Moving Frames

Peter J. Olver
University of Minnesota
http: //www.math.umn.edu/~olver

Beijing, March, 2001

Moving Frames

Classical contributions:

G. Darboux, É. Cotton, É. Cartan

Modern contributions:
P. Griffiths, M. Green, G. Jensen
"I did not quite understand how he [Cartan] does this in general, though in the examples he gives the procedure is clear."
"Nevertheless, I must admit I found the book, like most of Cartan's papers, hard reading."

- Hermann Weyl
"Cartan on groups and differential geometry" Bull. Amer. Math. Soc. 44 (1938) 598-601

References

- Fels, M., Olver, P.J.,

Part I, Acta Appl. Math. 51 (1998) 161-213
Part II, Acta Appl. Math. 55 (1999) 127-208

- Olver, P.J., Selecta Math. 6 (2000) 41-77
- Calabi, Olver, Shakiban, Tannenbaum, Haker, Int. J.

Computer Vision 26 (1998) 107-135

- Marí-Beffa, G., Olver, P.J.,

Commun. Anal. Geom. 7 (1999) 807-839

- Olver, P.J., Classical Invariant Theory,

Cambridge Univ. Press, 1999

- Berchenko, I.A., Olver, P.J.
J. Symb. Comp. 29 (2000) 485-514
- Olver, P.J., Found. Comput. Math. 1 (2001) 3-67
- Olver, P.J., "Geometric foundations of numerical algorithms and symmetry", Appl. Alg. Engin. Commun. Comput., to appear
- Kogan, I.A., Olver, P.J., "Invariant Euler-Lagrange equations and the invariant variational bicomplex", preprint, 2001
http://www.math.umn.edu/~olver

Applications of Moving Frames

- Differential geometry
- Equivalence
- Symmetry
- Differential invariants
- Rigidity
- Joint Invariants and Semi-Differential Invariants
- Invariant differential forms and tensors
- Identities and syzygies
- Classical invariant theory
- Computer vision
- object recognition
- symmetry detection
- Invariant numerical methods
- Poisson geometry \& solitons
- Lie pseudogroups

The Basic Equivalence Problem

$M-$ smooth m-dimensional manifold.
$G-$ transformation group acting on M

- finite-dimensional Lie group
- infinite-dimensional Lie pseudo-group

Equivalence:

Determine when two n-dimensional submanifolds

$$
N \quad \text { and } \bar{N} \subset M
$$

are congruent:

$$
\bar{N}=g \cdot N \quad \text { for } \quad g \in G
$$

Symmetry:

Self-equivalence or self-congruence:

$$
N=g \cdot N
$$

Classical Geometry

Equivalence Problem: Determine whether or not two given submanifolds N and \bar{N} are congruent under a group transformation: $\bar{N}=g \cdot N$.
Symmetry Problem: Given a submanifold N, find all its symmetries (belonging to the group).

- Euclidean group - $G=\mathrm{SE}(n)$ or $\mathrm{E}(n)$
\Rightarrow isometries of Euclidean space
\Rightarrow translations, rotations (\& reflections)

$$
z \longmapsto R \cdot z+a \quad\left\{\begin{array}{l}
R \in \mathrm{SO}(n) \text { or } \mathrm{O}(n) \\
a \in \mathbb{R}^{n} \\
z \in \mathbb{R}^{n}
\end{array}\right.
$$

- Equi-affine group: $G=\mathrm{SA}(n)$
$R \in \mathrm{SL}(n)$ - area-preserving
- Affine group:
$G=\mathrm{A}(n)$
$R \in \mathrm{GL}(n)$
- Projective group: $G=\operatorname{PSL}(n)$ acting on $\mathbb{R P}^{n-1}$
\Longrightarrow Applications in computer vision

Classical Invariant Theory

Binary form:

$$
Q(x)=\sum_{k=0}^{n}\binom{n}{k} a_{k} x^{k}
$$

Equivalence of polynomials (binary forms):

$$
\begin{aligned}
Q(x) & =(\gamma x+\delta)^{n} \bar{Q}\left(\frac{\alpha x+\beta}{\gamma x+\delta}\right) \quad g=\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in \mathrm{GL}(2) \\
& \Rightarrow \text { multiplier representation of GL}(2) \\
& \Rightarrow \text { modular forms }
\end{aligned}
$$

Transformation group:

$$
g:(x, u) \longmapsto\left(\frac{\alpha x+\beta}{\gamma x+\delta}, \frac{u}{(\gamma x+\delta)^{n}}\right)
$$

Equivalence of functions \Longleftrightarrow equivalence of graphs

$$
N_{Q}=\{(x, u)=(x, Q(x))\} \subset \mathbb{C}^{2}
$$

Moving Frames

Definition.

A moving frame is a G-equivariant map

$$
\rho: M \longrightarrow G
$$

Equivariance:

$$
\rho(g \cdot z)= \begin{cases}g \cdot \rho(z) & \text { left moving frame } \\ \rho(z) \cdot g^{-1} & \text { right moving frame }\end{cases}
$$

$$
\rho_{\text {left }}(z)=\rho_{\text {right }}(z)^{-1}
$$

Theorem. A moving frame exists in a neighborhood of a point $z \in M$ if and only if G acts freely and regularly near z.

Necessity: Let $z \in M$.
Let $\rho: M \rightarrow G$ be a left moving frame.

Freeness: If $g \in G_{z}$, so $g \cdot z=z$, then by left equivariance:

$$
\rho(z)=\rho(g \cdot z)=g \cdot \rho(z) .
$$

Therefore $g=e$, and hence $G_{z}=\{e\}$ for all $z \in M$.

Regularity: Suppose

$$
z_{n}=g_{n} \cdot z \longrightarrow z \quad \text { as } \quad n \rightarrow \infty
$$

By continuity,

$$
\rho\left(z_{n}\right)=\rho\left(g_{n} \cdot z\right)=g_{n} \cdot \rho(z) \longrightarrow \rho(z)
$$

Hence $g_{n} \longrightarrow e$ in G.

Sufficiency: By construction - "normalization".
Q.E.D.

Isotropy

Isotropy subgroup for $z \in M$:

$$
G_{z}=\{g \mid g \cdot z=z\}
$$

- free - the only group element $g \in G$ which fixes one point

$$
\begin{aligned}
& z \\
& G_{z}=\{e\} \text { for all } z \in M
\end{aligned}
$$

- locally free - the orbits all have the same dimension as G : G_{z} is a discrete subgroup of G.
- regular - all orbits have the same dimension and intersect sufficiently small coordinate charts only once ($\not \approx$ irrational flow on the torus)
- effective - the only group element $g \in G$ which fixes every point $z \in M$ is the identity: $g \cdot z=z$ for all $z \in M$ iff $g=e:$

$$
G_{M}=\bigcap_{z \in M} G_{z}=\{e\}
$$

Geometrical Construction

Normalization $=$ choice of cross-section to the group orbits

K - cross-section to the group orbits
\mathcal{O}_{z} - orbit through $z \in M$
$k \in K \cap \mathcal{O}_{z}$ - unique point in the intersection

- k is the canonical form of z
- the (nonconstant) coordinates of k are the fundamental invariants
$g \in G$ - unique group element mapping k to z
\Longrightarrow freeness
$\rho(z)=g \quad$ left moving frame $\quad \rho(h \cdot z)=h \cdot \rho(z)$

$$
k=\rho^{-1}(z) \cdot z=\rho_{\text {right }}(z) \cdot z
$$

Construction of Moving Frames

$$
r=\operatorname{dim} G \leq m=\operatorname{dim} M
$$

Coordinate cross-section

$$
K=\left\{z_{1}=c_{1}, \ldots, z_{r}=c_{r}\right\}
$$

left	right	
$w(g, z)=g^{-1} \cdot z$	$w(g, z)=g \cdot z$	

Choose $r=\operatorname{dim} G$ components to normalize:

$$
w_{1}(g, z)=c_{1} \quad \ldots \quad w_{r}(g, z)=c_{r}
$$

The solution

$$
g=\rho(z)
$$

is a (local) moving frame.
\Longrightarrow Implicit Function Theorem

The Fundamental Invariants

Substituting the moving frame formulae

$$
g=\rho(z)
$$

into the unnormalized components of $w(g, z)$ produces the fundamental invariants:

$$
I_{1}(z)=w_{r+1}(\rho(z), z) \quad \ldots \quad I_{m-r}(z)=w_{m}(\rho(z), z)
$$

\Longrightarrow These are the coordinates of the canonical form $k \in K$.

Theorem. Every invariant $I(z)$ can be (locally) uniquely written as a function of the fundamental invariants:

$$
I(z)=H\left(I_{1}(z), \ldots, I_{m-r}(z)\right)
$$

Invariantization

Definition. The invariantization of a function $F: M \rightarrow$ \mathbb{R} with respect to a right moving frame ρ is the the invariant function $I=\iota(F)$ defined by $I(z)=F(\rho(z) \cdot z)$.

$$
\iota\left[F\left(z_{1}, \ldots, z_{m}\right)\right]=F\left(c_{1},, \ldots c_{r}, I_{1}(z), \ldots, I_{m-r}(z)\right)
$$

Invariantization amounts to restricting F to the cross-section

$$
I|K=F| K
$$

and then requiring that $I=\iota(F)$ be constant along the orbits.

In particular, if $I(z)$ is an invariant, then $\iota(I)=I$.

Invariantization defines a canonical projection ι : functions \longmapsto invariants

The Rotation Group

$$
\begin{array}{r}
G=\mathrm{SO}(2) \quad \text { acting on } \quad \mathbb{R}^{2} \\
z=(x, u) \longmapsto g \cdot z=(x \cos \theta-u \sin \theta, x \sin \theta+u \cos \theta) \\
\Longrightarrow \text { Free on } M=\mathbb{R}^{2} \backslash\{0\}
\end{array}
$$

Left moving frame:

$$
\begin{gathered}
w(g, z)=g^{-1} \cdot z=(y, v) \\
y=x \cos \theta+u \sin \theta \quad v=-x \sin \theta+u \cos \theta
\end{gathered}
$$

Cross-section

$$
K=\{u=0, x>0\}
$$

Normalization equation

$$
v=-x \sin \theta+u \cos \theta=0
$$

Left moving frame:

$$
\theta=\tan ^{-1} \frac{u}{x} \quad \Longrightarrow \quad \theta=\rho(x, u) \in \mathrm{SO}(2)
$$

Fundamental invariant

$$
r=\iota(x)=\sqrt{x^{2}+u^{2}}
$$

Invariantization

$$
\iota[F(x, u)]=F(r, 0)
$$

Prolongation

Most interesting group actions (Euclidean, affine, projective, etc.) are not free!

An effective action can usually be made free by:

- Prolonging to derivatives (jet space)

$$
G^{(n)}: \mathrm{J}^{n}(M, p) \longrightarrow \mathrm{J}^{n}(M, p)
$$

\Longrightarrow differential invariants

- Prolonging to Cartesian product actions

$$
\begin{aligned}
& G^{\times n}: M \times \cdots \times M \longrightarrow M \times \cdots \times M \\
\Longrightarrow & \text { joint invariants }
\end{aligned}
$$

- Prolonging to "multi-space"

$$
G^{(n)}: M^{(n)} \longrightarrow M^{(n)}
$$

\Longrightarrow joint or semi-differential invariants
\Longrightarrow invariant numerical approximations

Jet Space

- Although in use since the time of Lie and

Darboux, jet space was first formally defined by Ehresmann in 1950.

