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12. Minimization

In this part, we will introduce and solve the most basic mathematical optimization
problem: minimize a quadratic function depending on several variables. This will require
a short introduction to positive definite matrices. Assuming the coefficient matrix of the
quadratic terms is positive definite, the minimizer can be found by solving an associated
linear algebraic system. With the solution in hand, we are able to treat a wide range
of applications, including least squares fitting of data, interpolation, as well as the finite
element method for solvilng boundary value problems for differential equations.

12.1. Positive Definite Matrices.

Minimization of functions of several variables relies on an extremely important class
of symmetric matrices.

Definition 12.1. An n × n matrix K is called positive definite if it is symmetric,
KT = K, and satisfies the positivity condition

xT K x > 0 for all vectors 0 6= x ∈ R
n. (12.1)

We will sometimes write K > 0 to mean that K is a symmetric, positive definite matrix.

Warning : The condition K > 0 does not mean that all the entries of K are positive.
There are many positive definite matrices that have some negative entries; see Example 12.2
below. Conversely, many symmetric matrices with all positive entries are not positive
definite!

Remark : Although some authors allow non-symmetric matrices to be designated as
positive definite, we will only say that a matrix is positive definite when it is symmetric.
But, to underscore our convention and remind the casual reader, we will often include the
superfluous adjective “symmetric” when speaking of positive definite matrices.

Given any symmetric matrix K, the homogeneous quadratic polynomial

q(x) = xT K x =

n∑

i,j=1

kij xi xj , (12.2)
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is known as a quadratic form on R
n. The quadratic form is called positive definite if

q(x) > 0 for all 0 6= x ∈ R
n. (12.3)

Thus, a quadratic form is positive definite if and only if its coefficient matrix is.

Example 12.2. Even though the symmetric matrix K =

(
4 −2

−2 3

)
has two

negative entries, it is, nevertheless, a positive definite matrix. Indeed, the corresponding
quadratic form

q(x) = xT K x = 4x2
1 − 4x1 x2 + 3x2

2 = (2x1 − x2)
2 + 2x2

2 ≥ 0

is a sum of two non-negative quantities. Moreover, q(x) = 0 if and only if both 2x1−x2 = 0
and x2 = 0, which implies x1 = 0 also. This proves q(x) > 0 for all x 6= 0, and hence K is
indeed a positive definite matrix.

On the other hand, despite the fact that K =

(
1 2
2 1

)
has all positive entries, it is

not a positive definite matrix. Indeed, writing out

q(x) = xT K x = x2
1 + 4x1 x2 + x2

2,

we find, for instance, that q(1,−1) = −2 < 0, violating positivity. These two simple
examples should be enough to convince the reader that the problem of determining whether
a given symmetric matrix is or is not positive definite is not completely elementary.

Example 12.3. By definition, a general symmetric 2 × 2 matrix K =

(
a b
b c

)
is

positive definite if and only if the associated quadratic form satisfies

q(x) = ax2
1 + 2bx1 x2 + cx2

2 > 0 for all x 6= 0. (12.4)

Analytic geometry tells us that this is the case if and only if

a > 0, a c − b2 > 0, (12.5)

i.e., the quadratic form has positive leading coefficient and positive determinant (or nega-
tive discriminant).

A practical test of positive definiteness comes from the following result, whose proof
is based on Gaussian Elimination, [42].

Theorem 12.4. A symmetric matrix K is positive definite if and only if it is regular

and has all positive pivots.

