
Applied Linear Algebra, Second Edition

by Peter J. Olver and Chehrzad Shakiban

Corrections to First Printing (2018)
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⋆ ⋆ ⋆ Page 7 ⋆ ⋆ ⋆ line −6:

Change “i.e., O1×n” to “i.e., Om×1, where its size m will, almost always, be fixed by
the context.”

⋆ ⋆ ⋆ Page 10 ⋆ ⋆ ⋆ Exercise 1.2.29 (a):

Change “ith entry” to “jth entry” and “jth row” to “jth column”

⋆ ⋆ ⋆ Page 14 ⋆ ⋆ ⋆ Back Substitution Pseudocode:

Correct summation limits: xi =
1

uii


 ci −

n∑

j= i+1

uijxj




⋆ ⋆ ⋆ Page 27 ⋆ ⋆ ⋆ Exercise 1.4.17 (a):

Change (π(j), j) to (j, π(j)).

⋆ ⋆ ⋆ Page 35 ⋆ ⋆ ⋆ Exercise 1.5.15:

Change “everyy” to “every”

⋆ ⋆ ⋆ Page 44 ⋆ ⋆ ⋆ Exercise 1.6.12:

(a) Change “. . . 1× n column vector . . . ” to “. . . n× 1 column vector . . . ”.
(b) Change “. . . 1×m column vector . . . ” to “. . . m× 1 column vector . . . ”

⋆ ⋆ ⋆ Page 44 ⋆ ⋆ ⋆ Exercise 1.7.14 (b):

Change lower right entry of matrix Cn from 1 to n:

Cn =




1 −1 −1
−1 2 −1

−1 3 −1
. . .

. . .
. . .

−1 n− 1 −1
−1 −1 n




⋆ ⋆ ⋆ Page 63 ⋆ ⋆ ⋆ line −16:

Change “. . . ofr basic variables . . . ” to “. . . of r basic variables . . . ”

⋆ ⋆ ⋆ Page 107 ⋆ ⋆ ⋆ line −6:

Correct the last entry in the second row of the second matrix:




1 0 −1
0 1 −2
0 0 0

∣∣∣∣∣∣

b1
b2 + b1
b3 + 2b2 + b1



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⋆ ⋆ ⋆ Page 113 ⋆ ⋆ ⋆ line −9:

Change “. . . row vector with m zero entries.” to “. . . row vector with n zero entries.”

⋆ ⋆ ⋆ Page 126 ⋆ ⋆ ⋆ line 3:

Change “Euler’s formula (3.92) . . . ” to “Euler’s formula (2.49) . . . ”

⋆ ⋆ ⋆ Page 142 ⋆ ⋆ ⋆ Theorem 3.9:

Correct the final sentence to “Equality holds if and only if v and w are parallel vectors
that point in the same direction, so 〈v ,w 〉 ≥ 0.”

⋆ ⋆ ⋆ Page 144 ⋆ ⋆ ⋆ Exercise 3.2.41 (d):

Change “. . . and k → ∞.” to “. . . as k → ∞.”

⋆ ⋆ ⋆ Page 153 ⋆ ⋆ ⋆ Exercise 3.3.44:

Move Exercise 3.3.44 to the exercise set in following subsection since matrix norms are
not introduced until there.

⋆ ⋆ ⋆ Page 157 ⋆ ⋆ ⋆ Equation (3.53):

Make second 0 bold face:

q(x) > 0 for all 0 6= x ∈ R
n. (3.53)

⋆ ⋆ ⋆ Page 159 ⋆ ⋆ ⋆ Equation (3.57):

Change K =




c2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 to K =




c2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




⋆ ⋆ ⋆ Page 168 ⋆ ⋆ ⋆ Example 3.45:

Change (3, 3) entry of K and coefficient of q(x) from 8 to 11:

K =




1 2 3
2 3 7
3 7 11


 , q(x) = x2

1 + 4x1x2 + 6x1x3 + 3x2
2 + 14x2x3 + 11x2

3.

