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Math 4567. Homework Set # VII

April 23, 2010

Chapter 8, (page 201, problems 1,2,3), (page 209, problems 2,4), (page 215,
problem 3), (page 221, problem 2), (page 228, problem 1), Chapter 6 (page
157, problem 2). (page 162, problem 1)

Chapter 8 page 201, Problem 1 (a) Consider the Sturm - Liouville prob-
lem

A
[ X'(2)] +=X(x) =0, 1<z<b,
x
X(1)=0, X(b) =0,
and use the substitution x = exp s to convert the problem to

d?X
—5 tAX =0, 0<s<Inb,
ds?

X|8=0 = 07 X‘s:lnb =0.

Show that the eigenvalues and eigenfunctions of the original prob-
lem are

A =a2, X,(z) =sin(a,Inx), n=12-,

where «,, = nw/Inb.

(b) By making the substitution

give a direct verification that the eigenfunctions X,,(x) of part (a)
are orthogonal on the interval 1 < x < b, with weight function

p(z) =1/x.

Solution:



d _did _ .d
(a) We have &= = 2+ =2 so

2

X
zlaX'(z)] + XX (z )—O<—>622—|—/\X—0 0<s<lInb,
s

since s = Inx. Thus, in the new coordinates the boundary conditions
are

X|s:0 = 07 X|s:lnb = 0.
For the original problem we solve the eigenvalue problem.

Case 1: A = o2, a > 0. The solution of the differential equation is
X = Acosas + Bsinas = Acos(alnx) + Bsin(alnz).

Then X(1) = 0 = A, and X(b) = 0 = Bsin(alnb), so we can have
a nonzero solution only for alnb = nm, or @ = o, = nw/Inb, with

X, (z) = sin(22BL) n=1,2,

(b) Since s = 722 it follows that ds = wdz/zInb. We have for m # n,

dm b nmtlnzx mmlnx . dx
X :/ . . dx
/ LSS )S

b

™ Jo

sinnssinms ds
=0,

if m # n.
Chapter 8, page 201, Problem 2 Let

LIX]=(rX") +q¢X
so that the Sturm-Liouville differential equation can be written as
LIX]+ ApX =0.
Derive Lagrange’s identity

d

XL[Y]-YLX] =

— (XY =YX



Solution:
XLY|-YL[X]= X(TY/)/ +qXY — Y(TX’)’ —qY X

=Xr'Y' + XrY" -YrX' - YX"=/(XY'-YX')+r(XY"-YX").
Since

d

(XY =YX = (XY - YX) (XY - YX),
X

this establishes the identity.
Chapter 8, page 201, Problem 3 (a) Let £ be the operator of the pre-

vious problem, defined on a space of functions on a < x < b,
satisfying the conditions

alX(a)—l—aQX’(a) = 0, le(b)+ng/(b) == O, |CL1|+|CL2| > 0, |b1|+|b2| > O,
and with inner product with weight function p(z) = 1. Show that
(X, LIY]) = (£[X],Y).

(b) Let A, # A\, be eigenvalues of the problem L[X]+ A\pX = 0 with
boundary conditions

CL1X(G)+G,2XI(G) = O, 61X(b)—|—b2X,(b) = O, |a1\—|—|a2| > 0, ’b1|+’b2| > 0.

Show that if X,,, X, are the corresponding eigenfunctions, then
Solution:

(a)
b d X
(X, LY~ (LIX],Y) = [ (XY =Y X)) do = [r(XY" = Y X)]] =
a ar
r(b)(X (0)Y'(b) = Y(0)X'(b)) — r(a)(X(a)Y'(a) — ¥ (a) X' (a)).



Now suppose a; # 0. Then

X(a) = —a2)§;<a), Y(a) = —aﬁ;;(a)
— X(@Y'(0) - Y (@)X (o) = -2 @V,
If ay # 0 then
X'(a) = —alfja), Y'(a) = —aﬂ;(a)

~wX(a)Y(a) N a1 X (a)Y (a)

az az
Thus always X (a)Y'(a) — Y(a)X'(a) = 0. A similar argument applied
to the endpoint b gives X (b)Y’(b) — Y (b) X' (b) = 0. Thus, (X, L[Y]) —
(L£[X],Y)=0.

— X(a)Y'(a) = Y(a)X'(a) = =0.

(b) We have
LX) + A X =0, L[X,] + A\pX,, = 0.