In other words, a square matrix K is positive definite if and only if it can be factored
K = LDLT , where L is special lower triangular and D is diagonal with all positive diagonal
entries. Indeed, we cna then write the associated quadratic form as a sum of squares

q(x) = xT Kx = xT L D LT x = (LTx)T D (LT x)

= yT Dy = d1 y2
1 + · · · + dn y2

n,
where y = LT x. (12.6)

Furthermore, the resulting diagonal quadratic form is positive definite, yT Dy > 0 for all
y 6= 0 if and only if all the pivots are positive, di > 0. Invertibility of LT tells us that
y = 0 if and only if x = 0, and hence, positivity of the pivots is equivalent to positive
definiteness of the original quadratic form: q(x) > 0 for all x 6= 0.
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Example 12.5. Consider the symmetric matrix K =




1 2 −1
2 6 0

−1 0 9



. Gaussian
Elimination produces the factors

L =




1 0 0
2 1 0

−1 1 1


 , D =




1 0 0
0 2 0
0 0 6


 , LT =




1 2 −1
0 1 1
0 0 1


 ,

in its factorization K = LDLT . Since the pivots — the diagonal entries 1, 2 and 6 in D
— are all positive, Theorem 12.4 implies that K is positive definite, which means that the
associated quadratic form satisfies

q(x) = x2
1 + 4x1 x2 − 2x1 x3 + 6x2

2 + 9x2
3 > 0, for all x = ( x1, x2, x3 )

T
6= 0.

Indeed, the LDLT factorization implies that q(x) can be explicitly written as a sum of
squares:

q(x) = x2
1 + 4x1 x2 − 2x1 x3 + 6x2

2 + 9x2
3 = y2

1 + 2y2
2 + 6y2

3 , (12.7)

where

y1 = x1 + 2x2 − x3, y2 = x2 + x3, y3 = x3,

are the entries of y = LT x. Positivity of the coefficients of the y2
i (which are the pivots)

implies that q(x) is positive definite.

Slightly more generally, a quadratic form and its associated symmetric coefficient
matrix are called positive semi-definite if

q(x) = xT K x ≥ 0 for all x ∈ R
n. (12.8)

A positive semi-definite matrix may have null directions, meaning non-zero vectors z such
that q(z) = zT K z = 0. Clearly, any nonzero vector z such that K z = 0 defines a null
direction, but there may be others. A positive definite matrix is not allowed to have null
directions, and so ker K = {0}. Therefore:

Proposition 12.6. If K is positive definite, then K is nonsingular.

The converse, however, is not valid; many symmetric, nonsingular matrices fail to be
positive definite.

Example 12.7. The matrix K =

(
1 −1

−1 1

)
is positive semi-definite, but not

positive definite. Indeed, the associated quadratic form

q(x) = xT Kx = x2
1 − 2x1 x2 + x2

2 = (x1 − x2)
2 ≥ 0

is a perfect square, and so clearly non-negative. However, the elements of ker K, namely
the scalar multiples of the vector ( 1, 1 )

T
, define null directions: q(c, c) = 0.

5/18/08 212 c© 2008 Peter J. Olver



In a similar fashion, a quadratic form q(x) = xT K x and its associated symmetric
matrix K are called negative semi-definite if q(x) ≤ 0 for all x and negative definite if
q(x) < 0 for all x 6= 0. A quadratic form is called indefinite if it is neither positive nor
negative semi-definite; equivalently, there exist points x+ where q(x+) > 0 and points x

−

where q(x
−

) < 0. Details can be found in the exercises.

Gram Matrices

Symmetric matrices whose entries are given by inner products of elements of an inner
product space will appear throughout this text. They are named after the nineteenth
century Danish mathematician Jorgen Gram — not the metric mass unit!

Definition 12.8. Let A be an m × n matrix Then the n × n matrix

K = AT A (12.9)

is known as the associated Gram matrix .

Example 12.9. If

A =




1 3
2 0

−1 6



, then K = AT A =

(
1 2 −1
3 0 6

)


1 3
2 0

−1 6



 =

(
6 −3

−3 45

)
.

The resulting matrix is positive definite owing to the following result.

Theorem 12.10. All Gram matrices are positive semi-definite. The Gram matrix

K = AT A is positive definite if and only if ker A = {0}.