⋆ ⋆ ⋆ Page 169 ⋆ ⋆ ⋆ line 20:

Change “. . . applying the the first phase of . . . ” to “. . . applying the first phase of . . . ”

⋆ ⋆ ⋆ Page 176 ⋆ ⋆ ⋆ Exercise 3.6.17:

Change cos θ − cosϕ to cos θ + cosϕ

⋆ ⋆ ⋆ Page 178 ⋆ ⋆ ⋆ line 7:

Change “. . . their scalar cross product . . . ” to “. . . minus their scalar cross product . . . ”

⋆ ⋆ ⋆ Page 185 ⋆ ⋆ ⋆ Last line of Theorem 4.5:

Change “. . . form a orthogonal basis for V .” to “. . . form an orthogonal basis for V .”
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⋆ ⋆ ⋆ Page 188 ⋆ ⋆ ⋆ last displayed equation:

Change the summation index on the first sum from j to i:

‖v‖2 = 〈v ,v 〉 =
〈

n∑

i=1

ciui ,

n∑

j=1

cj uj

〉
=

n∑

i,j=1

ci cj 〈ui ,uj 〉 =
n∑

i=1

c2i ,

⋆ ⋆ ⋆ Page 204 ⋆ ⋆ ⋆ Exercise 4.3.12. Change wording to:

Prove that every orthogonal upper triangular matrix is diagonal. What diagonal entries
are possible?

⋆ ⋆ ⋆ Page 205 ⋆ ⋆ ⋆ line −1:

Change “. . . entries of are positive.” to “. . . entries are positive.”

⋆ ⋆ ⋆ Page 207 ⋆ ⋆ ⋆ line 5:

Change “For j = 1, 2, 3, . . . ” to “For j = 2, 3, 4, . . . ”

⋆ ⋆ ⋆ Page 210 ⋆ ⋆ ⋆ line 9:

Change “. . . coincide with the first k columns of the eventual . . . ” to
“. . . coincide with the first k − 1 columns of the eventual . . . ”

⋆ ⋆ ⋆ Page 210–211 ⋆ ⋆ ⋆ Example 4.29:

In the second displayed equation, change v̂1 to w1 and in the fourth displayed equation,
change v̂2 to w2.

⋆ ⋆ ⋆ Page 216 ⋆ ⋆ ⋆ Exercise 4.4.10:

Delete (e) and relabel parts (e,f,g,h) as (d,e,f,g).

In what is now part (d) change v ∈ R
n to v ∈ R

m.

⋆ ⋆ ⋆ Page 223 ⋆ ⋆ ⋆ line −11:

Change “. . . Proposition 4.41 . . . ” to “. . . Proposition 4.40 . . . ”

⋆ ⋆ ⋆ Page 225 ⋆ ⋆ ⋆ line 9:

Change “. . . minimum value of
√
7 at t = 1.” to “. . . minimum value of 7 at t = 1.”

⋆ ⋆ ⋆ Page 227 ⋆ ⋆ ⋆ Equation (4.54):

Change ‖q6‖2 to ‖q5‖2

⋆ ⋆ ⋆ Page 230 ⋆ ⋆ ⋆
In the first displayed equation, delete the factor i in the first term on the second line:

〈 ti , Rj,k 〉 =
∫ 1

−1

ti R ′
j−1,k(t) dt

= ti Rj−1,k(t)
∣∣∣
1

t=−1
− i

∫ 1

−1

ti−1 Rj−1,k(t) dt = − i 〈 ti−1 , Rj−1,k 〉,
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⋆ ⋆ ⋆ Page 244 ⋆ ⋆ ⋆ line 9:

Change p(ty) = at2 + 2bt+ c to p(ty) = at2 − 2bt+ c

⋆ ⋆ ⋆ Page 248 ⋆ ⋆ ⋆ line 3:

Add square root to right hand side of initial formula: ‖v‖ =
√
v21 +

1
2 v

2
2 +

1
3 v

2
3

⋆ ⋆ ⋆ Page 251 ⋆ ⋆ ⋆ line 7:

Change “. . . hence is also a minimum.” to “. . . hence x⋆ + z is also a minimum.”

