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Graph-based learning

Let (X, W) be a graph.

@ Vertices X C R%,
@ Nonnegative edge weights W = (Way)a,yex -

Some common graph-based learning tasks: J 4 }‘
© Clustering
@ Semi-supervised learning
@ Data Depth
© Link prediction
@ Ranking

/ —
72

Applications of graph-based learning:
@ Image classification
@ Social media networks
© Biological networks
© Drug discovery

@ Wireless networks
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Similarity graphs

@ Each image is a datapoint
r € R2X28 _ R84

@ Geometric weights:

r—y
T

@ k-nearest neighbor graph:
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Similarity graphs via deep learning
Set wey =N ("I'(””)E;‘I'(y)') where ¥ : R — R¥ is learned.

Synthetic Aperture Radar (SAR) Images
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Calder, J., Cook, B., Thorpe, M., & Slepcev, D. (2020, November). Poisson learning: Graph based semi-supervised
learning at very low label rates. In International Conference on Machine Learning (pp. 1306-1316). PMLR.

Miller, K., Mauro, J., Setiadi, J., Baca, X., Shi, Z., Calder, J., & Bertozzi, A. L. (2022, May). Graph-based active learning
for semi-supervised classification of SAR data. In Algorithms for Synthetic Aperture Radar Imagery XXIX (Vol. 12095, pp.
126-139). SPIE.
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Graph-based semi-supervised learning

Given: Graph (X, W), labeled nodes I' C X, and labels g : I' — R*,

Task: Extend the labels to the rest of the graph X'\ T".

Semi-supervised: Goal is to use both the labeled and unlabeled data.

A common method is Laplacian regularized learning, which solves the equation

Lu=0 inX\T,
u=g onl,

where u : X — R*, and L is the graph Laplacian

Lu(w) =Y way(u(@) —uly))-

yeX

There are many other methods based on different graph PDEs or normalizations of the
graph Laplacian.

Zhu, X., Ghahramani, Z., & Lafferty, J. D. (2003). Semi-supervised learning using gaussian fields and harmonic functions.
In Proceedings of the 20th International conference on Machine learning (ICML-03) (pp. 912-919).
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Spectral clustering

Spectral clustering: To cluster into k groups:
@ Compute first k eigenvectors of the graph Laplacian £:
Uty ... Uk - X — R
@ Define the spectral embedding ¥ : X — R* by
U(z) = (u1(z),uz2(x), ..., up(x)).

© Cluster the point cloud Y = ¥(X') with your favorite clustering algorithm.

Spectral methods are widely used for dimension reduction and clustering in data science
and machine learning.

@ Spectral clustering [Shi and Malik (2000)] [Ng, Jordan, and Weiss (2002)]
@ Laplacian eigenmaps [Belkin and Niyogi (2003)]

@ Diffusion maps [Coifman and Lafon (2006)]
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Spectral embedding: MNIST

Digits 1 and 2 from MNIST visualized with spectral projection
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Spectral embedding: MNIST

L

Digits 1 (blue) and 2 (red) from MNIST visualized with spectral projection
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Application: Segmenting broken bone fragments

Spectral clustering with weights
wij = exp (=Cln; —n /")

between nearby points on the mesh, where n; is the outward normal vector at vertex 1.

Calder (UofM) Discrete to continuum convergence rates in graph-base



Discrete to continuum convergence

Let X, = {z1,...,zn} be an i.i.d. sample from a density p on a smooth manifold
M C RP of dimension d. Define a graph with geometric weights of the form

wig =n (e i — z4]) -

The spectrum of the graph-Laplacian £ converges (n — oo, — 0) to the spectrum of
the weighted Laplace-Beltrami operator

Apmu = —p_ldivM(pQVMu).

Sample of spectral convergence results
@ Garcia Trillos, Gerlach, Hein, and Slepcev (2018):

n 1 1/d
o= wnllza < O/ 22 4o, 6= (FB2)

@ Calder, Garcia Trillos (2022):

lu = unllL2(n) < Ce, provided € > S/

Problem: Prove quantitative rates at the more practically relevant scaling € ~ §,,.
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Loss of pointwise consistency

The graph Laplacian £ is not consistent (nor convergent) when € ~ . At a high level:

Lu(x)

i 2o (7 e — ) () — (@)

= _E‘”lz_a'n /( )77(5_1|£L‘—y|) (u(y) — u(z))p(y) dy + O (@)
= Apﬂ(w)+0<€+ #)

Since 62 = log(n)/n we can write the error term as (up to log factors)

Lu(z) = Apu(z) + O (e +14/ Eg%) .

d+4

To match the O(e) error term we need §¢ < ¢ or

e > 52/(‘“—4) .