Proof : To prove positive (semi-)definiteness of K, we need to examine the associated
quadratic form

q(x) = xT K x = xT AT Ax = (Ax)T Ax = ‖Ax ‖2 ≥ 0,

for all x ∈ R
n. Moreover, it equals 0 if and only if Ax = 0, and so if A has trivial kernel,

this requires x = 0, and hence q(x) = 0 if and only if x = 0. Thus, in this case, q(x) and
K are positive definite. Q.E.D.

More generally, if C > 0 is any symmetric, positive definite m × m matrix, then we
define the weighted Gram matrix

K = AT C A. (12.10)

Theorem 12.10 also holds as stated for weighted Gram matrices. In the majority of appli-
cations, C = diag (c1, . . . , cm) is a diagonal positive definite matrix, which requires it to
have strictly positive diagonal entries ci > 0.

Example 12.11. Returning to the situation of Example 12.9, let C =




3 0 0
0 2 0
0 0 5





be a diagonal positive definite matrix. Then the corresponding weighted Gram matrix
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Figure 12.1. Parabolas.

(12.10) is

K̃ = AT C A =

(
1 2 −1
3 0 6

)


3 0 0
0 2 0
0 0 5






1 3
2 0

−1 6


 =

(
16 −21

−21 207

)
,

which is again positive definite.

12.2. Minimization of Quadratic Functions.

The simplest algebraic equations are linear systems. As such, they must be thor-
oughly understood before venturing into the far more complicated nonlinear realm. For
minimization problems, the starting point is the quadratic function. (Linear functions do
not have minima — think of the function f(x) = αx + β whose graph is a straight line.)
In this section, we shall see how the problem of minimizing a general quadratic function
of n variables can be solved by linear algebra techniques.

Let us begin by reviewing the very simplest example — minimizing a scalar quadratic
function

p(x) = ax2 + 2bx + c (12.11)

over all possible values of x ∈ R. If a > 0, then the graph of p is a parabola pointing
upwards, and so there exists a unique minimum value. If a < 0, the parabola points
downwards, and there is no minimum (although there is a maximum). If a = 0, the graph
is a straight line, and there is neither minimum nor maximum — except in the trivial
case when b = 0 also, and the function p(x) = c is constant, with every x qualifying as a
minimum and a maximum. The three nontrivial possibilities are sketched in Figure 12.1.

In the case a > 0, the minimum can be found by calculus. The critical points of a
function, which are candidates for minima (and maxima), are found by setting its derivative
to zero. In this case, differentiating, and solving

p′(x) = 2ax + 2b = 0,

we conclude that the only possible minimum value occurs at

x⋆ = −
b

a
, where p(x⋆) = c −

b2

a
. (12.12)
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Of course, one must check that this critical point is indeed a minimum, and not a maximum
or inflection point. The second derivative test will show that p′′(x⋆) = 2a > 0, and so x⋆

is at least a local minimum.

A more instructive approach to this problem — and one that only requires elementary
algebra — is to “complete the square”. We rewrite

p(x) = a

(
x +

b

a

)2

+
ac − b2

a
. (12.13)

If a > 0, then the first term is always ≥ 0, and, moreover, attains its minimum value 0
only at x⋆ = −b/a. The second term is constant, and so is unaffected by the value of x.
Thus, the global minimum of p(x) is at x⋆ = −b/a. Moreover, its minimal value equals the
constant term, p(x⋆) = (ac − b2)/a, thereby reconfirming and strengthening the calculus
result in (12.12).

Now that we have the one-variable case firmly in hand, let us turn our attention to
the more substantial problem of minimizing quadratic functions of several variables. Thus,
we seek to minimize a (real) quadratic function

p(x) = p(x1, . . . , xn) =
n∑

i,j =1

kij xi xj − 2
n∑

i=1

fi xi + c, (12.14)

depending on n variables x = (x1, x2, . . . , xn )
T

∈ R
n. The coefficients kij , fi and c are

all assumed to be real. Moreover, we can assume, without loss of generality, that the
coefficients of the quadratic terms are symmetric: kij = kji. Note that p(x) is more
general than a quadratic form (12.2) in that it also contains linear and constant terms.
We seek a global minimum, and so the variables x are allowed to vary over all of R

n.