⋆ ⋆ ⋆ Page 265 ⋆ ⋆ ⋆ line −6:

Change “An better strategy . . . ” to “A better strategy . . . ”

⋆ ⋆ ⋆ Page 271 ⋆ ⋆ ⋆ Exercise 5.5.40 (c):

Change x1 = 1
3 (a+ b), x2 = 2

3 (a+ b) to x1 = 2
3 a+

1
3 b, x2 = 1

3 a+ 2
3 b.

⋆ ⋆ ⋆ Page 271 ⋆ ⋆ ⋆ Exercise 5.5.40 (e):

Change x0 = 1
3 (a+ b), x1 = 2

3 (a+ b) to x0 = 2
3 a+

1
3 b, x1 = 1

3 a+ 2
3 b.

⋆ ⋆ ⋆ Page 284 ⋆ ⋆ ⋆ Exercise 5.5.71 (d):

Change “Answer part (d) . . . ” to “Answer part (c) . . . ”

⋆ ⋆ ⋆ Page 285 ⋆ ⋆ ⋆ line −14:

Change “. . . every 10–20 milliseconds . . . ” to “. . . every 0.125 milliseconds . . . ”

⋆ ⋆ ⋆ Page 286 ⋆ ⋆ ⋆ Figure 5.16:

The three graphs in the second row should be reflected through the horizontal axis, i.e.,
reverse the sign of the function.

⋆ ⋆ ⋆ Page 286 ⋆ ⋆ ⋆ line −14:

Change “. . . the imaginary parts, sin x and − sin 7x.” to
“. . . the imaginary parts, − sinx and sin 7x.”

⋆ ⋆ ⋆ Page 296 ⋆ ⋆ ⋆ line 17:

Change “. . . signnificantly . . . ” to “. . . significantly . . . ”

⋆ ⋆ ⋆ Page 301 ⋆ ⋆ ⋆ line 17:

Change “. . . partial differential equation that model . . . ” to
“. . . partial differential equations that model . . . ”

⋆ ⋆ ⋆ Page 308 ⋆ ⋆ ⋆ Exercise 6.1.8 (b):

Change “Answer Exercise 6.1.8 when . . . ” to “Answer part (a) when . . . ”

⋆ ⋆ ⋆ Page 309 ⋆ ⋆ ⋆ line 12:

Change “Moreover, since A . . . ” to “Assuming at least one end of the chain is fixed,
since A . . . ”
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⋆ ⋆ ⋆ Page 310 ⋆ ⋆ ⋆ Exercise 6.1.16:

Change “Describe the mass–spring chains that gives rise to . . . ” to
“Describe mass–spring chains that give rise to . . . ”

⋆ ⋆ ⋆ Page 321 ⋆ ⋆ ⋆ line 2: Switch equation references:

“. . . for electrical networks (6.28) and those of mass–spring chains (6.10).”

⋆ ⋆ ⋆ Page 321 ⋆ ⋆ ⋆ Exercise 6.2.3:

Change “. . . Figure 6.5 . . . ” to “. . . Exercise 6.2.2 . . . ”

⋆ ⋆ ⋆ Page 329 ⋆ ⋆ ⋆ line −3:

Change “. . . around the first node.” to “. . . around the third node.”

⋆ ⋆ ⋆ Page 330 ⋆ ⋆ ⋆

Correct equation (6.57): u = ε
(√

3
2 z1 − 1

2 z2 + z3

)
= ε

(
0, 0,

√
3
2 , 1

2 ,
√
3
2 , −1

2

)T

and next to last displayed formula: A⋆ =




− 1
2

√
3
2

1
2

√
3
2

0 0

∣∣∣∣∣∣∣∣

1
2 −

√
3
2

0 0

1 0




and line immediately below: z⋆3 =
(
−

√
3
2 , 1

2 , 0, 1
)T

and final displayed formula: A⋆⋆ =




− 1
2

√
3
2

1
2

√
3
2

0 0




⋆ ⋆ ⋆ Page 331 ⋆ ⋆ ⋆ Correct first displayed formula:

K⋆⋆ = (A⋆⋆)TA⋆⋆ =

(
− 1

2
1
2 0

√
3
2

√
3
2 0

)


− 1
2

√
3
2

1
2

√
3
2

0 0


 =

(
1
2 0

0 3
2

)

⋆ ⋆ ⋆ Page 350 ⋆ ⋆ ⋆ Equation (7.13):

Change bi = ℓ [ui ] to bi = ℓ [vi ]

⋆ ⋆ ⋆ Page 356 ⋆ ⋆ ⋆ line −10:

Change “. . . map is the choose a basis . . . ” to “. . . map is to choose a basis . . . ”

⋆ ⋆ ⋆ Page 356 ⋆ ⋆ ⋆ last displayed equation:

Change initial v to boldface v:

L[v ] = L[x1v1 + · · · + xnvn ] = x1L[v1 ] + · · · + xnL[vn ]

= x1e1 + · · · + xnen = ( x1, x2, . . . , xn )
T = x,

⋆ ⋆ ⋆ Page 362 ⋆ ⋆ ⋆ line 6:

Change “. . . see (1.47) . . . ” to “. . . see Proposition 1.25 . . . ”
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⋆ ⋆ ⋆ Page 388–9 ⋆ ⋆ ⋆ Example 7.44:

Change the sign of second particular solution, so the corrected 4th, 6th, and 7th dis-
played formulas in the Example are

u⋆
2 = 1

2 x sinx.

u⋆ = 3u⋆
1 − 2u⋆

2 = 3x− x sinx.

u = 3x− x sinx+ c1 cosx+ c2 sinx.

⋆ ⋆ ⋆ Page 393 ⋆ ⋆ ⋆ Correct right hand side of the binomial formula in (7.78):

(a+ b)n =

n∑

k=0

(
n

k

)
an−kbk, where

(
n

k

)
=

n !

k ! (n− k) !
(7.78)

⋆ ⋆ ⋆ Page 394 ⋆ ⋆ ⋆ Exercise 7.4.46:

Delete part (f ).

⋆ ⋆ ⋆ Page 396 ⋆ ⋆ ⋆ line −6:

Change L[u ] = Av to L[u ] = Au

⋆ ⋆ ⋆ Page 398 ⋆ ⋆ ⋆ Exercise 7.5.9:

Change u ∈ R
n to u ∈ U and change 〈 f ,v 〉 to 〈〈 f ,v 〉〉

⋆ ⋆ ⋆ Page 399 ⋆ ⋆ ⋆ line 6:

Change 〈L[u ] , L[u ] 〉 to 〈〈L[u ] , L[u ] 〉〉

⋆ ⋆ ⋆ Page 418 ⋆ ⋆ ⋆ Exercise 8.2.32 (d):

Change “. . . converse to part (c) . . . ” to “. . . converse to part (b) . . . ”

⋆ ⋆ ⋆ Page 422 ⋆ ⋆ ⋆ second displayed formula:

Correct first inequality:

ri ≥ | z − aii | ≥ | aii | − | z | > ri − | z |, and hence | z | > 0.

⋆ ⋆ ⋆ Page 422 ⋆ ⋆ ⋆ Exercise 8.2.57:

This exercise relies on results in Section 8.5 and so should be moved there.

⋆ ⋆ ⋆ Page 427 ⋆ ⋆ ⋆ Example 8.26, line 1:

Change “. . . Example 8.5 . . . ” to “. . . Example 8.6 . . . ”

⋆ ⋆ ⋆ Page 431 ⋆ ⋆ ⋆ Exercise 8.4.1:

Change W ⊂ R
2 to W ⊂ R

3

⋆ ⋆ ⋆ Page 442 ⋆ ⋆ ⋆ first displayed formula:

Delete second minus sign:

q
(
− 1√

2
, 1√

2

)
= 2 ≤ q(x, y) ≤ 4 = q

(
1√
2
, 1√

2

)
for all x2 + y2 = 1.
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⋆ ⋆ ⋆ Page 453 ⋆ ⋆ ⋆ Exercise 8.6.23:

Delete “(c)” immediately after “(b)”, and relabel remaining parts as “(c), (d), (e)”.
In the resulting parts (d), (e), the formulas should be pA = (−1)nmA.

