Altenating grouops, commutator subgroups

Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/~garrett/

- Commutator subgroups and abelianization
- Alternating groups
- Linear groups

1. Commutator subgroups and abelianization

The commutator of two elements x, y of a group G is ${ }^{[1]}$

$$
[x, y]=x y x^{-1} y^{-1}
$$

The commutator subgroup $[G, G]$ of G is the smallest subgroup of G containing all commutators. [2] It is immediate that G is abelian if and only if all commutators are 1. At the other extreme, it can happen that $G=[G, G]$, in which case G is called perfect.
[1.1] Proposition: Let $f: G \rightarrow A$ be a group homomorphism to an abelian group. Then $\operatorname{ker} f$ contains the commutator subgroup $[G, G]$. Conversely, the commutator subgroup is normal and the quotient $G /[G, G]$ is abelian.

Proof: The main point of this is that, for a homomorphism $f: G \rightarrow A$ to an abelian group A,

$$
f\left(x y x^{-1} y^{-1}\right)=f(x) f(y) f\left(x^{-1}\right) f\left(y^{-1}\right)=f(x) f\left(x^{-1}\right) f(y) f\left(y^{-1}\right)=0
$$

so commutators are certainly in the kernel of f. For the converse, observe first that

$$
z \cdot[x, y] \cdot z^{-1}=z \cdot\left(x y x^{-1} y^{-1}\right) \cdot z^{-1}=\left(z x z^{-1}\right)\left(z y z^{-1}\right)\left(z x z^{-1}\right)^{-1}\left(z y z^{-1}\right)^{-1}=\left[z x z^{-1}, z y z^{-1}\right]
$$

That is, the set of commutators is stable under conjugation. Thus, for a subgroup H containing all commutators, $z \mathrm{~Hz}^{-1}$ also contains all commutators. Then

$$
z[G, G] z^{-1}=z\left(\bigcap_{H \ni \text { commutators }} H\right)=\bigcap_{H \ni \text { commutators }} z H z^{-1}=\bigcap_{H \ni \text { commutators }} H=[G, G]
$$

proving the normality of the commutator subgroup. ${ }^{[3]}$ Let $q: G \rightarrow[G, G]$ be the quotient map. To show that the quotient is abelian, consider commutators in the quotient

$$
q(x) q(y) q(x)^{-1} q(y)^{-1}=q\left(x y x^{-1} y^{-1}\right)=1
$$

[1] Beware that in other circumstances the same notation has different meanings. In a ring it may be that $[x, y]=x y-y x$. And in a Lie algebra (an important and useful type of non-associative algebra) the ring operation itself is written as $[x, y]$ rather than multiplication, both to avoid suggesting associativity, and because it is in fact descended from the group commutator.
[2] As usual, this language means that the commutator subgroup is the intersection of all subgroups containing all commutators. The intersection of any family of subgroups is a subgroup.
[3] Note that we did not need to refer to explicit algebraic expressions involving commutators of elements.

Since these are all trivial, the quotient is abelian.
[1.2] Corollary: If a finite group G is simple ${ }^{[4]}$ then it is equal to its own commutator subgroup.
[1.3] Corollary: If a non-trivial finite group G is solvable ${ }^{[5]}$ then its commutator subgroup is a proper subgroup.

Proof: If G is not already cyclic, then it has a normal subgroup G_{1} such that G / G_{1} is cyclic. In particular, G / G_{1} is abelian, so G_{1} must contain the commutator subgroup.
[1.4] Remark: We could also characterize the abelianization $G /[G, G]$ more instrinsically, by saying that it is the smallest quotient of G such that every group homomorphism $f: G \rightarrow A$ to an abelian group factors through this quotient. More precisely, define an abelianization of G to be an abelian group $G^{\text {ab }}$ equipped with a homomorphism

$$
q: G \longrightarrow G^{\mathrm{ab}}
$$

such that for any group homomorphism $f: G \rightarrow A$ to an abelian group, there is a unique $g: G^{\text {ab }} \rightarrow A$ such that

$$
f=g \circ q: G \xrightarrow{q} G^{\mathrm{ab}} \xrightarrow{g} A
$$

As usual when something is defined by such a universal property, we can prove that any two abelianizations (assuming they exist) are uniquely isomorphic, as follows.
First, with $f=q: G \rightarrow G^{\text {ab }}$, the uniqueness part of the definition of $G^{\text {ab }}$ implies that the identity map 1 on $G^{\text {ab }}$ is the only map of $G^{\text {ab }}$ to itself compatible with q, that is, such that $1 \circ q=q$. Among other things, this proves that $q: G \rightarrow G^{\mathrm{ab}}$ is a surjection.