- Jet space is the proper setting for the geometry of partial differential equations.
$M \quad$ - smooth m-dimensional manifold

$$
1 \leq p \leq m-1
$$

$\mathrm{J}^{n}=\mathrm{J}^{n}(M, p) \quad-\quad$ (extended) jet bundle
\Longrightarrow Defined as the space of equivalence classes of p dimensional submanifolds under the equivalence relation of $n^{\text {th }}$ order contact at a single point.
\Longrightarrow Can be identified as the space of $n^{\text {th }}$ order Taylor polynomials for submanifolds given as graphs $u=f(x)$

Local Coordinates on Jet Space

$\mathrm{J}^{n}=\mathrm{J}^{n}(M, p)-n^{\text {th }}$ extended jet bundle for p-dimensional submanifolds $N \subset M$

Local coordinates:

$$
\begin{aligned}
& \text { Assume } N=\{u=f(x)\} \text { is a graph (section). } \\
& x=\left(x^{1}, \ldots, x^{p}\right) \quad \text { - independent variables } \\
& u=\left(u^{1}, \ldots, u^{q}\right) \quad \text { - dependent variables } \\
& p+q=m=\operatorname{dim} M \\
& z^{(n)}=\left(x, u^{(n)}\right)=\left(\ldots x^{i} \ldots u_{J}^{\alpha} \ldots\right) \\
& u_{J}^{\alpha}=\partial_{J} u^{\alpha} \quad 0 \leq \# J \leq n \\
& \text { - induced jet coordinates }
\end{aligned}
$$

- No bundle structure assumed on M.
- Projective completion of $\mathrm{J}^{n} E$ when $E \rightarrow X$ is a bundle.

Prolongation of Group Actions

$G-$ transformation group acting on M
$\Longrightarrow G$ maps submanifolds to submanifolds
and preserves the order of contact
$G^{(n)}$ - prolonged action of G on the jet space J^{n}

The prolonged group formulae

$$
w^{(n)}=\left(y, v^{(n)}\right)=g^{(n)} \cdot z^{(n)}
$$

are obtained by implicit differentiation:

$$
\begin{aligned}
d y^{i} & =\sum_{j=1}^{p} P_{j}^{i}\left(g, z^{(1)}\right) d x^{j} \\
D_{y^{j}} & =\sum_{i=1}^{p} Q_{j}^{i}\left(g, z^{(1)}\right) D_{x^{i}} \\
& \quad \not \quad v_{J}^{\alpha}=D_{y^{j_{1}}} \cdots D_{y^{j_{k}}}\left(v^{\alpha}\right)
\end{aligned}
$$

Differential invariant $\quad I: \mathrm{J}^{n} \rightarrow \mathbb{R}$

$$
I\left(g^{(n)} \cdot z^{(n)}\right)=I\left(z^{(n)}\right)
$$

\Longrightarrow curvatures

Freeness

Theorem. If G acts (locally) effectively on M, then G acts (locally) freely on a dense open subset $\mathcal{V}^{n} \subset \mathrm{~J}^{n}$ for $n \gg 0$.

Definition. $N \subset M$ is regular at order n if $\mathrm{j}_{n} N \subset \mathcal{V}^{n}$.
Corollary. Any regular submanifold admits a (local) moving frame.

Theorem. A submanifold is totally singular, $\mathrm{j}_{n} N \subset \mathrm{~J}^{n} \backslash \mathcal{V}^{n}$ for all n, if and only if its symmetry group

$$
G_{N}=\{g \mid g \cdot N \subset N\}
$$

does not act freely on N.

Moving Frames on Jet Space

$$
w^{(n)}=\left(y, v^{(n)}\right)= \begin{cases}g^{(n)} \cdot z^{(n)} & \text { right } \\ \left(g^{(n)}\right)^{-1} \cdot z^{(n)} & \text { left }\end{cases}
$$

Choose $r=\operatorname{dim} G$ jet coordinates

$$
z_{1}, \ldots, z_{r} \quad x^{i} \text { or } u_{J}^{\alpha}
$$

Coordinate cross-section $K \subset \mathrm{~J}^{n}$

$$
z_{1}=c_{1} \quad \ldots \quad z_{r}=c_{r}
$$

Corresponding lifted differential invariants:

$$
w_{1}, \ldots, w_{r} \quad y^{i} \text { or } v_{J}^{\alpha}
$$

Normalization Equations

$$
w_{1}\left(g, x, u^{(n)}\right)=c_{1} \quad \ldots \quad w_{r}\left(g, x, u^{(n)}\right)=c_{r}
$$

Solution:

$$
g=\rho^{(n)}\left(z^{(n)}\right)=\rho^{(n)}\left(x, u^{(n)}\right) \quad \Longrightarrow \text { moving frame }
$$

The Fundamental Differential Invariants

$$
I^{(n)}\left(z^{(n)}\right)=w^{(n)}\left(\rho^{(n)}\left(z^{(n)}\right), z^{(n)}\right)
$$

$$
\begin{aligned}
H^{i}\left(x, u^{(n)}\right) & =y^{i}\left(\rho^{(n)}\left(x, u^{(n)}\right), x, u\right) \\
I_{K}^{\alpha}\left(x, u^{(k)}\right) & =v_{K}^{\alpha}\left(\rho^{(n)}\left(x, u^{(n)}\right), x, u^{(k)}\right)
\end{aligned}
$$

Phantom differential invariants

$$
w_{1}=c_{1} \ldots w_{r}=c_{r} \quad \Longrightarrow \text { normalizations }
$$

Theorem. Every $n^{\text {th }}$ order differential invariant can be locally uniquely written as a function of the non-phantom fundamental differential invariants in $I^{(n)}$.

Invariant Differentiation

Contact-invariant coframe

$$
\begin{array}{r}
d y^{i} \longmapsto \omega^{i}=\sum_{j=1}^{p} P_{j}^{i}\left(\rho^{(n)}\left(z^{(n)}\right), z^{(n)}\right) d x^{i} \\
\Longrightarrow \text { arc length element }
\end{array}
$$

Invariant differential operators:

$$
\begin{array}{r}
D_{y^{j}} \longmapsto \mathcal{D}_{j}=\sum_{i=1}^{p} Q_{j}^{i}\left(\rho^{(n)}\left(z^{(n)}\right), z^{(n)}\right) D_{x^{i}} \\
\\
\Longrightarrow \text { arc length derivative }
\end{array}
$$

Duality:

$$
d F=\sum_{i=1}^{p} \mathcal{D}_{i} F \cdot \omega^{i}
$$

Theorem. The higher order differential invariants are obtained by invariant differentiation with respect to $\mathcal{D}_{1}, \ldots, \mathcal{D}_{p}$.

Euclidean Curves $\quad G=\operatorname{SE}(2)$

Assume the curve is (locally) a graph:

$$
\mathcal{C}=\{u=f(x)\}
$$

Prolong to J^{3} via implicit differentiation

$$
\begin{aligned}
y & =\cos \theta(x-a)+\sin \theta(u-b) \\
v & =-\sin \theta(x-a)+\cos \theta(u-b) \\
v_{y} & =\frac{-\sin \theta+u_{x} \cos \theta}{\cos \theta+u_{x} \sin \theta} \\
v_{y y} & =\frac{u_{x x}}{\left(\cos \theta+u_{x} \sin \theta\right)^{3}} \\
v_{y y y} & =\frac{\left(\cos \theta+u_{x} \sin \theta\right) u_{x x x}-3 u_{x x}^{2} \sin \theta}{\left(\cos \theta+u_{x} \sin \theta\right)^{5}} \\
& \vdots
\end{aligned}
$$

Normalization $\quad r=\operatorname{dim} G=3$

$$
y=0, \quad v=0, \quad v_{y}=0
$$

Left moving frame $\quad \rho: \mathrm{J}^{1} \longrightarrow \mathrm{SE}(2)$

$$
a=x, \quad b=u, \quad \theta=\tan ^{-1} u_{x}
$$

Differential invariants

$$
\left.\begin{array}{rl}
v_{y y} & \longmapsto \kappa \\
v_{y y y} & \longmapsto \frac{u_{x x}}{\left(1+u_{x}^{2}\right)^{3 / 2}} \\
v_{y y y y} & \longmapsto \frac{d \kappa}{d s} \\
=\frac{\left(1+u_{x}^{2}\right) u_{x x x}-3 u_{x} u_{x x}^{2}}{\left(1+u_{x}^{2}\right)^{3}} \\
d s^{2} \\
d^{2} & 3 \kappa^{3}
\end{array}\right)=\cdots .
$$

Invariant one-form - arc length

$$
d y=\left(\cos \theta+u_{x} \sin \theta\right) d x \quad \longmapsto \quad d s=\sqrt{1+u_{x}^{2}} d x
$$

Invariant differential operator

$$
\frac{d}{d y}=\frac{1}{\cos \theta+u_{x} \sin \theta} \frac{d}{d x} \quad \longmapsto \quad \frac{d}{d s}=\frac{1}{\sqrt{1+u_{x}^{2}}} \frac{d}{d x}
$$

Theorem. All differential invariants are functions of the derivatives of curvature with respect to arc length:

$$
\kappa, \quad \frac{d \kappa}{d s}, \quad \frac{d^{2} \kappa}{d s^{2}}, \quad \ldots
$$

Euclidean Curves

Moving frame $\quad \rho:\left(x, u, u_{x}\right) \longmapsto(R, \mathbf{a}) \in \mathrm{SE}(2)$

$$
R=\frac{1}{\sqrt{1+u_{x}^{2}}}\left(\begin{array}{cc}
1 & -u_{x} \\
u_{x} & 1
\end{array}\right)=\left(\mathbf{e}_{1}, \mathbf{e}_{2}\right) \quad \mathbf{a}=\binom{x}{u}
$$

Frenet frame

$$
\mathbf{e}_{1}=\frac{d \mathbf{x}}{d s}=\binom{x_{s}}{y_{s}} \quad \mathbf{e}_{2}=\mathbf{e}_{1}^{\perp}=\binom{-y_{s}}{x_{s}}
$$

Frenet equations $=$ Maurer-Cartan equations:

$$
\frac{d \mathbf{x}}{d s}=\mathbf{e}_{1} \quad \frac{d \mathbf{e}_{1}}{d s}=\kappa \mathbf{e}_{2} \quad \frac{d \mathbf{e}_{2}}{d s}=-\kappa \mathbf{e}_{1}
$$

The Replacement Theorem

Any differential invariant has the form

$$
I=F\left(x, u^{(n)}\right)=F\left(y, w^{(n)}\right)=F\left(I^{(n)}\right)
$$

\Longrightarrow T.Y. Thomas

$$
\begin{aligned}
\kappa=\frac{v_{y y}}{\left(1+v_{y}^{2}\right)^{2}} & =\frac{u_{x x}}{\left(1+u_{x}^{2}\right)^{2}} \\
\iota(x)=\iota(u) & =\left(u_{x}\right)=0 \\
\iota\left(u_{x x}\right) & =\kappa
\end{aligned}
$$