⋆ ⋆ ⋆ Page 453 ⋆ ⋆ ⋆ Exercise 8.6.26 (c):

Change




0 −1 1
1 1 −1
3 3 −4


 to




0 −1 1
1 1 −1

−3 3 −4




⋆ ⋆ ⋆ Page 453 ⋆ ⋆ ⋆ Exercise 8.6.27:

Insert period after “impractical”

⋆ ⋆ ⋆ Page 455 ⋆ ⋆ ⋆

There is a flaw in the proof of Theorem 8.63 as given. The argument in the text
establishes the matrix equation

AQ = P Σ. (∗)
If A has rank n, then Q is an n × n orthogonal matrix, and hence QQT = I . Thus,
multiplying equation (∗) on the right by QT produces A = AQQT = P ΣQT , which is the
singular value decomposition (8.52). However, if the rank r < n, then Q is an n× r matrix
with orthonormal columns, hence QTQ = I , but it is not necessarily true that QQT = I ,
and so one cannot immediately establish the singular value decomposition (8.52) from (∗).

An alternative proof, that works in general, follows:

Proof : Let’s begin by rewriting the desired factorization (8.52) as AQ = P Σ. The indi-
vidual columns of this matrix equation are the vector equations

Aqi = σipi, or, equivalently, pi =
Aqi

σi

, i = 1, . . . , r, (8.53)

relating the orthonormal columns of Q = (q1 q2 . . . qr ) to the orthonormal columns of
P = (p1 p2 . . . pr ). Thus, our goal is to find vectors p1, . . . ,pr and q1, . . . ,qr that satisfy
(8.53). To this end, we let q1, . . . ,qn ∈ R

n be the orthonormal eigenvector basis of the
associated Gram matrix ATA, where q1, . . . ,qr are the singular eigenvectors, corresponding
to the non-zero eigenvalues, i.e., the squares of the singular values, so

ATAqi = σ2
i qi, i = 1, . . . , r, (8.54)

while qr+1, . . . ,qn are the null eigenvectors, so

Aqj = 0, ATAqj = 0, j = r + 1, . . . , n, (8.55)

where the first equation follows from the fact that A and ATA have the same kernel; see
Proposition 8.37. Since q1, . . . ,qn are orthonormal, for any x ∈ R

n, we have

x =

n∑

i=1

(x·qi)qi =

n∑

i=1

(qT
i x)qi, and hence Ax =

n∑

i=1

(qT
i x)Aqi =

(
r∑

i=1

σipiq
T
i

)
x,

where we used (8.53), (8.55) in the final equality. Since this holds for all x ∈ R
n, we deduce

that

A =
r∑

i=1

σipiq
T
i = P ΣQT ,
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where the final equality follows from Exercise 1.2.34 and the fact that Σ is diagonal. It
remains to show that the vectors p1, . . . ,pr are orthonormal; indeed, by the orthonormality
of q1, . . . ,qr,

pi · pj = pT
i pj =

(Aqi)
TAqj

σiσj

=
qT
i A

TAqj

σiσj

=
σ2
j q

T
i qj

σiσj

=

{
0, i 6= j,

1, i = j.
Q .E .D .

=⇒ Thanks to Pasha Pylyavskyy for pointing this out, and Jeff Calder for supplying the
above proof.

⋆ ⋆ ⋆ Page 456 ⋆ ⋆ ⋆ Equation (8.56):

Missing T on the final factor:
AT = QΣPT , (8.56)

⋆ ⋆ ⋆ Page 456 ⋆ ⋆ ⋆ Correct equation (8.58):

QTKQ = QTATAQ = QT (P ΣQT )T (P ΣQT )Q = QTQΣPTP ΣQTQ = Σ2, (8.58)

=⇒ Thanks to Larry Baker for the correction.