Let us begin by rewriting the quadratic function (12.14) in a more compact matrix
notation:

p(x) = xT K x − 2xT f + c, (12.15)

in which K = (kij) is a symmetric n × n matrix, f is a constant vector, and c is a
constant scalar. We first note that in the simple scalar case (12.11), we needed to impose
the condition that the quadratic coefficient a is positive in order to obtain a (unique)
minimum. The corresponding condition for the multivariable case is that the quadratic
coefficient matrix K be positive definite. This key assumption enables us to establish a
general minimization criterion.

Theorem 12.12. If K is a symmetric, positive definite matrix, then the quadratic

function (12.15) has a unique minimizer, which is the solution to the linear system

K x = f , namely x⋆ = K−1f . (12.16)

The minimum value of p(x) is equal to any of the following expressions:

p(x⋆) = p(K−1f) = c − fT K−1f = c − fT x⋆ = c − (x⋆)T K x⋆. (12.17)
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Proof : First recall that, by Proposition 12.6, positive definiteness implies that K is
a nonsingular matrix, and hence the linear system (12.16) does have a unique solution
x⋆ = K−1f . Then, for any x ∈ R

n, we can write

p(x) = xT K x− 2xT f + c = xT K x − 2xT K x⋆ + c

= (x− x⋆)T K(x− x⋆) +
[
c − (x⋆)T Kx⋆

]
,

(12.18)

where we used the symmetry of K = KT to identify xT Kx⋆ = (x⋆)T Kx. The first term
in the final expression has the form yT K y, where y = x − x⋆. Since we assumed that K
is positive definite, we know that yT K y > 0 for all y 6= 0. Thus, the first term achieves
its minimum value, namely 0, if and only if 0 = y = x − x⋆. Moreover, since x⋆ is fixed,
the second term does not depend on x. Therefore, the minimum of p(x) occurs at x = x⋆

and its minimum value p(x⋆) is equal to the constant term. The alternative expressions
in (12.17) follow from simple substitutions. Q.E.D.

Example 12.13. Consider the problem of minimizing the quadratic function

p(x1, x2) = 4x2
1 − 2x1 x2 + 3x2

2 + 3x1 − 2x2 + 1

over all (real) x1, x2. We first write the function in our matrix form (12.15), so

p(x1, x2) = (x1 x2 )

(
4 −1

−1 3

)(
x1

x2

)
− 2 (x1 x2 )

(
−3

2

1

)
+ 1,

whereby

K =

(
4 −1

−1 3

)
, f =

(
−3

2

1

)
. (12.19)

(Pay attention to the overall factor of −2 in front of the linear terms.) According to
Theorem 12.12, to find the minimum we must solve the linear system

(
4 −1

−1 3

)(
x1

x2

)
=

(
−3

2

1

)
. (12.20)

Applying the usual Gaussian Elimination algorithm, only one row operation is required to
place the coefficient matrix in upper triangular form:

(
4 −1

− 1 3

∣∣∣∣∣
−3

2

1

)
7−→

(
4 −1

0 11

4

∣∣∣∣∣
−3

2

5

8

)
.

The coefficient matrix is regular as no row interchanges were required, and its two pivots,
namely 4, 11

4
, are both positive. Thus, by Theorem 12.4, K > 0 and hence p(x1, x2) really

does have a minimum, obtained by applying Back Substitution to the reduced system:

x⋆ =

(
x⋆

1

x⋆
2

)
=

(
− 7

22

5

22

)
≈

(
−.31818

.22727

)
. (12.21)
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The quickest way to compute the minimal value

p(x⋆) = p
(
− 7

22
, 5

22

)
= 13

44
≈ .29546

is to use the second formula in (12.17).