Calder (UofM) Discrete to continuum convergence rates in graph-base JMM 2023 11/24



Numerical experiments

Rates of convergence for
_ 5d/d+2)
=0y

of the form O(e?) (value of b is shown) for eigenvalues and eigenvectors of the graph
Laplacian on the 2-sphere. Rates are all between O(s?) and O(&?).
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We expect there is some kind of homogenization occurring at smaller length scales.

Calder (UofM) Discrete to continuum convergence rates in graph-base JMM 2023 12 /24



Lipschitz learning

Lipschitz learning performs semi-supervised learning by solving the co-Laplace equation

Lou=0 inX,\T
u=g inl,

where  Loou(z) i= max wey (u(y) = u(@)) + min wey (u(y) — u(@))

Rough consistency argument: Assume wzy = 1j;_y|<c.

u(z) <y£?§fs> yer}g%g’s) (u(y) — u(z)) + O(dne)
Vu Vu 3
= T +e 2u(x) +u 4+ O(0ne +¢
oo emay) 2wt (o) 0G4
T2
- 52% + O@ne + %) = 2 Anou(z) + O(6ne + £°).

We require 6, < €% or & > 65/ for O(e) consistency.

Kyng, R., Rao, A, Sachdeva, S., & Spielman, D. A. (2015, June). Algorithms for Lipschitz learning on graphs. In
Conference on Learning Theory (pp. 1190-1223). PMLR.
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Discrete to continuum for oco-Laplacian

Letting 1, ..., 2, be i.id. on Q C R? the continuum version of the discrete problem

{Looun =0

Un = g

is the co-Laplace equation

Asu =0,

(1) u=g,
ou_,

on ’

Calder (UofM) Discrete to continuum convergence rates in graph-base

in X, \T'
inI,

in Q\T
onT’

on O\ T

JMM 2023 14 /24



Discrete to continuum for oco-Laplacian
@ (Oberman 2005) On a uniform grid with we have u, — w uniformly if £ > §,.

@ (Smart 2010) On a uniform grid

1
[un — ulle < C{/ =5 for 6,/ <e<6y/°.
3

@ (Calder 2019) On a random geometric graph (RGG) w;; = n(e~*|x; — z;|) on the

Torus we have u,, — u provided &, > 5,2/3.

@ (Bungert & Roith 2022) Gamma convergence on RGG provided &,, >> d5,.

@ (Bungert, Calder, & Roith, 2022a) On RGG we have

[un — ulloo < C;‘/%" for 6, < e < 8/°.

@ (Bungert, Calder, & Roith, 2022b) On uniform RGG with € ~ §,, we have

llun — ulloo < CEL°.
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Numerical results

0.5 1.0

0.0

-0.5

0.5 1.0

0.0

-0.5

-1.0

0.5 1
1.0

~1.0

00 05 1.0

—05

0.0 0.5 1.0

—0.5

1.0
1.0 —1.0

Z1.0

1.0

0.5

Discrete to continuum convergence rates in graph-base

Calder (UofM)



Numerical results
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Figure: Empirical convergence rates for (left) unit weights and (right) singular weights.
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Max Ball Theorem

For continuous u : RY — R define

u®(z) = max u and uc.(z) = min u.
B(xz,e) B(z,e)

Define the nonlocal co-Laplacian

A - i — 2u(z) = u° (z) — 2u(x).
s () (él(lg):) + Bn(l;g)) u—2u(z) = u () + ue(x) — 2u(x)

Recall the oco-Laplacian is defined as

A — VuTvV2uVu
= [Vul?
Theorem (Smart 2010)
If Ascouw = 0 in the viscosity sense, then A u. < 0 and Ai u® > 0.
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Max Ball Theorem

Theorem (Smart 2010)

If Acou = 0 in the viscosity sense, then AS u. < 0 and AS u® > 0.

Proof.
1. Check that Ag|z| = 0.