Thus
(XmaL[Xn]>_(£[Xm]>Xn) = _(Xma )‘ann>+(/\mem7Xn> = [/\m_)‘n] (pXm,Xn)

However, from part (a) we have (X,,, L[X,]) — (L[Xn], X)) = 0, so
A — ] (pXm, X)) = 0. Since A, # A, it follows that (pX,,, X,,) = 0.

Chapter 8, page 209, Problem 2 Find the eigenvalues and eigenfunctions:
X"+ XX =0, X(0)=0, hX(1)+ X'(1) =0, h > 0.

Solution: If A = 0 then X(z) = Az + B and X'(z) = A. Thus the
boundary conditions are B =0, A(h+1) =0,s0 A=0and A =0 is
not an eigenvalue.

If \ = —a? a > 0 then X(x) = Ae* + Be ™, X'(z) = a(Ae™ —
Be=**). Thus the boundary conditions are A + B = 0 and h(Ae®* +
Be ™) + a(Ae* — Be™*) =0, or

A[hsinha + a cosha] = 0.
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Since hsinh o + acosha > 0, we have A = B =0 and A = —a? is not
an eigenvalue.

If A\ = a? a > 0then X (z) = Acosar+Bsinaz, X'(x) = a(—Asin ax+
B cos ax), and the boundary conditions can be read as

A=0, hBsina+ aBcosa =0,

or hsina + acosa =0, so A\, = a? where

_a .
tana, = —, X,(z) =sina,z n=1,2,---.

h

As follows from the text and simple geometry, there is exactly one
solution «,, in the interval

g(Qn —1) < a, < mn.

Since

1 1 1 1 sin2, 1 tana,
/()Xg(x)dx:2/0 (1—C082anas)d3::2—812aj:2— a;;(j cos® ay,

2 2
I cosa,  h+cos®a,

T T

the normalized eigenfunctions are

2h .
On(x) = Hih oo sin a, .

Chapter 8, page 209, Problem 4 Solve the S-L. problem

X"+ XX =0, X(0)=0, X(1)— X'(1) =0.

Solution:
Case 1: A=0a% >0, a > 0. Then

X(z) = Acosax) + Bsinar X'(z) = —aAsinaz + aB cos ax.



The conditions
X0)=0=A, X(1)— X'(1) =0= Bsina — aBcosq,

imply o = tan . Similar to what is shown in the book, the solutions
are ap, n = 1,2,--- such that (n — )7 < o, < (2n —1)3. The
eigenvalues are \, = o2 Here X,,(z) = sin a,,, so

1 1 /1
X012 = (X, Xp) = /0 sin? (o x)dr = 2/0 (1 — cos2a,2)dx

1 1 1
=—(1- sin 2ay,) = = (1 — cos?
2 Qap, 2

),

since sin oy, = a cos oy,. But

9 1 1
cos” oy, = = )
1+tan?q,, 1+a2
i 1 1 1 o?
a
Xn 2 _ — 1 — P n
X 2( 1—1—0@) 21+ a2
and the normalized eigenfunctions are
2(az +1)
on(r) = ———sina,x.

On
Case 2: A =0. Then X (z) = Az + B. The conditions
X0)=0=B, X(1)-X'(1)=0=A-A

imply Ao = 0, Xo(z) = 2. We have
2 Lo 1
X0l = (X0, Xo) = | a*da = 2,

so the normalized eigenfunction is ¢y(z) = v/3x.

Case 3: A = —a? < 0, a > 0. From the left hand boundary condition,
we must have X (z) = sinh ax. The remaining boundary condition is
then sinh o — acosha = 0 or a« = tanh a. The issue is then the points
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of intersection of the curves y = a and y = tanha. These curves
clearly intersect at a = 0. If they intersect again at some g > 0 then
the function g(z) = o — tanh« is continuous on the closed interval
0 < a < ap and differentiable on the open interval (0, ag). Furthermore
g(0) = g(ap) = 0. By the Mean Value Theorem of calculus, there must
be a value ¢ € (0, ap) such that ¢'(c) = 0 But ¢/(a) = tanh®a > 0 for
all @ > 0. Thus no such c can exist, so there is no negative eigenvalue
—ad.

Chapter 8, page 215, Problem 3 Use the normalized eigenfunctions of
Problem 2, page 209, namely

X"4+AX =0, X(0)=0, hX(1)+X'(1) =0, h >0,

2h
_ 2 _
)\n—Oén, tanan— , ¢n( ) mSannx. n—1’27--~’
to derive
— COS v
1=2h - ina,, 0<ax<l.
nz:l an( h + cos? ay,) S o
Solution: We have
chgbn —/1¢n ds, 0<ux<l.
n=1
Now
2h /1 . J 2h cos oy, — 1
cp=\|———— [ sina,sds=— .
h + cos? ay, Jo h + cos? o, o,
Thus

> 2h
1=
n;l an(h + cos? ay,)

(1 — cosay,).

