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Graph-based learning

Let (X ,W) be a graph.

Vertices X ⊂ Rd.

Nonnegative edge weights W = (wxy)x,y∈X .

Some common graph-based learning tasks:
1 Clustering

2 Semi-supervised learning

3 Data Depth

4 Link prediction

5 Ranking

Applications of graph-based learning:
1 Image classification

2 Social media networks

3 Biological networks

4 Drug discovery

5 Wireless networks

div(ρ2∇u) = λu
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Similarity graphs

Some MNIST Digits
Each image is a datapoint

x ∈ R28×28 = R784.

Geometric weights:

wxy = η

(
|x− y|
ε

)
k-nearest neighbor graph:

wxy = η

(
|x− y|
εk(x)

)

Often η(t) = e−t
2
.
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Similarity graphs via deep learning

Set wxy = η
( |Ψ(x)−Ψ(y)|

ε

)
where Ψ : Rd → RN is learned.

Synthetic Aperture Radar (SAR) Images

Raw Pixels Autoencoder Embedding Contrastive (SimCLR) Embedding

Calder, J., Cook, B., Thorpe, M., & Slepcev, D. (2020, November). Poisson learning: Graph based semi-supervised
learning at very low label rates. In International Conference on Machine Learning (pp. 1306-1316). PMLR.

Miller, K., Mauro, J., Setiadi, J., Baca, X., Shi, Z., Calder, J., & Bertozzi, A. L. (2022, May). Graph-based active learning
for semi-supervised classification of SAR data. In Algorithms for Synthetic Aperture Radar Imagery XXIX (Vol. 12095, pp.
126-139). SPIE.
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Graph-based semi-supervised learning

Given: Graph (X ,W), labeled nodes Γ ⊂ X , and labels g : Γ→ Rk.

Task: Extend the labels to the rest of the graph X \ Γ.

Semi-supervised: Goal is to use both the labeled and unlabeled data.

A common method is Laplacian regularized learning, which solves the equation{
Lu = 0 in X \ Γ,
u = g on Γ,

where u : X → Rk, and L is the graph Laplacian

Lu(x) =
∑
y∈X

wxy(u(x)− u(y)).

There are many other methods based on different graph PDEs or normalizations of the
graph Laplacian.

Zhu, X., Ghahramani, Z., & Lafferty, J. D. (2003). Semi-supervised learning using gaussian fields and harmonic functions.
In Proceedings of the 20th International conference on Machine learning (ICML-03) (pp. 912-919).
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Spectral clustering

Spectral clustering: To cluster into k groups:

1 Compute first k eigenvectors of the graph Laplacian L:

u1, . . . , uk : X → R.

2 Define the spectral embedding Ψ : X → Rk by

Ψ(x) = (u1(x), u2(x), . . . , uk(x)).

3 Cluster the point cloud Y = Ψ(X ) with your favorite clustering algorithm.

Spectral methods are widely used for dimension reduction and clustering in data science
and machine learning.

Spectral clustering [Shi and Malik (2000)] [Ng, Jordan, and Weiss (2002)]

Laplacian eigenmaps [Belkin and Niyogi (2003)]

Diffusion maps [Coifman and Lafon (2006)]
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Spectral embedding: MNIST

Digits 1 and 2 from MNIST visualized with spectral projection
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Spectral embedding: MNIST

Digits 1 (blue) and 2 (red) from MNIST visualized with spectral projection
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Application: Segmenting broken bone fragments

Spectral clustering with weights

wij = exp (−C|ni − nj |p) .

between nearby points on the mesh, where ni is the outward normal vector at vertex i.
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Discrete to continuum convergence
Let Xn = {x1, . . . , xn} be an i.i.d. sample from a density ρ on a smooth manifold
M⊂ RD of dimension d. Define a graph with geometric weights of the form

wij = η
(
ε−1|xi − xj |

)
.

The spectrum of the graph-Laplacian L converges (n→∞, ε→ 0) to the spectrum of
the weighted Laplace-Beltrami operator

∆Mu = −ρ−1divM(ρ2∇Mu).

Sample of spectral convergence results

Garcia Trillos, Gerlach, Hein, and Slepcev (2018):

‖u− un‖L2(M) ≤ C

√
δn
ε

+ ε, δn =
( logn

n

)1/d
.

Calder, Garcia Trillos (2022):

‖u− un‖L2(M) ≤ Cε, provided ε ≥ δd/(d+4)
n .

Problem: Prove quantitative rates at the more practically relevant scaling ε ∼ δn.