It is instructive to compare the algebraic solution method with the minimization
procedure you learned in multi-variable calculus, cf. [2, 36]. The critical points of p(x1, x2)
are found by setting both partial derivatives equal to zero:

∂p

∂x1

= 8x1 − 2x2 + 3 = 0,
∂p

∂x2

= −2x1 + 6x2 − 2 = 0.

If we divide by an overall factor of 2, these are precisely the same linear equations we
already constructed in (12.20). Thus, not surprisingly, the calculus approach leads to the
same minimizer (12.21). To check whether x⋆ is a (local) minimum, we need to apply the
second derivative test. In the case of a function of several variables, this requires analyzing
the Hessian matrix , which is the symmetric matrix of second order partial derivatives

H =




∂2p

∂x2
1

∂2p

∂x1∂x2

∂2p

∂x1∂x2

∂2p

∂x2
2


 =

(
8 −2

−2 6

)
= 2K,

which is exactly twice the quadratic coefficient matrix (12.19). If the Hessian matrix is
positive definite — which we already know in this case — then the critical point is indeed
a (local) minimum.

Thus, the calculus and algebraic approaches to this minimization problem lead, as
they must, to identical results. However, the algebraic method is more powerful, because
it immediately produces the unique, global minimum, whereas, barring additional work,
calculus can only guarantee that the critical point is a local minimum. Moreover, the
proof of the calculus local minimization criterion — that the Hessian matrix be positive
definite at the critical point — relies, in fact, on the algebraic solution to the quadratic
minimization problem! In summary: minimization of quadratic functions is a problem
in linear algebra, while minimizing more complicated functions requires the full force of
multivariable calculus.

The most efficient method for producing a minimum of a quadratic function p(x) on
R

n, then, is to first write out the symmetric coefficient matrix K and the vector f . Solving
the system K x = f will produce the minimizer x⋆ provided K > 0 — which should be
checked during the course of the procedure using the criteria of Theorem 12.4, that is,
making sure that no row interchanges are used and all the pivots are positive.

Example 12.14. Let us minimize the quadratic function

p(x, y, z) = x2 + 2xy + xz + 2y2 + y z + 2z2 + 6y − 7z + 5.
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This has the matrix form (12.15) with

K =




1 1 1

2

1 2 1

2

1

2

1

2
2


 , x =




x

y

z


 , f =




0

− 3
7

2


 , c = 5.

Gaussian Elimination produces the LDLT factorization

K =




1 1 1

2

1 2 1

2

1

2

1

2
2


 =




1 0 0

1 1 0
1

2
0 1







1 0 0

0 1 0

0 0 7

4







1 1 1

2

0 1 0

0 0 1


 .

The pivots, i.e., the diagonal entries of D, are all positive, and hence K is positive definite.
Theorem 12.12 then guarantees that p(x, y, z) has a unique minimizer, which is found by
solving the linear system K x = f . The solution is then quickly obtained by forward and
back substitution:

x⋆ = 2, y⋆ = −3, z⋆ = 2, with p(x⋆, y⋆, z⋆) = p(2,−3, 2) = −11.

Theorem 12.12 solves the general quadratic minimization problem when the quadratic
coefficient matrix is positive definite. If K is not positive definite, then the quadratic
function (12.15) does not have a minimum, apart from one exceptional situation.

Theorem 12.15. If K is positive definite, then the quadratic function p(x) =
xT K x − 2xT f + c has a unique global minimizer x⋆ satisfying Kx⋆ = f . If K is only

positive semi-definite, and f ∈ rng K, then every solution to the linear system K x⋆ = f is

a global minimum of p(x), but the minimum is not unique since p(x⋆ + z) = p(x⋆) for any

null vector z ∈ ker K. In all other cases, p(x) has no global minimum.
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