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Math 4567. Homework Set # 4 Solutions

February 26, 2010

Chapter 2 (page 42, problem 8), (page 54, problems 1,5,6,7), Chapter 3 (page
63, problem 3), (page 71, problems 1,2.8), (page 76, problem 1).

Chapter 2, page 42, Problem 8 From the Fourier series

N

f(x) = % + Z&%T;(an cosL? + b, sin @)
derive the complex series
f(z) = lim Z A, exp(zw)
n—oo n—_N

where Ag = 9, A, = %, A, = % for n =1,2,---. Derive the
formula
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Solution:
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because the cross terms cancel out in the last expansion. Furthermore,

a9=2 =" [ oy,

2 2/
for k > 0,
ap—ib, 1 e knt . . kmt e krt
Ay = 5 = 20/_cf(t) (cos -~ isin— >dt— 26/_Cf(t)exp( i— )dt,
and for k£ < 0,
_agptiby 1 ogc knt . kmt _1ge Kkt
Ak = # = %ch(t) (COSC+ZSIH( C)) dt = %/_Cf(t) eXp( lT)dt

Chapter 2, page 54, Problem 1 a. Show that the function

0 when — 7 <2 <0,
sinz when 0 <z <,

=1

satisfies all conditions for uniform convergence on [—m, 7.

b. Verify that the Fourier series

1 1 . 2 & cos2nx
fN;+§Sln£C—;nz::1m, —_mT<<r<T

converges pointwise uniformly to f on [—m,7].

c. State why the series can be differentiated on (—m,7) and describe
the function that is represented by the differentiated series for all
x.

Solution:

a. f is continuously differentiable on the open intervals 0 < x < =
and —7 < z < 0. We have f(—n) = f(0) = f(m) = 0, so it is
continuous on [—7, w]. f'(0+0) =1, f/(0—0) =0, f'(7—0) = —1,
f'(=m+0) =0 so f is piecewise smooth.

op

. By part [a.] the series for f converges poinwise uniformly to f on
[_71-7 7T] :



c. Since f satisfies the conditions for uniform convergence and since
1" (x) is piecewise continuous on (—m, 7) the Fourier series can be
differentiated term-by-term. The differentiated series converges to
Ofor—7T<:B<0,tocos:vfor0<x<7r,to%f0r$20andto
—% for x = +£7.

Chapter 2, page 54, Problem 5 Integrate from s = 0 to s = z, (—7 <
r < 7T) the Fourier series

and the Fourier series

sin(2n —1)s
Z

2n —1

for
—7/2 when —7 <s <0,
f(s) =
/2 when0<s<m

In each case describe graphically the function represented by the series.
Solution:

a. Integrating both sides of the Fourier series term-by term from 0 to
T we get

2 ]
x —_—
2:22< (cosnx —1), —rm<zx<m.
n=1

The series is representing the parabola F(x) = x?/2 in the interval
[_71-7 7T] :

b. Integrating both sides of the Fourier series term-by term from 0 to
T we get

F(z) = /Ox f(s)ds =2 i (2,5:_1)1)2(008(271—1)1‘—1), —r<z<m

= when 0 <z <7

_J 2
F@)_{ —%¢ when —7 <2 <0.

ThuSF(x):%for —rm<z<m.

bl



Chapter 2, page 54, Problem 6 Let p,,q, n=1,---, N be real numbers
where at least one of the p, is nonzero. By considering the quadratic

equation
N

Z(pnx + Qn)2 = 07

n=1

derive the Cauchy inequality

() < (54) (£9)

Solution: Write the quadratic equation as

(P, P)z” +2(P,Q)z + (Q,Q) =0,

where
N N N
n=1 n=1 n=1

By assumption, (P, P) > 0. Since the original form of the quadratic
equation is as a sum of squares, this equation has at most one real
solution z, which would be such that p,x + ¢, = 0 for all n. The
discriminant of the quadratic equation az?+bx +c = 0 is D = b — 4ac
and it has the property that D > 0 for the case that there are 2 distinct
real roots, D = 0 if there is exactly one real root, and D < 0 when
there are no real roots. In this case D = 4(P,Q)? — 4(P, P)(Q, Q)
and there is at most one real root. Hence we must have D < 0 or

(P,Q)* < (P, P)(Q,Q).