2. Use the comparison principle (comparison with cones) to obtain

u(y) > u(x) — (%‘fzs(m)) ly —z|, y € B(z,2e).

3. Minimize both sides over y € B(z,¢) (i.e., |x — y| =€) to find that

Ue > = (u+ uze).

N —

4. Now compute

A uc(z) = (é?ff) + gg};}) Ue — 2ue () < u(x) + u2e () — 2uc(z) < 0.
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Max Ball on Graph Functions
For u, : X,, — R define

h .
Up(z) = max un, and upp(z) = min  up,.
XnNB(z,h) XnNB(z,h)

Roughly speaking, we can show (using comparison against graph cones) that

Un (T) — Un,2n(x)
n > n - A . n 9 9 n Pl .
Un (y) > un(z) (mlnyEXn\B(z,Zh) dn(x,y)) dn(z,y), y€ XnnB(z,2h)

Minimize both sides over y € B(x, h) to obtain

Un,h(2) > = (un(x) + Un,2n) + Sn(2)(Un — Un,2n),

N =

maXgex, NB(x,h) dn (.’17, y)

where (x) L
sn(x) = - — ’
" 2 mingex,\B(e,2h) dn(2,Y)

This yields

Agoun,h < Csph.

Calder (UofM) Discrete to continuum convergence rates in graph-base JMM 2023 20/24



Percolation Theory

First passage percolation theory studies asymptotics of distance functions on random
irregular domains, like geometric graphs or lattices.

@ Lattice Percolation: Graph nodes are X = ¢Z?, edges between z and z + ce; with
i.i.d. random edge weights.

© Power Weighted Percolation: Graph nodes are n i.i.d. random variables, and the
graph is complete with edge weights

Way = |z —y|* for a > 1.

@ Euclidean Percolation: Graph nodes are n i.i.d. random variables, and edge

weights are geometric
|z — 9|
Wey =1 ( . .

Auffinger, Antonio, Michael Damron, and Jack Hanson. 50 years of first-passage percolation. Vol. 68. American
Mathematical Soc., 2017.
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Ratio Convergence in Euclidean Percolation

Theorem (Bungert, Calder, Roith 2022)

Assume p is uniform and n(t) =t~'. Let zo,z € R and assume

K(Snﬁfﬁw-

Then there exist constants C1,Cs > 0 which are independent of xo and x such that:
© (Concentration) For all A > 0 it holds that

P <|dn(:co,a:) — E [dn (20, 2)]| > AKdn “f‘g—m‘)'> < Oy exp(—Ca)).

@ (Ratio convergence in expectation) For n sufficiently large, zo = 0, and z € R?
such that € < |z| it holds that

4 0.2) 1| e, CKbn e
‘ E (4 (0, 22)] 2‘—C|m|+,r|x|l (" fal)
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Ratio Convergence in Euclidean Percolation
Theorem (Bungert, Calder, Roith 2022)

Assume p is uniform and n(t) = t~'. Let xo,x € R? and assume ¢ = K§,,. Then up to
log factors we have

© (Concentration) For all A > 0 it holds that

> AK
|z — @0l |z — @ol

. (Idn(wo,w)—E[dn(xo,w)]l 5, > )

@ (Ratio convergence in expectation) For n sufficiently large, zo = 0, and z € R?
such that Kd, < |z| it holds that

E[d.(0,2)] 1 o
’m%mmn_JSQK B

Remark (Bungert, Calder, Roith 2022)

Compare this to the best known convergence rates to Euclidean distance

on
dn(@,y) = o=y +0 (s + o -y ).

y
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Future work, papers, and code

Future Work:

@ Extension of percolation results to non-uniform point clouds.
@ Extension to general weights n(e ™!z — y]).

© Extension to other types of graph Laplacians (i.e., 2-Laplacian, or spectral
convergence)

Papers:

Bungert, L., Calder, J., & Roith, T. (2022). Uniform Convergence Rates for Lipschitz
Learning on Graphs. IMA Journal of Numerical Analysis.

Bungert, L., Calder, J., & Roith, T. (2022). Ratio convergence rates for Euclidean
first-passage percolation: Applications to the graph infinity Laplacian. arXiv preprint
arXiv:2210.09023.

Code:

@ https://github.com/jwcalder/LipschitzLearningRates
@ https://github.com/TimRoith/PercolationConvergenceRates
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