , A`+1, . . .) =
∑
j

xj ·D(. . . , A`−1, Aj , A`+1, . . .)

= x` ·D(. . . , A`−1, A`, A`+1, . . .) = x` ·D(A)

since the determinant is 0 whenever two columns are identical, that is, unless ` = j. ///

[3.0.3] Remark: In fact, this proof of Cramer’s Rule does a little more than verify the formula. First,
even if D(A) = 0, still

D(A(`)) = x` ·D(A)
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Second, for D(A) 6= 0, the computation actually shows that the solution x is unique (since any solutions x`s
satisfy the indicated relation).

• An n-by-n matrix is invertible if and only if its determinant is non-zero.

Proof: If A has an inverse A−1, then from A ·A−1 = 1n and the multiplicativity of determinants,

D(A) ·D(A−1) = D(1n) = 1

so D(A) 6= 0. On the other hand, suppose D(A) 6= 0. Let ei be the ith standard basis element of kn, as a
column vector. For each j = 1, . . . , n Cramer’s Rule gives us a solution bj to the equation

Abj = ej

Let B be the matrix whose jth column is bj . Then

AB = 1n

To prove that also BA = 1n we proceed a little indirectly. Let TM be the endomorphism of kn given by a
matrix M . Then

TA ◦ TB = TAB = T1n = idkn

Thus, TA is surjective. Since
dim ImTA + dim kerTA = n

necessarily TA is also injective, so is an isomorphism of kn. In particular, a right inverse is a left inverse, so
also

TBA = TB ◦ TA = idkn

The only matrix that gives the identity map on kn is 1n, so BA = 1n. Thus, A is invertible. ///

[3.0.4] Remark: All the above discussion assumes existence of determinants.

4. Existence

The standard ad hoc argument for existence is ugly, and we won’t write it out. If one must a way to proceed
is to check directly by induction on size that an expansion by minors along any row or column meets the
requirements for a determinant function. Then invoke uniqueness.

This argument might be considered acceptable, but, in fact, it is much less illuminating than the use above
of the key idea of multilinearity to prove properties of determinants before we’re sure they exist. With
hindsight, the capacity to talk about a determinant function D(A) which is linear as a function of each
column (and is alternating) is very effective in proving properties of determinants.

That is, without the notion of linearity a derivation of properties of determinants is much clumsier. This is
why high-school treatments (and 200-year-old treatments) are awkward.

By contrast, we need a more sophisticated viewpoint than basic linear algebra in order to give a conceptual
reason for the existence of determinants. Rather than muddle through expansion by minors, we will wait
until we have developed the exterior algebra that makes this straightforward.

Exercises
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26.[4.0.1] Prove the expansion by minors formula for determinants, namely, for an n-by-n matrix A with
entries aij , letting Aij be the matrix obtained by deleting the ith row and jth column, for any fixed row
index i,

detA = (−1)i
n∑
j=1

(−1)j aij detAij

and symmetrically for expansion along a column. (Hint: Prove that this formula is linear in each row/column,
and invoke the uniqueness of determinants.)

26.[4.0.2] From just the most basic properties of determinants of matrices, show that the determinant of
an upper-triangular matrix is the product of its diagonal entries. That is, show that

det


a11 a12 a13 . . . a1n

0 a22 a23 . . . a2n

0 0 a33
...

. . .
...

0 . . . 0 ann

 = a11a22a33 . . . ann

26.[4.0.3] Show that determinants respect block decompositions, at least to the extent that

det
(
A B
0 D

)
= detA · detD

where A is an m-by-n matrix, B is m-by-n, and D is n-by-n.

26.[4.0.4] By an example, show that it is not always the case that

det
(
A B
C D

)
= detA · detD − detB · detC

for blocks A,B,C,D.

26.[4.0.5] Let x1, . . . , xn and y1, . . . , yn be two orthonormal bases in a real inner-product space. Let M
be the matrix whose ijth entry is

Mij = 〈xi, yj〉

Show that detM = 1.

26.[4.0.6] For real numbers a, b, c, d, prove that

∣∣∣det
(
a b
c d

) ∣∣∣ = (area of parallelogram spanned by (a, b) and (c, d))

26.[4.0.7] For real vectors vi = (xi, yi, zi) with i = 1, 2, 3, show that

∣∣∣∣ det

x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣ = (volume of parallelogram spanned by v1, v2, v3)