Equi-affine Curves $\quad G=\mathrm{SA}(2)$

$$
z \longmapsto A z+b \quad A \in \mathrm{SL}(2), \quad b \in \mathbb{R}^{2}
$$

Prolong to J^{3} via implicit differentiation

$$
d y=\left(\delta-u_{x} \beta\right) d x \quad D_{y}=\frac{1}{\delta-u_{x} \beta} D_{x}
$$

$$
\begin{aligned}
y & =\delta(x-a)-\beta(u-b) \\
v & =-\gamma(x-a)+\alpha(u-b) \\
v_{y} & =-\frac{\gamma-\alpha u_{x}}{\delta-\beta u_{x}} \\
v_{y y y} & =-\frac{\left(\delta-\beta u_{x}\right) u_{x x x}+3 \beta u_{x x}^{2}}{\left(\delta-\beta u_{x}\right)^{5}} \quad v_{y y}=-\frac{u_{x x}}{\left(\delta-\beta u_{x}\right)^{3}} \\
v_{y y y y} & =-\frac{u_{x x x x}\left(\delta-\beta u_{x}\right)^{2}+10 u_{x x} u_{x x x} \beta\left(\delta-\beta u_{x}\right)+15 u_{x x}^{3} \beta^{2}}{\left(\alpha+\beta u_{x}\right)^{7}} \\
& \vdots
\end{aligned}
$$

Nondegeneracy

$$
u_{x x}=0
$$

\Longrightarrow Straight lines are totally singular
(three-dimensional equi-affine symmetry group)
Normalization $\quad r=\operatorname{dim} G=5$

$$
y=0, \quad v=0, \quad v_{y}=0, \quad v_{y y}=1, \quad v_{y y y}=0 .
$$

Left Moving frame $\quad \rho: \mathrm{J}^{3} \longrightarrow \mathrm{SA}(2)$

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
\sqrt[3]{u_{x x}} & -\frac{1}{3} u_{x x}^{-5 / 3} u_{x x x} \\
u_{x} \sqrt[3]{u_{x x}} & u_{x x}^{-1 / 3}-\frac{1}{3} u_{x x}^{-5 / 3} u_{x x x}
\end{array}\right) \quad \mathbf{b}=z=\binom{x}{u} \\
& =\left(\begin{array}{cc}
\frac{d z}{d s} & \frac{d^{2} z}{d s^{2}}
\end{array}\right)
\end{aligned}
$$

Frenet frame

$$
\mathbf{e}_{1}=\frac{d z}{d s} \quad \mathbf{e}_{2}=\frac{d^{2} z}{d s^{2}}
$$

Frenet equations $=$ Maurer-Cartan equations:

$$
\frac{d z}{d s}=\mathbf{e}_{1} \quad \frac{d \mathbf{e}_{1}}{d s}=\mathbf{e}_{2} \quad \frac{d \mathbf{e}_{2}}{d s}=\kappa \mathbf{e}_{1}
$$

Equi-affine arc length

$$
d y \quad \longmapsto \quad d s=\sqrt[3]{u_{x x}} d x=\sqrt[3]{\dot{z} \wedge \ddot{z}} d t
$$

Invariant differential operator

$$
D_{y} \quad \longmapsto \quad \frac{d}{d s}=\frac{1}{\sqrt[3]{u_{x x}}} D_{x}=\frac{1}{\sqrt[3]{\dot{z} \wedge \ddot{z}}} D_{t}
$$

Equi-affine curvature

$$
\begin{aligned}
v_{4 y} & \longmapsto \kappa=\frac{5 u_{x x} u_{x x x x}-3 u_{x x x}^{2}}{9 u_{x x}^{8 / 3}}=z_{s} \wedge z_{s s} \\
v_{5 y} & \longmapsto \frac{d \kappa}{d s} \quad v_{6 y} \longmapsto \frac{d^{2} \kappa}{d s^{2}}-5 \kappa^{2}
\end{aligned}
$$

Equivalence \& Signature

Cartan's main idea: The equivalence and symmetry properties of submanifolds will be found by restricting the differential invariants to the submanifold $J(x)=I\left(\left.\mathrm{j}_{n} N\right|_{x}\right)$.

Equivalent submanifolds should have the same invariants.
However, unless an invariant $J(x)$ is constant, it carries little information by itself, since the equivalence map will typically drastically change the dependence of the invariant on the parameter x.
\Longrightarrow Constant curvature submanifolds

However, a functional dependency or syzygy among the invariants is intrinsic:

$$
J_{k}(x)=\Phi\left(J_{1}(x), \ldots, J_{k-1}(x)\right)
$$

The Signature Map

Equivalence and symmetry properties of submanifolds are governed by the functional dependencies - "syzygies" - among the differential invariants.

$$
J_{k}(x)=\Phi\left(J_{1}(x), \ldots, J_{k-1}(x)\right)
$$

The syzygies are encoded by the signature map

$$
\Sigma: N \quad \longrightarrow \mathcal{S}
$$

of the submanifold N, which is parametrized by the fundamental differential invariants:

$$
\begin{aligned}
\Sigma(x) & =\left(J_{1}(x), \ldots, J_{m}(x)\right) \\
& =\left(I_{1}\left|N, \ldots, I_{m}\right| N\right)
\end{aligned}
$$

The image $\mathcal{S}=\operatorname{Im} \Sigma$ is the signature subset (or submanifold) of N.

Geometrically, the signature

$$
\mathcal{S} \subset \mathcal{K}
$$

is the image of $\mathrm{j}_{n} N$ in the cross-section $\mathcal{K} \subset \mathrm{J}^{n}$, where $n \gg 0$ is sufficiently large.

$$
\Sigma: N \quad \longrightarrow \quad \mathrm{j}_{n} N \quad \longrightarrow \quad \mathcal{S} \subset \mathcal{K}
$$

Theorem. Two submanifolds are equivalent

$$
\bar{N}=g \cdot N
$$

if and only if their signatures are identical

$$
\mathcal{S}=\overline{\mathcal{S}}
$$

Signature Curves

Definition. The signature curve $\mathcal{S} \subset \mathbb{R}^{2}$ of a curve $\mathcal{C} \subset \mathbb{R}^{2}$ is parametrized by the first two differential invariants κ and κ_{s}

$$
\mathcal{S}=\left\{\left(\kappa, \frac{d \kappa}{d s}\right)\right\} \quad \subset \quad \mathbb{R}^{2}
$$

Theorem. Two curves \mathcal{C} and $\overline{\mathcal{C}}$ are equivalent

$$
\overline{\mathcal{C}}=g \cdot \mathcal{C}
$$

if and only if their signature curves are identical

$$
\overline{\mathcal{S}}=\mathcal{S}
$$

\Longrightarrow object recognition

Symmetry

Signature map

$$
\Sigma: N \longrightarrow \mathcal{S}
$$

Theorem. Let \mathcal{S} denote the signature of the submanifold N. Then the dimension of its symmetry group $G_{N}=$ $\{g \mid g \cdot N \subset N\}$ equals

$$
\operatorname{dim} G_{N}=\operatorname{dim} N-\operatorname{dim} \mathcal{S}
$$

Corollary. For a regular submanifold $N \subset M$,

$$
0 \leq \operatorname{dim} G_{N} \leq \operatorname{dim} N
$$

\Longrightarrow Only totally singular submanifolds can have larger symmetry groups!

Maximally Symmetric Submanifolds

Theorem. The following are equivalent:

- The submanifold N has a p-dimensional symmetry group
- The signature \mathcal{S} degenerates to a point

$$
\operatorname{dim} \mathcal{S}=0
$$

- The submanifold has all constant differential invariants
- $N=H \cdot\left\{z_{0}\right\}$ is the orbit of a p-dimensional subgroup $H \subset G$
\Longrightarrow In Euclidean geometry, these are the circles, straight lines, spheres \& planes.
\Longrightarrow In equi-affine plane geometry, these are the conic sections.

Discrete Symmetries

Definition. The index of a submanifold N equals the number of points in \mathcal{C} which map to a generic point of its signature \mathcal{S} :

$$
\iota_{N}=\min \left\{\# \Sigma^{-1}\{w\} \mid w \in \mathcal{S}\right\}
$$

\Longrightarrow Self-intersections

Theorem. The cardinality of the symmetry group of N equals its index ι_{N}.
\Longrightarrow Approximate symmetries

Classical Invariant Theory

$$
M=\mathbb{R}^{2} \backslash\{u=0\} \quad G=\mathrm{GL}(2)=\left\{\left.\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \right\rvert\, \alpha \delta-\beta \gamma \neq 0\right\}
$$

$$
(x, u) \longmapsto\left(\frac{\alpha x+\beta}{\gamma x+\delta}, \frac{u}{(\gamma x+\delta)^{n}}\right) \quad n \neq 0,1
$$

$$
\sigma=\gamma x+\delta \quad \Delta=\alpha \delta-\beta \gamma
$$

Prolongation:

$$
\begin{aligned}
y & =\frac{\alpha x+\beta}{\gamma x+\delta} \\
v & =\sigma^{-n} u \\
v_{y} & =\frac{\sigma u_{x}-n \gamma u}{\Delta \sigma^{n-1}} \\
v_{y y} & =\frac{\sigma^{2} u_{x x}-2(n-1) \gamma \sigma u_{x}+n(n-1) \gamma^{2} u}{\Delta^{2} \sigma^{n-2}} \\
v_{y y y} & =\cdots
\end{aligned}
$$

Normalization:

$$
y=0 \quad v=1 \quad v_{y}=0 \quad v_{y y}=\frac{1}{n(n-1)}
$$

Moving frame:

Nonsingular form: $\quad H \neq 0$

$$
\text { Note: } H \equiv 0 \quad \text { if and only if } \begin{aligned}
\quad Q(x) & =(a x+b)^{n} \\
& \Longrightarrow \text { Totally singular forms }
\end{aligned}
$$

Differential invariants:

$$
v_{y y y} \longmapsto \frac{J}{n^{2}(n-1)} \approx \kappa \quad v_{y y y y} \longmapsto \frac{K+3(n-2)}{n^{3}(n-1)} \approx \frac{d \kappa}{d s}
$$

Absolute rational covariants:

$$
J^{2}=\frac{T^{2}}{H^{3}} \quad K=\frac{U}{H^{2}}
$$

$$
\begin{aligned}
H & =\frac{1}{2}(Q, Q)^{(2)} & =n(n-1) Q Q^{\prime \prime}-(n-1)^{2} Q^{\prime 2} & \sim Q_{x x} Q_{y y}-Q_{x y}^{2} \\
T=(Q, H)^{(1)} & =(2 n-4) Q^{\prime} H-n Q H^{\prime} & & \sim Q_{x} H_{y}-Q_{y} H_{x} \\
U=(Q, T)^{(1)} & =(3 n-6) Q^{\prime} T-n Q T^{\prime} & & \sim Q_{x} T_{y}-Q_{y} T_{x}
\end{aligned}
$$

$$
\operatorname{deg} Q=n \quad \operatorname{deg} H=2 n-4 \quad \operatorname{deg} T=3 n-6 \quad \operatorname{deg} U=4 n-8
$$

$$
\begin{aligned}
& \alpha=u^{(1-n) / n} \sqrt{H} \quad \beta=-x u^{(1-n) / n} \sqrt{H} \\
& \gamma=\frac{1}{n} u^{(1-n) / n} \quad \delta=u^{1 / n}-\frac{1}{n} x u^{(1-n) / n} \\
& H=n(n-1) u u_{x x}-(n-1)^{2} u_{x}^{2} \quad-\text { Hessian }
\end{aligned}
$$

Signatures of Binary Forms

Signature curve of a nonsingular binary form $Q(x)$:

$$
\mathcal{S}_{Q}=\left\{\left(J(x)^{2}, K(x)\right)=\left(\frac{T(x)^{2}}{H(x)^{3}}, \frac{U(x)}{H(x)^{2}}\right)\right\}
$$

Nonsingular: $\quad H(x) \neq 0$ and $\left(J^{\prime}(x), K^{\prime}(x)\right) \neq 0$.
Signature map

$$
\Sigma: N_{Q} \longrightarrow \mathcal{S}_{Q} \quad \Sigma(x)=\left(J(x)^{2}, K(x)\right)
$$

Theorem. Two nonsingular binary forms are equivalent if and only if their signature curves are identical.