Calder (UofM) Discrete to continuum convergence rates in graph-based learning at percolation length scalesJMM 2023 10 / 24



Loss of pointwise consistency

The graph Laplacian L is not consistent (nor convergent) when ε ∼ δn. At a high level:

Lu(x) = 1
nεd+2ση

n∑
j=1

η
(
ε−1|x− xj |

)
(u(xj)− u(x))

= 1
εd+2ση

∫
B(x,ε)

η
(
ε−1|x− y|

)
(u(y)− u(x))ρ(y) dy +O

(√
σ2

n

)

= ∆ρu(x) +O

(
ε+
√

1
nεd+2

)
.

Since δdn = log(n)/n we can write the error term as (up to log factors)

Lu(x) = ∆ρu(x) +O

(
ε+

√
δdn
εd+2

)
.

To match the O(ε) error term we need δdn ≤ εd+4, or

ε ≥ δd/(d+4)
n .
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Numerical experiments
Rates of convergence for

ε = δd/(d+2)
n

of the form O(εb) (value of b is shown) for eigenvalues and eigenvectors of the graph
Laplacian on the 2-sphere. Rates are all between O(ε2) and O(ε3).
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(a) ε-graph
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(b) knn graph

We expect there is some kind of homogenization occurring at smaller length scales.
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Lipschitz learning

Lipschitz learning performs semi-supervised learning by solving the ∞-Laplace equation{
L∞u = 0 in Xn \ Γ

u = g in Γ,

where L∞u(x) := max
y∈Xn

wxy(u(y)− u(x)) + min
y∈Xn

wxy(u(y)− u(x)).

Rough consistency argument: Assume wxy = 1|x−y|≤ε.

L∞u(x) =
(

max
y∈B(x,ε)

+ min
y∈B(x,ε)

)
(u(y)− u(x)) +O(δnε)

= u

(
x+ ε

∇u
|∇u|

)
− 2u(x) + u

(
x− ε ∇u|∇u|

)
+O(δnε+ ε3)

= ε2∇uT∇2u∇u
|∇u|2 +O(δnε+ ε3) = ε2∆∞u(x) +O(δnε+ ε3).

We require δnε� ε3 or ε� δ
1/2
n for O(ε) consistency.

Kyng, R., Rao, A., Sachdeva, S., & Spielman, D. A. (2015, June). Algorithms for Lipschitz learning on graphs. In
Conference on Learning Theory (pp. 1190-1223). PMLR.
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Discrete to continuum for ∞-Laplacian

Letting x1, . . . , xn be i.i.d. on Ω ⊂ Rd, the continuum version of the discrete problem{
L∞un = 0 in Xn \ Γ

un = g in Γ,

is the ∞-Laplace equation

(1)


∆∞u = 0, in Ω \ Γ

u = g, on Γ
∂u

∂n
= 0, on ∂Ω \ Γ.
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Discrete to continuum for ∞-Laplacian

(Oberman 2005) On a uniform grid with we have un → u uniformly if ε� δn.

(Smart 2010) On a uniform grid

‖un − u‖∞ ≤ C 3

√
δn
ε2 for δ1/2

n ≤ ε ≤ δ1/5
n .

(Calder 2019) On a random geometric graph (RGG) wij = η(ε−1|xi − xj |) on the

Torus we have un → u provided εn � δ
2/3
n .

(Bungert & Roith 2022) Gamma convergence on RGG provided εn � δn.

(Bungert, Calder, & Roith, 2022a) On RGG we have

‖un − u‖∞ ≤ C 4

√
δn
ε

for δn � ε ≤ δ5/9
n .

(Bungert, Calder, & Roith, 2022b) On uniform RGG with ε ∼ δn we have

‖un − u‖∞ ≤ Cδ1/9
n .
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Numerical results
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Numerical results
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Figure: Empirical convergence rates for (left) unit weights and (right) singular weights.
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Max Ball Theorem

For continuous u : Rd → R define

uε(x) = max
B(x,ε)

u and uε(x) = min
B(x,ε)

u.

Define the nonlocal ∞-Laplacian

∆ε
∞u(x) =

(
max
B(x,ε)

+ min
B(x,ε)

)
u− 2u(x) = uε(x) + uε(x)− 2u(x).

Recall the ∞-Laplacian is defined as

∆∞u = ∇u
T∇2u∇u
|∇u|2 .

Theorem (Smart 2010)

If ∆∞u = 0 in the viscosity sense, then ∆ε
∞uε ≤ 0 and ∆ε

∞u
ε ≥ 0.
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Max Ball Theorem

Theorem (Smart 2010)

If ∆∞u = 0 in the viscosity sense, then ∆ε
∞uε ≤ 0 and ∆ε

∞u
ε ≥ 0.

Proof.
1. Check that ∆∞|x| = 0.

2. Use the comparison principle (comparison with cones) to obtain

u(y) ≥ u(x)−
(
u(x)− u2ε(x)

2ε

)
|y − x|, y ∈ B(x, 2ε).