Chapter 2, page 54, Problem 7 Let Sy(z) be the Nth partial sum of the
Fourier series @ 1)
sin(2n — 1)z
=2
Z 2n —1
for
| —7m/2 when — 7w <2 <0,
f(x)_{w/Z when 0 <z <7



1. By writing A = x, B = (2n — 1)z in the identity,

2sin A cos B = sin(A + B) + sin(A — B)

and then summing from n =1 to n = N derive

2N
QZCOS (@n— 1)z = S2NT o e a2
sin x
Verify that
sin2Nzx
S O<z<m.
N( ) sin T ) x ™

3. Show that the first extremum of Sy(x) in 0 < z < 7 is a relative
maximum occuring when x = 7/(2N).

4. Show that
T ©/2N) x —sinx
Sy L+ 1, I :/ TTSMT GhoONz d
(QN) 1+ 4 0 gsng

I — /”/(QN) sin 2Nxdx.
0

x
Verify that the integrands are piecewise continuous on 0 < x <
7/(2N). so that the integrals converge.

5. Show that I; — 0 as N — oo so that

T T sint
I / St
am v =

Solution:

1. We have
2sinx cos(2n — 1)z = sin2nz — sin2(n — 1)z.

Thus by truncation

N N
2sinz Y cos(2n — 1) = > (sin2nz — sin2(n — 1)x) = sin 2Nz,

n=1 n=1
so, dividing by sin x we have
sin2Nx

N
2 2n — 1lx = 0, £m, 27, - --
> cos(2n — 1)z s © #£ 0, £, 27,

n=1



d [ sin(2
Sy(x —d<22 sin(2n — )—2§COS (2n — 1)z
n=1

sin2Nx
= — , O<z<m.
sin x

3. SNn(0) = 25N cos(2n — 1)0 = 2N > 0 so Sy(z) is initially

increasing from Sy(0) = 0 for z increasing from 0. The first
maximum of Sy (z) is at the first positive zy such that Sy (xy) =
0. Thus xy = 7/(2N).

™

m/(2N) sin 2Nx 7/(2N) sin 2Nz
S -0+ - [
(QN) n(0) + 0 sin x de sinx v
7/(2N) — si in2N
/ {:L‘ 'smx sin 2Nz + S1n :c] da
0 rsinx T
- [1 + [27
where
7/(2N) ¢ _ o 7/(2N) sin 2N
I :/ x,ﬂsinZNx dx, Iy :/ i xdm.
0 rsinx 0 T

The integrand of I; is piecewise continuous over [0, 7/(2N)] except
perhaps at x = 0. However, by the I’'Hopital rules

e sm:le 1—cosz VH sinx
lim —— lm —— lim - =0
z—=0+ gsinx t—0+ sinx + x cos t—0+ 2cosxr — rsin

so the integrand goes to 0 as x — 04. Thus the integrand of I;
is continuous over [0, 7/(2N)], hence bounded above in absolute
value by a positive constant M. Similarly the integrand of I, is
piecewise continuous over [0,7/(2N)| except perhaps at x = 0.
However, by the ’'Hopital rule

in2Nzx p 2N 2N
jp SRENT UH g, S OSENT 9N
x—0+ T x—0+ 1

so the integrand is piecewise continuous on [0, 7/(2N)].



5. We have

7/(2N) Mn
I </ Mde =22 0
|1|_0 x 2N_)

as N — oo. Thus

7/(2N) gin 2N x

. ™ . .
i Slgy) = i b= i, TR
lim Smudu:/ Smudu:cr: 1.85---
N—oo Jo U 0 U

Since /2 = 1.57-- -, this shows that the partial sums overshoot
the function values f(xy) for xx — 0+ by the difference o — /2.