Chapter 8, page 221, Problem 2 Use the normalized eigenfunctions of
the S-L problem

X"4+AX =0, X(0)=0, X'(7) =0
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to solve the boundary value problem
ur(z,t) = kg, (z,t), 0<zx<m t>0,

u(0,t) =0, ug(m,t) =0, u(z,0) = f(zx).

Solution: The normalized eigenfunctions are a renormalization of
those in the previous problem:

2 2n —1
On(x) = || = sinay,z, an:w, n=12---
T 2

The corresponding separated functions T,,(t) satisfy 7' + o2kT = 0, so
T,(t) = exp (—a2kt). Thus

t) = i Boy—1 exp(—aikt)dn(z), Ban_1exp(—aikt) = /07r u(z,t)dn(x)de

n=1

Since u(z,0) = f(x), we have

(2n —1
Bgnl—/ ) (x dm—\/>/ x) sin n2 )z dx

formn=1,2,---.

Chapter 8, page 228, Problem 1 Use the expansion of x,

9 ™ (_1)n+1
r=- 5 sina,z, O<zxz<c
¢ n=1 an

in terms of the eigenfunctions of the S-L problem

X"+ AX =0, X(0)=0, X'(c) =0,

2
Ay =2, Gp(x) = \/;sinan, n=1,2---,

_(@2n—D7
Qp = 90 )

where



to show that the temperature function

eXp (—aZkt)sina,z|, 0<x<1, t>0

u(,):é x+221

(2n—1)mw
2

with «,, = , can be written as

A o] 1>n+1
“EI

[1 —exp(—aZkt)]sina,z, 0<z<1,t>0.

Solution: Set ¢ = 1 in the expansion for x, substitute this in the
expansion for u(z,t) and write the sum of two infinite series as a single
series to get

A < (—1)"
u(z,t) = 174 lm +23° ( 2) exp(—a2kt) sin anx] =
n=1 n
24 [& (—1)m < (~1)" _
K L;aglsm QT +n:1 > exp(—a; kt) sin o,
24 & (—1)nHt
K Z ( )2 [1 —exp(—a?kt)]sina,z, 0<x<1,t>0.
n=1 an

Chapter 6, page 157, Problem 2 Show that the function

when |z| < 1,
when |z| > 1,
when x = +1,

fx) =

o= O =

satisfies the conditions of the Fourier integral pointwise convergence
theorem. Establish
2 [% sin o cosax

da =

a m™Jo (0%

da.

fla) ==

1 /00 sina(l 4+ z) +sina(l — z)
7 Jo

Solution: f is piecewise continuous on every bounded interval and

o0 1
/ |f(:1c|dx:/ 1 de =2 < oo,
—00 -1
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SO

f(f‘|‘)‘|'f / / s)cosa(s — x) ds da,

at each x such that fr(z) and f](x) exist, and these derivatives exist
at all x. Further, this function satisfies

flat) + flz—)
2

= f(x)
for all z. Now

/OO f(s)cosa(s —x) ds:/l cos or(s — z) ds = [Smat_w)rl

oo -1

sina(l — z) 4+ sina(l + )

)
(0%

SO
da.

1 /00 sina(l —x) +sina(l + x)
0 o
From the addition formulas for sinx we have

sin a(1—x)4+sin a(l4+z) = sin a cos ax—cos a sin ar+-sin a cos ax+cos a sin ax

= 2sin « cos ax,

SO )
2 [ sin o cos ax

O

Chapter 6, page 162, Problem 1 Show that the function

when 0 < x < b,
when x > b,
when = = b,

fz) =

N~ O =

satisfies the conditions of the Fourier sine integral pointwise conver-
gence theorem. Establish

2 o1 — b
f(z) = —/ o cosha asinaw doa, x> 0.
0

(0%
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Solution: f is piecewise smooth on every bounded interval over the
positive x axis and is absolutely integrable. For every x > 0 f satisfies

flz+) + f(z—)

92 = f(z)
Thus - N
flz) = —/ sin aa:/ f(s)sinas ds da, x> 0.
Now
0o b L ;
/ f(s)sinas ds:/ sin s ds:_cosa8|8: cosa ’
0 0 o .
SO , 1 b
f([f) = 7/ Sinawﬂda’ T > O
m™Jo o
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