⋆ ⋆ ⋆ Page 458 ⋆ ⋆ ⋆ displayed formula after (8.61):

Change first Σ−2 to Σ2:

(ATA)−1AT =(QΣ2QT )−1(P ΣQT )T =(QΣ−2QT ) (QΣPT )=QΣ−1PT =A+. Q .E .D .

⋆ ⋆ ⋆ Page 460 ⋆ ⋆ ⋆ :

Add 2 subscript to norms in third and fourth displayed equations:

‖u‖2 =
√
c21 + · · · + c2n , ‖Au‖2 =

√
c21σ

2
1 + · · · + c2r σ

2
r .

⋆ ⋆ ⋆ Page 473 ⋆ ⋆ ⋆ Exercise 8.7.20:

Insert space after n in “. . . rankB = n such that the Euclidean matrix . . . ”

⋆ ⋆ ⋆ Page 472 ⋆ ⋆ ⋆ Equation (8.78):

Delete second ν in first term: ν
(
σ2
1 + · · · + σ2

k

)
= . . .

⋆ ⋆ ⋆ Page 465 ⋆ ⋆ ⋆ Exercise 8.8.1 (e):

Change , ., to , .2,: .9,−.4,−.8, .2, 1.,−1.6,−1.2,−.7

⋆ ⋆ ⋆ Page 474 ⋆ ⋆ ⋆ Exercise 8.8.12:

Change

m∑

i=1

dist(xi, L) to

m∑

i=1

dist(xi, L)
2

⋆ ⋆ ⋆ Page 489 ⋆ ⋆ ⋆ displayed formula after (9.24):

Change second bold face 0 to regular 0:

u(k) → 0 if and only if ‖u(k) ‖ → 0 as k → ∞.
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⋆ ⋆ ⋆ Page 490 ⋆ ⋆ ⋆ beginning of paragraph before Example 9.15:

Change “The inequality (9.25) . . . ” to “The inequality (9.26) . . . ”

⋆ ⋆ ⋆ Page 497 ⋆ ⋆ ⋆ line −2:

Change “By definition, . . . ” to “By Theorem 9.14, . . . ”

⋆ ⋆ ⋆ Page 503 ⋆ ⋆ ⋆ line before displayed formula:

Change vk < vj to vk < vl to avoid conflict with summation index in formula.

⋆ ⋆ ⋆ Page 505 ⋆ ⋆ ⋆ Exercise 9.3.16:

Change “. . . symmetric transition matrix . . . ” to “. . . symmetric regular transition
matrix . . . ”

⋆ ⋆ ⋆ Page 505 ⋆ ⋆ ⋆ Exercise 9.3.19:

Change “. . . doubly stochastic transition matrix . . . ” to “. . . doubly stochastic regular
transition matrix . . . ”

⋆ ⋆ ⋆ Page 508 ⋆ ⋆ ⋆ second displayed formula:

Change both a’s to c:

e(k+1) = u(k+1) − u⋆ = (T u(k) + c)− (T u⋆ + c) = T (u(k) − u⋆) = T e(k),

⋆ ⋆ ⋆ Page 522 ⋆ ⋆ ⋆ Exercise 9.4.35 (c):

Insert missing ω in formula: u(k+1) = u(k) + ω (ωL+D)−1r(k)

⋆ ⋆ ⋆ Page 525 ⋆ ⋆ ⋆ Example 9.42, line 2:

Change u(k) = ( 1, 0, 0 )
T

to u(0) = ( 1, 0, 0 )
T

⋆ ⋆ ⋆ Page 530 ⋆ ⋆ ⋆ last line:

Change Rk to Rk−1 and U−1 to U (twice):

Rk−1 = PkP
−1
k−1 =

(
TkΛ

kU
) (

Tk−1Λ
k−1U

)−1 = TkΛ T−1
k−1.

⋆ ⋆ ⋆ Page 530 ⋆ ⋆ ⋆ The proof of Lemma 9.45 should be corrected as follows:

The last remaining item is a proof of Lemma 9.45. We write

S = (u1 u2 . . . un ), Sk =
(
u
(k)
1 u

(k)
2 . . . u(k)

n

)
,

in columnar form. Let t
(k)
ij denote the entries of the positive upper triangular matrix Tk.