3. Minimize both sides over y ∈ B(x, ε) (i.e., |x− y| = ε) to find that

uε ≥
1
2(u+ u2ε).

4. Now compute

∆ε
∞uε(x) =

(
max
B(x,ε)

+ max
B(x,ε)

)
uε − 2uε(x) ≤ u(x) + u2ε(x)− 2uε(x) ≤ 0.
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Max Ball on Graph Functions
For un : Xn → R define

uhn(x) = max
Xn∩B(x,h)

un and un,h(x) = min
Xn∩B(x,h)

un.

Roughly speaking, we can show (using comparison against graph cones) that

un(y) ≥ un(x)−
(

un(x)− un,2h(x)
miny∈Xn\B(x,2h) dn(x, y)

)
dn(x, y), y ∈ Xn ∩B(x, 2h).

Minimize both sides over y ∈ B(x, h) to obtain

un,h(x) ≥ 1
2(un(x) + un,2h) + sn(x)(un − un,2h),

where sn(x) = 1
2 −

maxx∈Xn∩B(x,h) dn(x, y)
miny∈Xn\B(x,2h) dn(x, y) .

This yields

∆h
∞un,h ≤ Csnh.
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Percolation Theory

First passage percolation theory studies asymptotics of distance functions on random
irregular domains, like geometric graphs or lattices.

1 Lattice Percolation: Graph nodes are X = εZd, edges between x and x± εei with
i.i.d. random edge weights.

2 Power Weighted Percolation: Graph nodes are n i.i.d. random variables, and the
graph is complete with edge weights

wxy = |x− y|α for α > 1.

3 Euclidean Percolation: Graph nodes are n i.i.d. random variables, and edge
weights are geometric

wxy = η

(
|x− y|
εn

)
.

Auffinger, Antonio, Michael Damron, and Jack Hanson. 50 years of first-passage percolation. Vol. 68. American
Mathematical Soc., 2017.
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Ratio Convergence in Euclidean Percolation

Theorem (Bungert, Calder, Roith 2022)

Assume ρ is uniform and η(t) = t−1. Let x0, x ∈ Rd and assume

Kδn ≤ ε ≤
|x− x0|

2 .

Then there exist constants C1, C2 > 0 which are independent of x0 and x such that:

1 (Concentration) For all λ > 0 it holds that

P

(
|dn(x0, x)− E [dn(x0, x)]| > λKδn

√
|x− x0|

ε

)
≤ C1 exp(−C2λ).

2 (Ratio convergence in expectation) For n sufficiently large, x0 = 0, and x ∈ Rd
such that ε ≤ |x| it holds that∣∣∣∣ E [dn(0, x)]

E [dn(0, 2x)] −
1
2

∣∣∣∣ ≤ C1
ε

|x| + C2Kδn√
ε |x|

log(n1/d |x|).
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Ratio Convergence in Euclidean Percolation

Theorem (Bungert, Calder, Roith 2022)

Assume ρ is uniform and η(t) = t−1. Let x0, x ∈ Rd and assume ε = Kδn. Then up to
log factors we have

1 (Concentration) For all λ > 0 it holds that

P
(
|dn(x0, x)− E [dn(x0, x)]|

|x− x0|
> λK

√
δn

|x− x0|

)
≤ C1 exp(−C2λ).

2 (Ratio convergence in expectation) For n sufficiently large, x0 = 0, and x ∈ Rd
such that Kδn ≤ |x| it holds that∣∣∣∣ E [dn(0, x)]

E [dn(0, 2x)] −
1
2

∣∣∣∣ ≤ C1K

√
δn
|x| .

Remark (Bungert, Calder, Roith 2022)

Compare this to the best known convergence rates to Euclidean distance

dn(x, y) = |x− y|+O
(
ε+ |x− y|δn

ε

)
.
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Future work, papers, and code

Future Work:

1 Extension of percolation results to non-uniform point clouds.

2 Extension to general weights η(ε−1|x− y|).

3 Extension to other types of graph Laplacians (i.e., 2-Laplacian, or spectral
convergence)

Papers:

Bungert, L., Calder, J., & Roith, T. (2022). Uniform Convergence Rates for Lipschitz
Learning on Graphs. IMA Journal of Numerical Analysis.

Bungert, L., Calder, J., & Roith, T. (2022). Ratio convergence rates for Euclidean
first-passage percolation: Applications to the graph infinity Laplacian. arXiv preprint
arXiv:2210.09023.

Code:

https://github.com/jwcalder/LipschitzLearningRates

https://github.com/TimRoith/PercolationConvergenceRates
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https://doi.org/10.1093/imanum/drac048
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