Maximally Symmetric Binary Forms

Theorem. If $u=Q(x)$ is a polynomial, then the following are equivalent:

- $Q(x)$ admits a one-parameter symmetry group
- T^{2} is a constant multiple of H^{3}
- $Q(x) \simeq x^{k}$ is complex-equivalent to a monomial
- the signature curve degenerates to a single point
- all the (absolute) differential invariants of Q are constant
- the graph of Q coincides with the orbit of a one-parameter subgroup
\Longrightarrow diagonalizable
ch 41

Symmetries of Binary Forms

Theorem. The symmetry group of a nonzero binary form $Q(x) \not \equiv 0$ of degree n is:

- A two-parameter group if and only if $H \equiv 0$ if and only if Q is equivalent to a constant.
\Longrightarrow totally singular
- A one-parameter group if and only if $H \not \equiv 0$ and T^{2} is a constant multiple of H^{3} if and only if Q is complexequivalent to a monomial x^{k}, with $k \neq 0, n$.
\Longrightarrow maximally symmetric
- In all other cases, a finite group whose cardinality equals the index

$$
\iota_{Q}=\min \left\{\# \Sigma^{-1}\{w\} \mid w \in \mathcal{S}\right\}
$$

of the signature curve, and is bounded by

$$
\iota_{Q} \leq \begin{cases}6 n-12 & U=c H^{2} \\ 4 n-8 & \text { otherwise }\end{cases}
$$

Joint Invariants

Let G act on M.

A k-point joint invariant is an invariant of the k-fold Cartesian product action on

$$
\begin{gathered}
M \times \cdots \times M \\
I\left(g \cdot z_{1}, \ldots, g \cdot z_{k}\right)=I\left(z_{1}, \ldots, z_{k}\right)
\end{gathered}
$$

A k-point joint differential invariant is an invariant of the prolonged action $G^{(n)}$ on a k-fold Cartesian product of jet space

$$
\mathrm{J}^{n} \times \cdots \times \mathrm{J}^{n}
$$

$$
I\left(g^{(n)} \cdot z_{1}^{(n)}, \ldots, g^{(n)} \cdot z_{k}^{(n)}\right)=I\left(z_{1}^{(n)}, \ldots, z_{k}^{(n)}\right)
$$

\Longrightarrow Joint differential invariants are known as "semi-differential invariants" in the computer vision literature, and are proposed as "noise resistant" alternatives for object recognition.

Joint Euclidean Invariants

$\mathrm{SE}(2)$ acts on $M=\mathbb{R}^{2} \times \cdots \times \mathbb{R}^{2}:$

$$
\begin{gathered}
z_{i}=\left(x_{i}, u_{i}\right) \quad w_{i}=\left(y_{i}, v_{i}\right)=g^{-1} \cdot z_{i} \quad i=0,1,2, \ldots \\
y_{i}=\cos \theta\left(x_{i}-a\right)+\sin \theta\left(u_{i}-b\right) \\
v_{i}=-\sin \theta\left(x_{i}-a\right)+\cos \theta\left(u_{i}-b\right)
\end{gathered}
$$

Normalization (cross-section)

$$
y_{0}=0 \quad v_{0}=0 \quad y_{1}>0 \quad v_{1}=0
$$

Left moving frame $\quad \rho: M \rightarrow \mathrm{SE}(2)$

$$
a=x_{0} \quad b=u_{0} \quad \theta=\tan ^{-1}\left(\frac{u_{1}-u_{0}}{x_{1}-x_{0}}\right)
$$

Joint invariants:

$$
y_{i} \longmapsto \frac{\left(z_{i}-z_{0}\right) \cdot\left(z_{1}-z_{0}\right)}{\left\|z_{1}-z_{0}\right\|} \quad v_{i} \longmapsto \frac{\left(z_{i}-z_{0}\right) \wedge\left(z_{1}-z_{0}\right)}{\left\|z_{1}-z_{0}\right\|}
$$

Theorem. Every joint Euclidean invariant is a function of the interpoint distances $\left\|z_{i}-z_{j}\right\|$ and, in the orientation preserving case, a single signed area $A\left(z_{0}, z_{1}, z_{2}\right)$

Joint Invariant Signatures

If the invariants depend on k points on a p-dimensional submanifold, then you need at least

$$
\ell>k p
$$

distinct invariants I_{1}, \ldots, I_{ℓ} in order to construct a syzygy:

$$
\Phi\left(I_{1}, \ldots, I_{\ell}\right) \equiv 0
$$

The total number of syzygies is

$$
\ell-k p
$$

Typically, the number of joint invariants is

$$
\ell=k m-r=(\# \text { points })(\operatorname{dim} M)-\operatorname{dim} G
$$

Therefore, to find a joint invariant signature, that involes no differentiation, we need at least

$$
k \geq \frac{r}{m-p}+1
$$

points on our submanifold.

Joint Euclidean Signature

For the Euclidean group $G=\operatorname{SE}(2)$ acting on curves $\mathcal{C} \subset \mathbb{R}^{2}$ (or \mathbb{R}^{3}) we need at least four points

$$
z_{0}, z_{1}, z_{2}, z_{3} \in \mathcal{C}
$$

Joint invariants:

$$
\begin{array}{rr}
a=\left\|z^{1}-z^{0}\right\|, & b=\left\|z^{2}-z^{0}\right\|, \quad c=\left\|z^{3}-z^{0}\right\| \\
d=\left\|z^{2}-z^{1}\right\|, \quad e=\left\|z^{3}-z^{1}\right\|, \quad f=\left\|z^{3}-z^{2}\right\| . \\
\Longrightarrow \quad \text { six functions of four variables }
\end{array}
$$

Joint Signature: $\quad \Sigma: \mathcal{C}^{\times 4} \longrightarrow \mathcal{S} \subset \mathbb{R}^{6}$
$\operatorname{dim} \mathcal{S}=4 \quad \Longrightarrow \quad$ two syzygies

$$
\Phi_{1}(a, b, c, d, e, f)=0 \quad \Phi_{2}(a, b, c, d, e, f)=0
$$

Universal Cayley-Menger syzygy:

$$
\operatorname{det}\left|\begin{array}{ccc}
2 a^{2} & a^{2}+b^{2}-d^{2} & a^{2}+c^{2}-e^{2} \\
a^{2}+b^{2}-d^{2} & 2 b^{2} & b^{2}+c^{2}-f^{2} \\
a^{2}+c^{2}-e^{2} & b^{2}+c^{2}-f^{2} & 2 c^{2}
\end{array}\right|=0
$$

$$
\Longleftrightarrow \mathcal{C} \subset \mathbb{R}^{2}
$$

Four-Point Euclidean Joint Signature

Euclidean Joint Differential Invariants

- Planar Curves

- One-point

$$
\Rightarrow \text { curvature }
$$

$$
\kappa=\frac{\dot{z} \wedge \ddot{z}}{\|\dot{z}\|^{3}}
$$

- Two-point

$$
\begin{aligned}
& \Rightarrow \text { distances } \quad\left\|z^{1}-z^{0}\right\| \\
& \Rightarrow \text { tangent angles } \quad \phi^{k}=\Varangle\left(z_{1}-z_{0}, \dot{z}_{k}\right)
\end{aligned}
$$

Equi-Affine Joint Differential Invariants - Planar Curves

- One-point
\Rightarrow affine curvature

$$
\begin{aligned}
\kappa & =\frac{\left(z_{t} \wedge z_{t t t t}\right)+4\left(z_{t t} \wedge z_{t t t}\right)}{3\left(z_{t} \wedge z_{t t}\right)^{5 / 3}}-\frac{5\left(z_{t} \wedge z_{t t t}\right)^{2}}{9\left(z_{t} \wedge z_{t t}\right)^{8 / 3}} \\
& =z_{s} \wedge z_{s s}
\end{aligned}
$$

- Two-point
\Rightarrow tangent triangle area ratio

$$
\frac{\dot{z}_{0} \wedge \ddot{z}_{0}}{\left[\left(z_{1}-z_{0}\right) \wedge \dot{z}_{0}\right]^{3}}=\frac{\left[\begin{array}{ll}
\dot{0} & \ddot{0}
\end{array}\right]}{\left[\begin{array}{lll}
1 & \dot{0}
\end{array}\right]^{3}}
$$

- Three-point
\Rightarrow triangle area

$$
\frac{1}{2}\left(z_{1}-z_{0}\right) \wedge\left(z_{2}-z_{0}\right)=\frac{1}{2}\left[\begin{array}{lll}
0 & 1 & 2
\end{array}\right]
$$

Projective Joint Differential Invariants - Planar Curves

- One-point

$$
\Rightarrow \text { projective curvature }
$$

$$
\kappa=\ldots
$$

- Two-point
\Rightarrow tangent triangle area ratio

$$
\frac{\left[\begin{array}{lll}
0 & 1 & \dot{0}
\end{array}\right]^{3}\left[\begin{array}{ll}
i & \ddot{1}
\end{array}\right]}{\left[\begin{array}{lll}
0 & 1 & i
\end{array}\right]^{3}\left[\begin{array}{lll}
\dot{0} & 0
\end{array}\right]}
$$

- Three-point
\Rightarrow tangent triangle ratio
- Four-point

$$
\begin{aligned}
& \Rightarrow \text { area cross-ratio } \\
& \qquad \frac{\left[\begin{array}{lll}
0 & 1 & 2
\end{array}\right]\left[\begin{array}{lll}
0 & 3 & 4
\end{array}\right]}{\left[\begin{array}{llll}
0 & 1 & 3
\end{array}\right]\left[\begin{array}{lll}
0 & 2 & 4
\end{array}\right]}
\end{aligned}
$$

Transformation Groups and Jets

$\left(x^{1}, \ldots, x^{p}\right) \quad$ - independent variables
$\left(u^{1}, \ldots, u^{q}\right)$ - dependent variables
$z^{(n)}=\left(x, u^{(n)}\right) \in \mathrm{J}^{n}-n^{\text {th }}$ order jet space
u_{J}^{α} - derivative coordinates on J^{n}
G - transformation group
$G^{(n)} \quad$ - prolonged action on J^{n}
$\mathbf{v} \in \mathfrak{g} \quad$ Lie algebra
$\mathbf{v}^{(n)} \in \mathfrak{g}^{(n)} \quad-\quad$ Prolonged inf. gens.