The first column of the limiting equation Sk Tk → S reads t
(k)
11 u

(k)
1 → u1. Since both u

(k)
1

and u1 are unit vectors, and t
(k)
11 > 0, it follows that

‖ t(k)11 u
(k)
1 ‖ = t

(k)
11 −→ ‖u1 ‖ = 1, and hence the first column u

(k)
1 −→ u1.

The second column reads
t
(k)
12 u

(k)
1 + t

(k)
22 u

(k)
2 −→ u2.
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Taking the inner product with u
(k)
1 → u1 and using orthonormality, we deduce t

(k)
12 → 0,

and hence t
(k)
22 u

(k)
2 → u2, which, by the previous reasoning, implies that t

(k)
22 → 1 and

u
(k)
2 → u2. The proof is completed by working through the remaining columns, using a

similar argument at each step. The remaining details are left to the interested reader.

=⇒ Thanks to Thomas Higham for the preceding two corrections.

⋆ ⋆ ⋆ Page 537 ⋆ ⋆ ⋆ second displayed formula:

Change cj + c2j to cj−1 + c2j :

Aj+1v = c1Av + c2A
2v+ · · · + cj−1A

j−1v + cjA
jv

= cjc1v + (c1 + cjc2)Av + · · · + (cj−2 + cjcj−1)A
j−2v + (cj−1 + c2j )A

j−1v ∈ V (j)

⋆ ⋆ ⋆ Page 549 ⋆ ⋆ ⋆ Exercise 9.6.19 (b):

Change “. . . the solution ot the linear . . . ” to “. . . the solution to the linear . . . ”

⋆ ⋆ ⋆ Page 552 ⋆ ⋆ ⋆ Equation (9.133):

Change W8 to W2 here and also in the two following lines, for consistency with the
revised Exercise 9.7.4; see below.

⋆ ⋆ ⋆ Page 553 ⋆ ⋆ ⋆ line before Example 9.56:

Change “. . . can be found [18, 88].” to “. . . can be found in [18, 88].”

⋆ ⋆ ⋆ Page 554 ⋆ ⋆ ⋆ Exercise 9.7.1 (a):

Change “. . . coefficients cj,k.” to

“. . . coefficients c0 and cj,k for j = 0, . . . , 3 and k = 0, . . . , 2j − 1.”

⋆ ⋆ ⋆ Page 554 ⋆ ⋆ ⋆ Replace Exercise 9.7.4 by the following:

♥ 9.7.4. Let fn(x) denote the order n truncation of the wavelet expansion (9.136), and

let c = (c0, . . . cj,k . . .) ∈ R
2n+1

for 0 ≤ j ≤ n, 0 ≤ k ≤ 2j − 1, denote its
wavelet coefficients. (a) Explain why fn(x) is constant on each interval x ∈ Ii,n =(
(i− 1)2−n−1, i2−n−1

)
of length 2−n−1, for i = 1, . . . , 2n+1. Let fi denote its sam-

ple value thereon. (b) Explain why the truncated wavelet expansion defines a linear
transformation that takes the coefficient vector c to the corresponding sample vector
f = ( f1, f2, . . . , f2n+1 )

T
. (c) According to Theorem 7.5, the wavelet transformation

must be given by matrix multiplication, f = Wn c, by a 2n+1× 2n+1 matrix Wn. Con-

struct W2, W3, and W4. (d) Prove that the columns of Wn are obtained as the values

of the wavelet basis functions on the sample intervals. (e) Prove that the columns of
Wn are orthogonal. (f ) Is Wn an orthogonal matrix? (g) Find a formula for W−1

n .
(h) Explain why the order n wavelet transform is given by the inverse linear transfor-
mation: c = W−1

n f .