Next, let $q_{i}: G \rightarrow H_{i}$ for $i=1,2$ be two abelianizations. Then there is a unique $g_{1}: H_{1} \rightarrow H_{2}$ such that $q_{2}=g_{1} \circ q_{1}$, and, symmetrically, there is a unique $g_{2}: H_{2} \rightarrow H_{1}$ such that $q_{1}=g_{2} \circ q_{2}$. Then $g_{2} \circ g_{1}: H_{1} \rightarrow H_{1}$ and $g_{1} \circ g_{2}: H_{2} \rightarrow H_{2}$ are maps of the H_{i} to themselves and are compatible with $q_{i}: G \rightarrow H_{i}$. Thus, they are the identity maps on the H_{i}, so g_{1} and g_{2} are mutual inverses.

By this point we can be confident that whatever construction of an abelianization we choose, the resulting object will be the same. In effect, the proposition above about $G /[G, G]$ proves that this quotient (with the natural map of G to it) is an abelianization.

2. Alternating groups

[2.1] Proposition: For $n \geq 2$, the commutator subgroup $\left[S_{n}, S_{n}\right]$ of the symmetric group S_{n} on n things is the alternating group ${ }^{[6]} A_{n}$. In particular, all 3 -cycles are commutators, and A_{n} is generated by 3 -cycles. (For $n=2$ this is vacuously true.)

Proof: Certainly commutators are even permutations, so $\left[S_{n}, S_{n}\right] \subset A_{n}$. For $1 \leq i<n$ let s_{i} be the $i^{t h}$
[4] That is, it has no proper normal subgroups, and, by convention, is not cyclic of prime order.
[5] As usual, this means that there is a chain of subgroups $G=G_{o} \supset \ldots \supset G_{n}$ such that G_{i+1} is normal in G_{i}, and such that all quotients G_{i} / G_{i+1} are cyclic.
[6] As usual, the alternating group is the subgroup of S_{n} consisting of even permutations, that is, those expressible as a product of an even number of 2-cycles.
adjacent transposition, that is the 2 -cycle interchanging i and $i+1$. For $1 \leq i \leq n-2$

$$
\left(s_{i} s_{i+1}\right)(j)=\left\{\begin{array}{cl}
j & (\text { for } j \neq i, i+1, i+2) \\
i+2 & (\text { for } j=i+1) \\
i & (\text { for } j=i+2) \\
i+1 & (\text { for } j=i)
\end{array}\right.
$$

which is a 3-cycle t_{i}. Thus, we compute a commutator

$$
s_{i} s_{i+1} s_{i}^{-1} s_{i+1}^{-1}=s_{i} s_{i+1} s_{i} s_{i+1}=t_{i}^{2}=t_{i}^{-1}
$$

Thus, every 3 -cycle on adjacent elements $i, i+1, i+2$ is in the commutator subgroup $\left[S_{n}, S_{n}\right]$. We now prove that any product $s_{i} s_{j}$ of two adjacent transpositions is expressible as a product of these particular 3-cycles t_{i}. Indeed, for $i<j$, we have collapsing

$$
t_{i} t_{i+1} t_{i+2} \ldots t_{j-1} t_{j}=\left(s_{i} s_{i+1}\right)\left(s_{i+1} s_{i+2}\right) \ldots\left(s_{j} s_{j+1}\right)=s_{i} s_{j+1}
$$

Since the adjacent transpositions s_{i} generate S_{n}, the products of pairs of adjacent transpositions generate A_{n}.
[2.2] Proposition: For $n \geq 5,\left[A_{n}, A_{n}\right]=A_{n}$.
Proof: All 3-cycles are in A_{n}. Then

$$
t_{1} t_{3} t_{1}^{-1} t_{3}^{-1}=s_{1} s_{2} s_{3} s_{4}\left(s_{2} s_{1}\right) s_{4} s_{3}=s_{1} s_{2} s_{3}\left(s_{2} s_{1}\right) s_{4} s_{4} s_{3}=s_{1} s_{2} s_{3} s_{2} s_{1} s_{3}
$$

using the fact that s_{1} and s_{2} commute with s_{4}. This permutation has the effect, traced through its 6 steps for each of $1,2,3,4$,

$$
\begin{aligned}
& 1 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 4 \rightarrow 4 \\
& 2 \rightarrow 2 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 2 \\
& 3 \rightarrow 4 \rightarrow 4 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \\
& 4 \rightarrow 3 \rightarrow 3 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 3
\end{aligned}
$$

That is, the result is the 3 -cycle $1 \rightarrow 4 \rightarrow 3 \rightarrow 1$. Once this artifact is discovered, it is clear that a suitable choice of 3 -cycles will give any desired 3 cycle as commutator. ${ }^{[7]}$

3. Linear groups

[3.1] Proposition: For a field k with $|k| \geq 4$, and for $n \geq 2$, the group $S L_{n}(k)$, consisting of n-by- n matrices with entries in k and determinant 1 , is its own commutator subgroup.

Proof: The essential point is already visible in $S L_{2}(k) .[\ldots$ iou ...]

[^0]
[^0]: [7] It is a little strange that the extra room $n \geq 5$ is needed to achieve the effect used in this proof.