The Prolongation Formula

$$
\begin{aligned}
\mathbf{v}^{(n)} & =\sum_{i=1}^{p} \xi^{i}(x, u) \frac{\partial}{\partial x^{i}}+\sum_{\alpha, J}^{n} \varphi_{J}^{\alpha}\left(x, u^{(j)}\right) \frac{\partial}{\partial u_{J}^{\alpha}} \\
\varphi_{J}^{\alpha} & =D_{J} Q^{\alpha}+\sum_{i=1}^{p} \xi^{i} u_{J, i}^{\alpha}
\end{aligned}
$$

Characteristic

$$
Q^{\alpha}\left(x, u^{(1)}\right)=\varphi^{\alpha}-\sum_{i=1}^{p} \xi^{i} \frac{\partial u^{\alpha}}{\partial x^{i}}
$$

Rotation group - $\mathrm{SO}(2)$

$$
(x, u) \longmapsto(x \cos \theta-u \sin \theta, x \sin \theta+u \cos \theta)
$$

Transformed function $\quad v=\bar{f}(y)$:

$$
\begin{aligned}
& y=x \cos \theta-f(x) \sin \theta \\
& v=x \sin \theta+f(x) \cos \theta
\end{aligned}
$$

Second prolongation

$$
\begin{aligned}
&\left(x, u, u_{x}, u_{x x}\right) \longmapsto(x \cos \theta-u \sin \theta, x \sin \theta+u \cos \theta \\
& \frac{\sin \theta+u_{x} \cos \theta}{\cos \theta-u_{x} \sin \theta}\left., \frac{u_{x x}}{\left(\cos \theta-u_{x} \sin \theta\right)^{3}}\right)
\end{aligned}
$$

Infinitesimal generator

$$
\mathbf{v}=-u \frac{\partial}{\partial x}+x \frac{\partial}{\partial u}
$$

Second prolongation

$$
\begin{gathered}
\mathbf{v}^{(2)}=-u \frac{\partial}{\partial x}+x \frac{\partial}{\partial u}+\left(1+u_{x}^{2}\right) \frac{\partial}{\partial u_{x}}+3 u_{x} u_{x x} \frac{\partial}{\partial u_{x x}} \\
Q=x+u u_{x} \\
\varphi^{x}=D_{x} Q+\xi u_{x x}=D_{x}\left(x+u u_{x}\right)-u u_{x x}=1+u_{x}^{2} \\
\varphi^{x x}=D_{x}^{2} Q+\xi u_{x x x}=D_{x}^{2}\left(x+u u_{x}\right)-u u_{x x x}=3 u_{x} u_{x x}
\end{gathered}
$$

Differential invariant:

$$
I\left(g^{(n)} \cdot\left(x, u^{(n)}\right)\right)=I\left(x, u^{(n)}\right)
$$

Infinitesimal criterion:

$$
\mathbf{v}^{(n)}(I)=0 \quad \text { for all } \quad \mathbf{v}^{(n)} \in \mathfrak{g}^{(n)}
$$

\Longrightarrow Solve the first order linear partial differential equation by the method of characteristics.
\Longrightarrow Moving frames avoids integration!
Note: If I_{1}, \ldots, I_{k} are differential invariants, so is $\Phi\left(I_{1}, \ldots, I_{k}\right)$.
\Longrightarrow Classify differential invariants up to functional independence.
\Longrightarrow Local results on open subsets of jet space.

Theorem. Any transformation group admits a finite system of fundamental differential invariants

$$
J_{1}, \ldots, J_{\ell}
$$

and p invariant differential operators

$$
\mathcal{D}_{1}, \ldots, \mathcal{D}_{p}
$$

such that every differential invariant is a function of the differentiated invariants:

$$
I=\Phi\left(\ldots \mathcal{D}_{K} J_{\nu} \ldots\right)
$$

Classification Problem.

How many fundamental differential invariants J_{1}, \ldots, J_{ℓ} are required?
\Longrightarrow For curves $(p=1)$, we have $\ell=q$.

Syzygy Problem.

Determine the algebraic relations

$$
\Phi\left(\ldots \mathcal{D}_{K} J_{\nu} \ldots\right)=0
$$

among the differentiated invariants.

Commutation Formulae.

The order of invariant differentiation matters

$$
\begin{aligned}
{\left[\mathcal{D}_{i}, \mathcal{D}_{j}\right] } & =? ? ? \\
& \Longrightarrow \text { Only an issue when } p>1 .
\end{aligned}
$$

The Fundamental Differential Invariants

$$
\begin{gathered}
I^{(n)}\left(z^{(n)}\right)=\rho^{(n)}\left(z^{(n)}\right)^{-1} \cdot z^{(n)} \\
H^{i}\left(x, u^{(n)}\right)=y^{i}\left(\rho^{(n)}\left(x, u^{(n)}\right), x, u\right) \\
I_{K}^{\alpha}\left(x, u^{(k)}\right)=v_{K}^{\alpha}\left(\rho^{(n)}\left(x, u^{(n)}\right), x, u^{(k)}\right)
\end{gathered}
$$

Recurrence Formulae:

$$
\begin{gathered}
{\left[\begin{array}{l}
\mathcal{D}_{j} H^{i}=\delta_{j}^{i}+M_{j}^{i} \\
\mathcal{D}_{j} I_{K}^{\alpha}=I_{K, j}^{\alpha}+M_{K, j}^{\alpha}
\end{array}\right.} \\
M_{j}^{i}, M_{K, j}^{\alpha} \quad \text { correction terms }
\end{gathered}
$$

Commutation Formulae:

$$
\left[\mathcal{D}_{i}, \mathcal{D}_{j}\right]=\sum_{i=1}^{p} A_{i j}^{k} \mathcal{D}_{k}
$$

- The correction terms can be computed directly from the infinitesimal generators!

Generating Invariants

Theorem. A generating system of differential invariants consists of

- all non-phantom differential invariants H^{i} and I^{α} coming from the un-normalized zero ${ }^{\text {th }}$ order lifted invariants y^{i}, v^{α}, and
- all non-phantom differential invariants of the form $I_{J, i}^{\alpha}$ where I_{J}^{α} is a phantom differential invariant.

$$
\text { order } \leq \text { order } \rho+1
$$

In other words, every other differential invariant can, locally, be written as a function of the generating invariants and their invariant derivatives, $\mathcal{D}_{K} H^{i}, \mathcal{D}_{K} I_{J, i}^{\alpha}$.
\Longrightarrow Not necessarily a minimal set!

Syzygies

A syzygy is a functional relation among differentiated invariants:

$$
H\left(\ldots \mathcal{D}_{J} I_{\nu} \ldots\right) \equiv 0
$$

Derivatives of syzygies are syzygies
\Longrightarrow find a minimal basis

Remark: There are no syzygies among the normalized differential invariants $I^{(n)}$ except for the "phantom syzygies"

$$
I_{\nu}=c_{\nu}
$$

corresponding to the normalizations.

Classification of Syzygies

Theorem. All syzygies among the differentiated invariants are differential consequences of the following three fundamental types:

$$
\mathcal{D}_{j} H^{i}=\delta_{j}^{i}+M_{j}^{i}
$$

- H^{i} non-phantom

$$
\mathcal{D}_{J} I_{K}^{\alpha}=c_{\nu}+M_{K, J}^{\alpha}
$$

- I_{K}^{α} generating
- $I_{J, K}^{\alpha}=w_{\nu}=c_{\nu}$ phantom

$$
\mathcal{D}_{J} I_{L K}^{\alpha}-\mathcal{D}_{K} I_{L J}^{\alpha}=M_{L K, J}^{\alpha}-M_{L J, K}^{\alpha}
$$

$$
-I_{L K}^{\alpha}, I_{L J}^{\alpha} \text { generating, } K \cap J=\varnothing
$$

\Longrightarrow Not necessarily a minimal system!

Right Regularization

If G acts on M, then the lifted action

$$
(h, z) \quad \longmapsto \quad\left(h \cdot g^{-1}, g \cdot z\right)
$$

on the trivial right principal bundle

$$
\mathcal{B}=G \times M
$$

is always regular and free!

The functions $w: \mathcal{B} \longrightarrow M$ given by

$$
w(g, z)=g \cdot z
$$

provide a complete system of global invariants for the lifted action.

Example. $G=\mathrm{SO}(2) \quad M=\mathbb{R}^{2}$

$$
\mathcal{B}=\mathrm{SO}(2) \times \mathbb{R}^{2} \quad \text { solid torus }
$$

$$
\begin{aligned}
& (x, u, \phi) \longmapsto \\
& \quad(x \cos \theta-u \sin \theta, x \sin \theta+u \cos \theta, \phi+\theta \bmod 2 \pi)
\end{aligned}
$$

Jet Regularization

$$
\mathcal{B}^{n}=\mathrm{J}^{n} \times G
$$

J^{n}
J^{n}

$$
\begin{gathered}
w=w^{(n)}=g^{(n)} \cdot z^{(n)} \\
\sigma^{(n)}\left(z^{(n)}\right)=\left(z^{(n)}, \rho^{(n)}\left(z^{(n)}\right)\right) \\
I^{(n)}\left(z^{(n)}\right)=w^{(n)} \circ \sigma^{(n)}\left(z^{(n)}\right)=\rho^{(n)}\left(z^{(n)}\right) \cdot z^{(n)}
\end{gathered}
$$

Invariantization

$$
\iota(F)=\left(\sigma^{(n)}\right)^{*} \circ\left(w^{(n)}\right)^{*} F=F \circ I^{(n)}
$$

General Philosophy of Lifting

All invariant objects on $\mathcal{B}^{n}=\mathrm{J}^{n} \times G$ are well-behaved and easily understood.
\Longrightarrow lifted invariants

We use the G-equivariant moving frame section

$$
\sigma^{(n)}: \mathrm{J}^{n} \longrightarrow \mathcal{B} \quad \sigma\left(z^{(n)}\right)=\left(\rho\left(z^{(n)}\right), z^{(n)}\right)
$$

to pull back lifted invariants to construct ordinary invariants on J^{n}.

For example,

$$
\sigma^{*} w^{(n)}=w^{(n)} \circ \sigma=I^{(n)}
$$

gives the fundamental differential invariants.

Similarly for lifted invariant differential forms, differential operators, tensors, etc.
\Longrightarrow The key complication is that the pull-back process does not commute with differentiation!

The Variational Bicomplex

Infinite jet space

$$
M=\mathrm{J}^{0} \longleftarrow \mathrm{~J}^{1} \longleftarrow \mathrm{~J}^{2} \longleftarrow \cdots
$$

Inverse limit

$$
\mathrm{J}^{\infty}=\lim _{n \rightarrow \infty} \mathrm{~J}^{n}
$$

Local coordinates

$$
z^{(\infty)}=\left(x, u^{(\infty)}\right)=\left(\ldots x^{i} \ldots u_{J}^{\alpha} \ldots\right)
$$

Coframe - basis for the cotangent space $T^{*} \mathrm{~J}^{\infty}$:
Horizontal one-forms

$$
d x^{1}, \ldots, d x^{p}
$$

Contact (vertical) one-forms

$$
\theta_{J}^{\alpha}=d u_{J}^{\alpha}-\sum_{i=1}^{p} u_{J, i}^{\alpha} d x^{i}
$$

Intrinsic definition of contact form

$$
\theta \mid \mathrm{j}_{\infty} N=0 \quad \Longleftrightarrow \quad \theta=\sum A_{J}^{\alpha} \theta_{J}^{\alpha}
$$

Vertical and Horizontal Differentials

Bigrading of the differential forms on J^{∞}

$$
\Omega^{*}=\bigoplus_{r, s} \Omega^{r, s}
$$

Differential

$$
\begin{aligned}
& d=d_{H}+d_{V} \\
& d_{H}: \Omega^{r, s} \longrightarrow \Omega^{r+1, s} \\
& d_{V}: \Omega^{r, s} \longrightarrow \Omega^{r, s+1} \\
& d_{H} F=\sum_{i=1}^{p}\left(D_{i} F\right) d x^{i}- \text { total derivatives } \\
& d_{V} F=\sum_{\alpha, J} \frac{\partial F}{\partial u_{J}^{\alpha}} \theta_{J}^{\alpha} \quad \quad \text { variation }
\end{aligned}
$$

$$
\Longrightarrow \text { Vinogradov, Tsujishita, I. Anderson }
$$

The Simplest Example. $\quad M=\mathbb{R}^{2} \quad x, u \in \mathbb{R}$
Horizontal form $d x$

Contact (vertical) forms

$$
\begin{aligned}
& \theta=d u-u_{x} d x \\
& \theta_{x}=d u_{x}-u_{x x} d x \\
& \theta_{x x}=d u_{x x}-u_{x x x} d x
\end{aligned}
$$