⋆ ⋆ ⋆ Page 557 ⋆ ⋆ ⋆ Change summation in Equation (9.150):

∑

k

c2m+k ck =

{
2, m = 0,

0, m 6= 0,
(9.150)
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⋆ ⋆ ⋆ Page 558 ⋆ ⋆ ⋆ Replace the final paragraph by the following:

Before explaining how to solve the Daubechies dilation equation, let us complete our
discussion of orthogonality. It is easy to see that, by translation invariance of the inner
product integral, since ϕ(x) and ϕ(x−m) are orthogonal whenever m 6= 0, so are ϕ(x− k)
and ϕ(x− l) for all k 6= l. Next we seek to establish orthogonality of ϕ(x−m) and w(x).
Combining the dilation equation (9.138) and the definition (9.142) of w, and then using
(9.147, 148), produces

〈w(x) , ϕ(x−m) 〉 =
〈

p∑

j=0

(−1)jcp−j ϕ(2x− j) ,

p∑

k=0

ck ϕ(2x− 2m− k)

〉

=

p∑

j,k=0

(−1)j cp−j ck 〈ϕ(2x− j) , ϕ(2x− 2m− k) 〉

=

p∑

j,k=0

(−1)j cp−j ck 〈ϕ(x) , ϕ(x+ j − 2m− k) 〉 = 1

2

∑

k

(−1)k cp−2m−k ck ‖ϕ‖2,

where the sum is over all 0 ≤ k ≤ p such that 0 ≤ 2m+ k ≤ p. Now, if p = 2q + 1 is odd,
then each term in the final summation appears twice, with opposite signs, and hence the
result is always zero — no matter what the coefficients c0, . . . , cp are! On the other hand,
if p = 2q is even, then it can be shown that orthogonality requires all c0 = · · · = cp = 0,
and hence ϕ(x) ≡ 0 is completely trivial and not of interest. Indeed, the particular cases
m = ±q require c0 = cp = 0; with this, setting m = ± (q − 1) requires c1 = cp−1 = 0, and
so on. Thus, to ensure orthogonality of the wavelet basis, the dilation equation (9.138)
necessarily has an even number of terms, meaning that p must be an odd integer, as it is in
the Haar and Daubechies versions (but not for the hat function). The proof of orthogonality
of the translates w(x −m) of the mother wavelet, along with all her wavelet descendants
w(2jx− k), relies on a similar argument, and the details are left as Exercise 9.7.17.

⋆ ⋆ ⋆ Page 563 ⋆ ⋆ ⋆ Exercise 9.7.11:

Change ϕ(x) = f(log2 x)/x to ϕ(x) = xf(log2 x)

⋆ ⋆ ⋆ Page 563 ⋆ ⋆ ⋆ Exercise 9.7.16 (b):

Change 2−j ‖ϕ‖ to 2−j/2 ‖ϕ‖

⋆ ⋆ ⋆ Page 563 ⋆ ⋆ ⋆ Exercise 9.7.22:

Change “Daubechies scaling equation” to “Daubechies dilation equation”.
Also change i ≥ p to i ≥ 3

⋆ ⋆ ⋆ Page 579 ⋆ ⋆ ⋆ lines −6,−5:

Change

An equilibrium point is called globally stable if the stability condition holds for all ε > 0.

to

An equilibrium point is called globally stable if it is locally stable and, in addition, every
solution remains bounded for all t ≥ t0.
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⋆ ⋆ ⋆ Page 585 ⋆ ⋆ ⋆

Delete Exercise 10.2.23, which repeats Exercise 10.2.21.

⋆ ⋆ ⋆ Page 587 ⋆ ⋆ ⋆ line 3:

Delete the superfluous condition ∆ > 0 which is a consequence of detA < 0.

⋆ ⋆ ⋆ Page 594 ⋆ ⋆ ⋆ third displayed formula:

Change U (0) to U (t0): U (t0) = e0AB = IB = B

⋆ ⋆ ⋆ Page 598 ⋆ ⋆ ⋆ Exercise 10.4.26:

Change part (b) to

(b) True or false: Do the eigenvalues have the same multiplicities?

and delete the Hint.

⋆ ⋆ ⋆ Page 599 ⋆ ⋆ ⋆ line before (10.49):

change (10.39) to (10.47)
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