Chapter 3, page 63, problem 3 Show that the substitution 7 = kt can
be used to write the equation

Uy = k(Ugz + Uyy),

in the form
Ur = Ugg + Uyy.

Solution: Since 7 = kt we have
0
Oyu = oz Uy = K.

ot
Thus we can cancel the common factor & from both sides of the first

equation to obtain the desired result.

Chapter 3, page 71, Problem 1 Let u(x) be the steady-state tempera-
ture in a slab bounded by planes x = 0 x = ¢ when those faces are kept
at fixed temperatures u = 0, u = g, respectively. Solve the boundary
value problem for u(x) to show that

u u
w(z) = —x, o= K—,
c c

where @ is the flux of heat to the left across each plane. x = x.

Solution: The boundary value problem for this system is u = wu(z)
where u is continuous on [0, ¢] and 2 times differentiable on (0, ¢), with

Uz =0, 0 <z <c where u(0) =0, u(c) = up.

7



The general solution of the differential equation is u(z) = ax + b. The

boundary conditions give u(0) = b = 0 and u(c) = ac = ugy so the

unique solution is u(x) = “2x. The flux of heat to the left across each
du(z) _ M.

plane x = zq is &g = K=~ p

Chapter 3, page 71, Problem 2 A slab occupies the region 0 < z < c.
There is a constant flux of heat ®( into the slab through the face x = 0.
The face x = c is kept at temperature u = 0. Solve the boundary value
problem for the steady-state temperatures u(z) in the slab.

Solution: The boundary value problem for this system is u = wu(z)
with u continuous on [0, ¢|, left differentiable at = 0 and 2 times
differentiable on (0, ¢), with

Uze =0, 0 <z <¢, where &g = —Ku,(0), u(c) = up.

The general solution of the differential equation is u(x) = ax + b. The
boundary conditions give &5 = —Ka and u(c) = ac + b = ug so the
unique solution is a = =Py /K, b = ug + ¢Py/K or

u(z) = —i)(o(x —¢) + up.

Chapter 3, page 71, Problem 8 Derive expressions for %Z and 2271; in cylin-
drical coordinates.

Solution: Cylindrical coordinates are defined by relations

r=pcos¢, y=psing, z=2z.
)

=22+ 92, tangp=>, z=2z.

p=r*+y ¢=_

1
= sin ¢, sec? ¢ Oy = PR 0.

or

Thus,
Y

SRS

Since sec? ¢ = tan?¢ + 1 = g—z + 1 we have

x cos ¢

8



By the chain rule:

Oy = py0, + ¢y04 + 2,0, = sin ¢p0, + co;gbad).

Thus
Uy = sin gu, + o8 ¢u¢.
and
Uyy = (sin 0, + COSQS%) <sin ou, + COS¢u¢>
P P
. sin ¢ cos ¢ sin ¢ cos ¢ cos? ¢
= sin“ pu,, — Ugp + Ug, + U
PP p2 é P op P p
sin ¢ cos ¢ sin ¢ cos ¢ cos? ¢
?UW - P2 Ug P2 Ugpg
) sin ¢ cos sin ¢ cos cos? cos?
= sin” gu,, + QM“W - 2#1% + (bup 2 ¢u¢¢
P P P
Chapter 3, page 76, Problem 1 A stretched string with ends fixed at
x = 0, x = 2c hangs at rest under its own weight. Show how it

follows from equation

ytt<x>t) = agym —4g

that the static y(x) must satisfy the equation ay”(x) = g, where a? =

H/S.

Solution: If the solution y is static then y, = 0, hence y; = 0 for all
t and y,(x) = ¢/(x). The general solution of equation a?y”(z) = g is
y(x) = % 4 Az + B where A, B are constants. Since y(0) = 0, we have

2a?

B = 0. Since y(2c) = 0 we have A = —9%. Thus

— gl’ 2 2(12 962
y(l’) = 542 (x - 20), and (:L‘ — c) — 7@ + 2@2)'
This is an inverted parabola with vertex at © = ¢ and depth |y(c)| =
ge® _ goc?
2a2 T 2H