Differential

$$
\begin{aligned}
d F & =\frac{\partial F}{\partial x} d x+\frac{\partial F}{\partial u} d u+\frac{\partial F}{\partial u_{x}} d u_{x}+\frac{\partial F}{\partial u_{x x}} d u_{x x}+\cdots \\
& =\left(D_{x} F\right) d x+\frac{\partial F}{\partial u} \theta+\frac{\partial F}{\partial u_{x}} \theta_{x}+\frac{\partial F}{\partial u_{x x}} \theta_{x x}+\cdots \\
& =d_{H} F+d_{V} F
\end{aligned}
$$

Total derivative

$$
D_{x} F=\frac{\partial F}{\partial u} u_{x}+\frac{\partial F}{\partial u_{x}} u_{x x}+\frac{\partial F}{\partial u_{x x}} u_{x x x}+\cdots
$$

Lifted Variational Tricomplex

$$
\mathcal{B}^{\infty}=\mathrm{J}^{\infty} \times G
$$

- Lifted horizontal forms

$$
d_{J} y^{i} \quad i=1, \ldots, p
$$

- Lifted invariant contact forms

$$
\Theta_{J}^{\alpha}=d_{J} v_{J}^{\alpha}-\sum_{i=1}^{p} v_{J, i}^{\alpha} d_{J} y^{i}
$$

- Right-invariant Maurer-Cartan forms

$$
\boldsymbol{\mu}=d g \cdot g^{-1} \quad \Longrightarrow \quad \mu^{1}, \ldots, \mu^{r} \quad r=\operatorname{dim} G
$$

Differential forms on \mathcal{B}^{∞}

$$
\Omega^{*}=\bigoplus_{r, s, t} \widehat{\Omega}^{r, s, t}
$$

Differential

$$
\begin{aligned}
& d=d_{H}+d_{V}+d_{G} \\
& d_{H}: \quad \hat{\Omega}^{r, s, t} \longrightarrow \quad \hat{\Omega}^{r+1, s, t} \\
& d_{V}: \hat{\Omega}^{r, s, t} \longrightarrow \hat{\Omega}^{r, s+1, t} \\
& d_{G}: \quad \hat{\Omega}^{r, s, t} \longrightarrow \widehat{\Omega}^{r, s, t+1}
\end{aligned}
$$

Invariantization

$$
\begin{array}{lll}
\iota: & \text { Functions } & \longrightarrow \\
\text { Invariants } \\
\text { Forms } & \longrightarrow & \text { Invariant Forms }
\end{array}
$$

Functions:

$$
\iota(F)=\sigma^{*} \circ w^{*}(F)=F \circ I^{(\infty)}
$$

Differential Forms:

$$
\iota(\Omega)=\sigma^{*}\left(\pi_{J}\left(w^{*} \Omega\right)\right) .
$$

π_{J} - Jet projection

$$
T^{*} \mathcal{B}^{\infty}=T^{*}\left(\mathrm{~J}^{\infty} \times G\right) \simeq T^{*} \mathrm{~J}^{\infty}{ }_{\oplus} T^{*} G
$$

Invariant Variational Complex

Fundamental differential invariants

$$
H^{i}\left(x, u^{(n)}\right)=\iota\left(x^{i}\right) \quad I_{K}^{\alpha}\left(x, u^{(l)}\right)=\iota\left(u_{K}^{\alpha}\right)
$$

Invariant horizontal one-forms

$$
\begin{aligned}
\varpi^{i}=\iota\left(d x^{i}\right)= & \omega^{i}+\eta^{i} \\
& \omega^{i}-\text { contact-invariant forms } \\
& \eta^{i}-\text { contact "corrections" }
\end{aligned}
$$

Invariant contact forms

$$
\vartheta_{K}^{\alpha}=\iota\left(\theta_{J}^{\alpha}\right)
$$

Differential forms

$$
\Omega^{*}=\bigoplus_{r, s} \hat{\Omega}^{r, s}
$$

Differential

$$
\begin{gathered}
d=d_{\mathcal{H}}+d_{\mathcal{V}}+d_{\mathcal{W}} \\
d_{\mathcal{H}}: \widehat{\Omega}^{r, s} \longrightarrow \widehat{\Omega}^{r+1, s} \\
d_{\mathcal{V}}: \widehat{\Omega}^{r, s} \longrightarrow \hat{\Omega}^{r, s+1} \\
d_{\mathcal{W}}: \widehat{\Omega}^{r, s} \longrightarrow \longrightarrow \widehat{\Omega}^{r-1, s+2}
\end{gathered}
$$

The Key Formula

$$
d \iota(\Omega)=\iota(d \Omega)+\sum_{k=1}^{p} \nu^{\kappa} \wedge \iota\left[\mathbf{v}_{\kappa}(\Omega)\right]
$$

$\mathbf{v}_{1}, \ldots, \mathbf{v}_{r} \quad-\quad$ basis for \mathfrak{g}

$$
\begin{array}{rr}
\nu^{\kappa}=\sigma^{*} \mu^{\kappa}=\gamma^{\kappa}+\varepsilon^{\kappa} & \kappa=1, \ldots, r \\
\gamma^{\kappa} \in \widehat{\Omega}^{1,0} & \varepsilon^{\kappa} \in \widehat{\Omega}^{0,1}
\end{array}
$$

- pull back of the dual basis Maurer-Cartan forms via the moving frame section

$$
\sigma^{*}: \mathrm{J}^{\infty} \rightarrow \mathcal{B}^{\infty}
$$

$\star \star \star$ All recurrence formulae, syzygies, commutation formulae, etc. are found by applying the key formula for various forms and functions Ω

Euclidean Curves

Lifted invariants

$$
\begin{aligned}
y & =w^{*}(x)=x \cos \phi-u \sin \phi+a \\
v & =w^{*}(u)=x \cos \phi+u \sin \phi+b \\
v_{y} & =w^{*}\left(u_{x}\right)=\frac{\sin \phi+u_{x} \cos \phi}{\cos \phi-u_{x} \sin \phi} \\
v_{y y} & =w^{*}\left(u_{x x}\right)=\frac{u_{x x}}{\left(\cos \phi-u_{x} \sin \phi\right)^{3}} \\
v_{y y y} & =w^{*}\left(u_{x x}\right)=\frac{\left(\cos \phi-u_{x} \sin \phi\right) u_{x x x}-3 u_{x x}^{2} \sin \phi}{\left(\cos \phi-u_{x} \sin \phi\right)^{5}}
\end{aligned}
$$

$$
\begin{aligned}
d y & =\left(\cos \phi-u_{x} \sin \phi\right) d x-(\sin \phi) \theta+d a-v d \phi \\
d_{J} y & =\pi_{J}(d y)=\left(\cos \phi-u_{x} \sin \phi\right) d x-(\sin \phi) \theta \\
D_{y} & =\frac{1}{\cos \phi-u_{x} \sin \phi} D_{x} \quad \theta=d u-u_{x} d x
\end{aligned}
$$

Normalization

$$
y=0 \quad v=0 \quad v_{y}=0
$$

Right moving frame

$$
\rho: \mathrm{J}^{1} \longrightarrow \mathrm{SE}(2)
$$

$$
\phi=-\tan ^{-1} u_{x} \quad a=-\frac{x+u u_{x}}{\sqrt{1+u_{x}^{2}}} \quad b=\frac{x u_{x}-u}{\sqrt{1+u_{x}^{2}}}
$$

Fundamental normalized differential invariants

$$
\left.\begin{array}{rl}
\iota(x) & =H=0 \\
\iota(u) & =I_{0}=0 \\
\iota\left(u_{x}\right) & =I_{1}=0 \\
\iota\left(u_{x x}\right) & =I_{2}=\kappa \\
\iota\left(u_{x x x}\right) & =I_{3}=\kappa_{s} \\
\iota\left(u_{x x x x}\right) & =I_{4}=\kappa_{s s}+3 \kappa^{3}
\end{array}\right\} \quad \text { phantom diff. invs. }
$$

Invariant horizontal one-form

$$
\begin{aligned}
\iota(d x)=\sigma^{*}\left(d_{J} y\right)=\varpi & =\quad \omega \\
& +\quad \eta \\
& =\sqrt{1+u_{x}^{2}} d x+\frac{u_{x}}{\sqrt{1+u_{x}^{2}}} \theta
\end{aligned}
$$

Invariant contact forms

$$
\begin{aligned}
\iota(\theta) & =\vartheta=\frac{\theta}{\sqrt{1+u_{x}^{2}}} \\
\iota\left(\theta_{x}\right) & =\vartheta_{1}=\frac{\left(1+u_{x}^{2}\right) \theta_{x}-u_{x} u_{x x} \theta}{\left(1+u_{x}^{2}\right)^{2}}
\end{aligned}
$$

Prolonged infinitesimal generators

$$
\begin{gathered}
\mathbf{v}_{1}=\partial_{x} \quad \mathbf{v}_{2}=\partial_{u} \\
\mathbf{v}_{3}=-u \partial_{x}+x \partial_{u}+\left(1+u_{x}^{2}\right) \partial_{u_{x}}+3 u_{x} u_{x x} \partial_{u_{x x}}+\cdots
\end{gathered}
$$

$$
d_{\mathcal{H}} I=D_{s} I \cdot \varpi
$$

Horizontal recurrence formula

$$
d_{\mathcal{H}} \iota(F)=\iota\left(d_{H} F\right)+\iota\left(\mathbf{v}_{1}(F)\right) \gamma^{1}+\iota\left(\mathbf{v}_{2}(F)\right) \gamma^{2}+\iota\left(\mathbf{v}_{3}(F)\right) \gamma^{3}
$$

Use phantom invariants

$$
\begin{aligned}
& 0=d_{\mathcal{H}} H=\iota\left(d_{H} x\right)+\sum \iota\left(\mathbf{v}_{\kappa}(x)\right) \gamma^{\kappa}=\varpi+\gamma^{1}, \\
& 0=d_{\mathcal{H}} I_{0}=\iota\left(d_{H} u\right)+\sum \iota\left(\mathbf{v}_{\kappa}(u)\right) \gamma^{\kappa}=\gamma^{2}, \\
& 0=d_{\mathcal{H}} I_{1}=\iota\left(d_{H} u_{x}\right)+\sum \iota\left(\mathbf{v}_{\kappa}\left(u_{x}\right)\right) \gamma^{\kappa}=\kappa \varpi+\gamma^{3},
\end{aligned}
$$

to solve for

$$
\gamma^{1}=-\varpi \quad \gamma^{2}=0 \quad \gamma^{3}=-\kappa \varpi
$$

$$
\gamma^{1}=-\varpi \quad \gamma^{2}=0 \quad \gamma^{3}=-\kappa \varpi
$$

Recurrence formulae

$$
\begin{aligned}
& \kappa_{s} \varpi=d_{\mathcal{H}} \kappa= d_{\mathcal{H}}\left(I_{2}\right)=\iota\left(d_{H} u_{x x}\right)+\iota\left(\mathbf{v}_{3}\left(u_{x x}\right)\right) \gamma^{3} \\
&\left.=\iota\left(u_{x x x} d x\right)-\iota\left(3 u_{x} u_{x x}\right)\right) \kappa \varpi=I_{3} \varpi \\
& \kappa_{s s} \varpi=d_{\mathcal{H}}\left(I_{3}\right)=\iota\left(d_{H} u_{x x x}\right)+\iota\left(\mathbf{v}_{3}\left(u_{x x x}\right) \gamma^{3}\right. \\
&=\iota\left(u_{x x x x} d x\right)-\iota\left(4 u_{x} u_{x x x}+3 u_{x x}^{2}\right) \kappa \varpi=I_{4}-3 I_{2}^{3} \varpi
\end{aligned}
$$

$$
\begin{array}{rlrl}
\kappa & =I_{2} & I_{2}=\kappa \\
\kappa_{s} & =I_{3} & I_{3}=\kappa_{s} \\
\kappa_{s s} & =I_{4}-3 I_{2}^{3} & & I_{4}=\kappa_{s s}+3 \kappa^{3} \\
\kappa_{s s s} & =I_{5}-19 I_{2}^{2} I_{3} & I_{4}=\kappa_{s s s}+19 \kappa^{2} \kappa_{s}
\end{array}
$$

Vertical recurrence formula

$$
d_{\mathcal{V}} \iota(F)=\iota\left(d_{V} F\right)+\iota\left(\mathbf{v}_{1}(F)\right) \varepsilon^{1}+\iota\left(\mathbf{v}_{2}(F)\right) \varepsilon^{2}+\iota\left(\mathbf{v}_{3}(F)\right) \varepsilon^{3}
$$

Use phantom invariants

$$
\begin{aligned}
& 0=d_{\mathcal{V}} H=\varepsilon^{1} \\
& 0=d_{\mathcal{V}} I_{0}=\vartheta+\varepsilon^{2} \\
& 0=d_{\mathcal{V}} I_{1}=\vartheta_{1}+\varepsilon^{3}
\end{aligned}
$$

to solve for

$$
\varepsilon^{1}=0 \quad \varepsilon^{2}=-\vartheta=-\iota(\theta) \quad \varepsilon^{3}=-\vartheta_{1}=-\iota\left(\theta_{1}\right)
$$

Recurrence formulae

$$
d_{\mathcal{V}} I_{2}=d_{\mathcal{V}} \kappa=\iota\left(\theta_{2}\right)+\iota\left(\mathbf{v}_{3}\left(u_{x x}\right)\right) \varepsilon^{3}=\vartheta_{2}=\left(\mathcal{D}^{2}+\kappa^{2}\right) \vartheta
$$

$d_{\mathcal{H}} \vartheta:$

$$
\begin{gathered}
\mathcal{D} \vartheta=\vartheta_{1} \quad \mathcal{D} \vartheta_{1}=\vartheta_{2}-\kappa^{2} \vartheta \\
d_{\mathcal{V}} \varpi=-\kappa \vartheta \wedge \varpi
\end{gathered}
$$

Example

$$
\left(x^{1}, x^{2}, u\right) \in M=\mathbb{R}^{3} \quad G=\mathrm{GL}(2)
$$

$$
\begin{aligned}
&\left(x^{1}, x^{2}, u\right) \longmapsto\left(\alpha x^{1}+\beta x^{2}, \gamma x^{1}+\delta x^{2}, \lambda u\right) \\
& \lambda=\alpha \delta-\beta \gamma
\end{aligned}
$$

\Longrightarrow Classical invariant theory

Prolongation (lifted differential invariants):

$$
\begin{aligned}
y^{1} & =\lambda^{-1}\left(\delta x^{1}-\beta x^{2}\right) \quad y^{2}=\lambda^{-1}\left(-\gamma x^{1}+\alpha x^{2}\right) \\
v & =\lambda^{-1} u \\
v_{1} & =\frac{\alpha u_{1}+\gamma u_{2}}{\lambda} \quad v_{2}=\frac{\beta u_{1}+\delta u_{2}}{\lambda} \\
v_{11} & =\frac{\alpha^{2} u_{11}+2 \alpha \gamma u_{12}+\gamma^{2} u_{22}}{\lambda} \\
v_{12} & =\frac{\alpha \beta u_{11}+(\alpha \delta+\beta \gamma) u_{12}+\gamma \delta u_{22}}{\lambda} \\
v_{22} & =\frac{\beta^{2} u_{11}+2 \beta \delta u_{12}+\delta^{2} u_{22}}{\lambda}
\end{aligned}
$$

Normalization

$$
y^{1}=1 \quad y^{2}=0 \quad v_{1}=1 \quad v_{2}=0
$$

Nondegeneracy

$$
x^{1} \frac{\partial u}{\partial x^{1}}+x^{2} \frac{\partial u}{\partial x^{2}} \neq 0
$$

First order moving frame

$$
\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)=\left(\begin{array}{cc}
x^{1} & -u_{2} \\
x^{2} & u_{1}
\end{array}\right)
$$

Normalized differential invariants

$$
\begin{aligned}
J^{1} & =1 \quad J^{2}=0 \\
I & =\frac{u}{x^{1} u_{1}+x^{2} u_{2}} \\
I_{1} & =1 \quad I_{2}=0 \\
I_{11} & =\frac{\left(x^{1}\right)^{2} u_{11}+2 x^{1} x^{2} u_{12}+\left(x^{2}\right)^{2} u_{22}}{x^{1} u_{1}+x^{2} u_{2}} \\
I_{12} & =\frac{-x^{1} u_{2} u_{11}+\left(x^{1} u_{1}-x^{2} u_{2}\right) u_{12}+x^{2} u_{1} u_{22}}{x^{1} u_{1}+x^{2} u_{2}} \\
I_{22} & =\frac{\left(u_{2}\right)^{2} u_{11}-2 u_{1} u_{2} u_{12}+\left(u_{1}\right)^{2} u_{22}}{x^{1} u_{1}+x^{2} u_{2}}
\end{aligned}
$$

Phantom differential invariants

$$
I_{1} \quad I_{2}
$$

Generating differential invariants

$$
\begin{array}{cccc}
I & I_{11} & I_{12} & I_{22}
\end{array}
$$

Invariant differential operators

$$
\begin{aligned}
& \mathcal{D}_{1}=x^{1} D_{1}+x^{2} D_{2} \\
& \mathcal{D}_{2}=-u_{2} D_{1}+u_{1} D_{2}
\end{aligned}
$$

— scaling process

- Jacobian process

Recurrence formulae

$$
\begin{array}{ll}
\mathcal{D}_{1} J^{1}=\delta_{1}^{1}-1=0 & \mathcal{D}_{2} J^{1}=\delta_{2}^{1}-0=0 \\
\mathcal{D}_{1} J^{2}=\delta_{1}^{2}-0=0 & \mathcal{D}_{2} J^{2}=\delta_{2}^{2}-1=0 \\
\mathcal{D}_{1} I=I_{1}-I\left(1+I_{11}\right)=-I\left(1+I_{11}\right) & \mathcal{D}_{2} I=I_{2}-I I_{12}=-I I_{12} \\
\mathcal{D}_{1} I_{1}=I_{11}-I_{11}=0 & \mathcal{D}_{2} I_{1}=I_{12}-I_{12}=0 \\
\mathcal{D}_{1} I_{2}=I_{12}-I_{12}=0 & \mathcal{D}_{2} I_{2}=I_{22}-I_{22}=0 \\
\mathcal{D}_{1} I_{11}=I_{111}+\left(1-I_{11}\right) I_{11} & \mathcal{D}_{2} I_{11}=I_{112}+\left(2-I_{11}\right) I_{12} \\
\mathcal{D}_{1} I_{12}=I_{112}-I_{11} I_{12} & \mathcal{D}_{2} I_{12}=I_{122}+\left(1-I_{11}\right) I_{22} \\
\mathcal{D}_{1} I_{22}=I_{122}+\left(I_{11}-1\right) I_{22}-2 I_{12}^{2} & \mathcal{D}_{2} I_{22}=I_{222}-I_{12} I_{22} \\
& \Longrightarrow \text { Use I to generate } I_{11} \text { and } I_{12}
\end{array}
$$

Syzygies

$$
\begin{aligned}
& \mathcal{D}_{1} I_{12}-\mathcal{D}_{2} I_{11}=-2 I_{12} \\
& \mathcal{D}_{1} I_{22}-\mathcal{D}_{2} I_{12}=2\left(I_{11}-1\right) I_{22}-2 I_{12}^{2} \\
&\left(\mathcal{D}_{1}\right)^{2} I_{22}-\left(\mathcal{D}_{2}\right)^{2} I_{11}= \\
&=2 I_{22} \mathcal{D}_{1} I_{11}+\left(5 I_{12}-2\right) \mathcal{D}_{1} I_{12}+\left(3 I_{11}-5\right) \mathcal{D}_{1} I_{22}- \\
& \quad \quad\left(2 I_{11}-5\right)\left(I_{11}-1\right) I_{12}+4\left(I_{11}-1\right) I_{12}^{2}
\end{aligned}
$$

Commutation formulae

$$
\left[\mathcal{D}_{1}, \mathcal{D}_{2}\right]=-I_{12} \mathcal{D}_{1}+\left(I_{11}-1\right) \mathcal{D}_{2}
$$

Invariant Variational Problems

$$
\mathcal{I}[u]=\int L\left(x, u^{(n)}\right) d \mathbf{x}=\int P\left(\ldots \mathcal{D}_{K} I^{\alpha} \ldots\right) \omega
$$

$I_{1}, \ldots, I_{\ell} \quad$ - fundamental differential invariants
$\mathcal{D}_{K} I^{\alpha} \quad$ - differentiated invariants
$\boldsymbol{\omega}=\omega^{1} \wedge \cdots \wedge \omega^{p}-$ contact-invariant volume form

Invariant Euler-Lagrange equations

$$
\mathbf{E}(L)=F\left(\ldots \mathcal{D}_{K} I^{\alpha} \ldots\right)=0
$$

Problem.

Construct F directly from P.
\Longrightarrow P. Griffiths, I. Anderson

Example. Planar Euclidean group $G=\operatorname{SE}(2)$

Invariant variational problem

$$
\int P\left(\kappa, \kappa_{s}, \kappa_{s s}, \ldots\right) d s
$$

Euler-Lagrange equations

$$
\mathbf{E}(L)=F\left(\kappa, \kappa_{s}, \kappa_{s s}, \ldots\right)=0
$$

The Elastica (Euler):

$$
\mathcal{I}[u]=\int \frac{1}{2} \kappa^{2} d s=\int \frac{u_{x x}^{2} d x}{\left(1+u_{x}^{2}\right)^{5 / 2}}
$$

Euler-Lagrange equation

$$
\mathbf{E}(L)=\kappa_{s s}+\frac{1}{2} \kappa^{3}=0
$$

\Longrightarrow elliptic functions

$$
\int P\left(\kappa, \kappa_{s}, \kappa_{s s}, \ldots\right) d s
$$

Invariantized Euler operator

$$
\mathcal{E}=\sum_{n=0}^{\infty}(-\mathcal{D})^{n} \frac{\partial}{\partial \kappa_{n}} \quad \mathcal{D}=\frac{d}{d s}
$$

Invariantized Hamiltonian operator

$$
\mathcal{H}(P)=\sum_{i>j} \kappa_{i-j}(-\mathcal{D})^{j} \frac{\partial P}{\partial \kappa_{i}}-P
$$

Invariant Euler-Lagrange formula

$$
\mathbf{E}(L)=\left(\mathcal{D}^{2}+\kappa^{2}\right) \mathcal{E}(P)+\kappa \mathcal{H}(P) .
$$

Elastica

$$
\begin{gathered}
P=\frac{1}{2} \kappa^{2} \quad \mathcal{E}(P)=\kappa \quad \mathcal{H}(P)=-P=-\frac{1}{2} \kappa^{2} \\
\mathbf{E}(L)=\kappa_{s s}+\frac{1}{2} \kappa^{3}=0
\end{gathered}
$$

Euler-Lagrange Equations

Integration by Parts:

$$
\begin{aligned}
\pi: \Omega^{p, 1} \longrightarrow \mathcal{F}^{1}=\Omega^{p, 1} / d_{H} \Omega^{p-1,1} & \\
& \Longrightarrow \text { Source forms }
\end{aligned}
$$

Variational derivative or Euler operator:

$$
\delta=\pi \circ d_{V}: \Omega^{p, 0} \quad \longrightarrow \quad \mathcal{F}^{1}
$$

Variational Problems \longrightarrow Source Forms

$$
\delta: \lambda=L d \mathbf{x} \quad \longrightarrow \quad \sum_{\alpha=1}^{q} \mathbf{E}_{\alpha}(L) \theta^{\alpha} \wedge d \mathbf{x}
$$

Hamiltonian

$$
\mathbf{H}(L)=\sum_{\alpha=1}^{m} \sum_{i>j \geq 0} u_{i-j}^{\alpha}\left(-D_{x}\right)^{j} \frac{\partial L}{\partial u_{i}^{\alpha}}-L
$$

The Simplest Example. $\quad M=\mathbb{R}^{2} \quad x, u \in \mathbb{R}$
Lagrangian form

$$
\lambda=L\left(x, u^{(n)}\right) d x
$$

Vertical derivative

$$
\begin{aligned}
d \lambda & =d_{V} \lambda \\
& =\left(\frac{\partial L}{\partial u} \theta+\frac{\partial L}{\partial u_{x}} \theta_{x}+\frac{\partial L}{\partial u_{x x}} \theta_{x x}+\cdots\right) \wedge d x \in \Omega^{1,1}
\end{aligned}
$$

Integration by parts

$$
\begin{aligned}
d_{H}(A \theta) & =\left(D_{x} A\right) d x \wedge \theta-A \theta_{x} \wedge d x \\
& =-\left[\left(D_{x} A\right) \theta+A \theta_{x}\right] \wedge d x
\end{aligned}
$$

Variational derivative

$$
\begin{aligned}
\delta \lambda & =\left(\frac{\partial L}{\partial u}-D_{x} \frac{\partial L}{\partial u_{x}}+D_{x}^{2} \frac{\partial L}{\partial u_{x x}}-\cdots\right) \theta \wedge d x \\
& =\mathbf{E}(L) \theta \wedge d x \in \mathcal{F}^{1}
\end{aligned}
$$

Plane Curves

Invariant Lagrangian

$$
\int P\left(\kappa, \kappa_{s}, \ldots\right) \varpi
$$

κ - fundamental differential invariant (curvature)
$\varpi=\omega+\eta$ - fully invariant horizontal form
$\omega=d s$ - contact-invariant arc length
Invariant integration by parts

$$
d_{\mathcal{V}}(P \varpi)=\mathcal{E}(P) d_{\mathcal{V}} \kappa \wedge \varpi-\mathcal{H}(P) d_{\mathcal{V}} \varpi
$$

Vertical differentiation formulae

$$
\begin{array}{ll}
d_{\mathcal{V}} \kappa=\mathcal{A}(\vartheta) & \mathcal{A}-\text { Eulerian operator } \\
d_{\mathcal{V}} \varpi=\mathcal{B}(\vartheta) \wedge \varpi & \mathcal{B}-\text { Hamiltonian operator }
\end{array}
$$

\Longrightarrow The explicit formulae follow from our fundamental recurrence formula, based on the infinitesimal generators of the action.

Invariant Euler-Lagrange equation

$$
\mathcal{A}^{*} \mathcal{E}(P)-\mathcal{B}^{*} \mathcal{H}(P)=0
$$

General Framework

Fundamental differential invariants

$$
I^{1}, \ldots, I^{\ell}
$$

Invariant horizontal coframe

$$
\varpi^{1}, \ldots, \varpi^{p}
$$

Dual invariant differential operators

$$
\mathcal{D}_{1}, \ldots, \mathcal{D}_{p}
$$

Invariant volume form

$$
\varpi=\varpi^{1} \wedge \cdots \wedge \varpi^{p}
$$

Differentiated invariants

$$
\begin{aligned}
I_{, K}^{\alpha}=\mathcal{D}^{K} J^{\alpha}=\mathcal{D}_{k_{1}} & \cdots \mathcal{D}_{k_{n}} J^{\alpha} \\
& \Longrightarrow \text { order is important! }
\end{aligned}
$$

Eulerian operator

$$
d_{\mathcal{V}} I^{\alpha}=\sum_{\beta=1}^{q} \mathcal{A}_{\beta}^{\alpha}\left(\vartheta^{\beta}\right) \quad \mathcal{A}=\left(\mathcal{A}_{\beta}^{\alpha}\right)
$$

$\Longrightarrow m \times q$ matrix of invariant differential operators

Hamiltonian operator complex

$$
d_{\mathcal{V}} \varpi^{j}=\sum_{\beta=1}^{q} \mathcal{B}_{i, \beta}^{j}\left(\vartheta^{\beta}\right) \wedge \varpi^{i} \quad \mathcal{B}_{i}^{j}=\left(\mathcal{B}_{i, \beta}^{j}\right)
$$

$\Longrightarrow p^{2}$ row vectors of invariant differential operators

$$
\varpi_{(i)}=(-1)^{i-1} \varpi^{1} \wedge \cdots \wedge \varpi^{i-1} \wedge \varpi^{i+1} \wedge \cdots \wedge \varpi^{p}
$$

Twist invariants

$$
d_{\mathcal{H}} \varpi_{(i)}=Z_{i} \varpi
$$

Twisted adjoint

$$
\mathcal{D}_{i}^{\dagger}=-\left(\mathcal{D}_{i}+Z_{i}\right)
$$

Invariant variational problem

$$
\int P\left(I^{(n)}\right) \varpi
$$

Invariant Eulerian

$$
\mathcal{E}_{\alpha}(P)=\sum_{K} \mathcal{D}_{K}^{\dagger} \frac{\partial P}{\partial I_{, K}^{\alpha}}
$$

Invariant Hamiltonian tensor

$$
\mathcal{H}_{j}^{i}(P)=-P \delta_{j}^{i}+\sum_{\alpha=1}^{q} \sum_{J, K} I_{, J, j}^{\alpha} \mathcal{D}_{K}^{\dagger} \frac{\partial P}{\partial I_{, J, i, K}^{\alpha}},
$$

Invariant Euler-Lagrange equations

$$
\mathcal{A}^{\dagger} \mathcal{E}(P)-\sum_{i, j=1}^{p}\left(\mathcal{B}_{i}^{j}\right)^{\dagger} \mathcal{H}_{j}^{i}(P)=0
$$

Euclidean Surfaces

$S \subset M=\mathbb{R}^{3} \quad$ coordinates $\quad z=(x, y, u)$

Group: $\quad G=\mathrm{E}(3)$

$$
z \longmapsto R z+a, \quad R \in \mathrm{O}(3)
$$

Normalization - coordinate cross-section

$$
x=y=u=u_{x}=u_{y}=u_{x y}=0 .
$$

Left moving frame

$$
a=z \quad R=\left(\mathbf{t}_{1} \mathbf{t}_{2} \mathbf{n}\right)
$$

- $\mathbf{t}_{1}, \mathbf{t}_{2} \in T S$ - Frenet frame
- n
- unit normal

Fundamental differential invariants

$$
\begin{aligned}
\kappa^{1}=\iota\left(u_{x x}\right) \quad \kappa^{2} & =\iota\left(u_{y y}\right) \\
& \Longrightarrow \text { principal curvatures }
\end{aligned}
$$

Frenet coframe

$$
\varpi^{1}=\iota\left(d x^{1}\right)=\omega^{1}+\eta^{1} \quad \varpi^{2}=\iota\left(d x^{2}\right)=\omega^{2}+\eta^{2}
$$

Invariant differential operators

$$
\mathcal{D}_{1} \quad \mathcal{D}_{2}
$$

\Longrightarrow Frenet differentiation

Fundamental Syzygy:
Use the recurrence formula to compare

$$
\begin{aligned}
& \iota\left(u_{x x y y}\right) \text { with } \kappa_{, 22}^{1}=\mathcal{D}_{2}^{2} \iota\left(u_{x x}\right) \\
& \kappa_{, 11}^{2}=\mathcal{D}_{1}^{2} \iota\left(u_{y y}\right) \\
& \kappa_{, 22}^{1}-\kappa_{, 11}^{2}+\frac{\kappa_{, 1}^{1} \kappa_{, 1}^{2}+\kappa_{, 2}^{1} \kappa_{, 2}^{2}-2\left(\kappa_{, 1}^{2}\right)^{2}-2\left(\kappa_{, 2}^{1}\right)^{2}}{\kappa^{1}-\kappa^{2}}-\kappa^{1} \kappa^{2}\left(\kappa^{1}-\kappa^{2}\right)=0 \\
& \Longrightarrow \text { Codazzi equations }
\end{aligned}
$$

Twisted adjoints

$$
\begin{array}{ll}
\mathcal{D}_{1}^{\dagger}=-\left(\mathcal{D}_{1}+Z_{1}\right) & Z_{1}=\frac{\kappa_{, 1}^{2}}{\kappa^{1}-\kappa^{2}} \\
\mathcal{D}_{2}^{\dagger}=-\left(\mathcal{D}_{2}+Z_{2}\right) & Z_{2}=\frac{\kappa_{, 2}^{1}}{\kappa^{2}-\kappa^{1}}
\end{array}
$$

Gauss curvature - Codazzi equations:

$$
\begin{aligned}
K=\kappa^{1} \kappa^{2} & =\mathcal{D}_{1}^{\dagger}\left(Z_{1}\right)+\mathcal{D}_{2}^{\dagger}\left(Z_{2}\right) \\
& =-\left(\mathcal{D}_{1}+Z_{1}\right) Z_{1}-\left(\mathcal{D}_{2}+Z_{2}\right) Z_{2}
\end{aligned}
$$

K is an invariant divergence

Invariant contact form

$$
\vartheta=\iota(\theta)=\iota\left(d u-u_{x} d x-u_{y} d y\right)
$$

Invariant vertical derivatives

$$
\begin{aligned}
& d_{\mathcal{V}} \kappa^{1}=\iota\left(\theta_{x x}\right)=\left(\mathcal{D}_{1}^{2}+Z_{2} \mathcal{D}_{2}+\left(\kappa^{1}\right)^{2}\right) \vartheta \\
& d_{\mathcal{V}} \kappa^{2}=\iota\left(\theta_{y y}\right)=\left(\mathcal{D}_{2}^{2}+Z_{1} \mathcal{D}_{1}+\left(\kappa^{2}\right)^{2}\right) \vartheta
\end{aligned}
$$

Eulerian operator

$$
\mathcal{A}=\binom{\mathcal{D}_{1}^{2}+Z_{2} \mathcal{D}_{2}+\left(\kappa^{1}\right)^{2}}{\mathcal{D}_{2}^{2}+Z_{1} \mathcal{D}_{1}+\left(\kappa^{2}\right)^{2}}
$$

$$
\begin{aligned}
& d_{\mathcal{V}} \varpi^{1}=\kappa^{1} \vartheta \wedge \varpi^{1}-\frac{1}{\kappa^{1}-\kappa^{2}}\left(\mathcal{D}_{1} \mathcal{D}_{2}-Z_{2} \mathcal{D}_{1}\right) \vartheta \wedge \varpi^{2} \\
& d_{\mathcal{V}} \varpi^{2}=\frac{1}{\kappa^{1}-\kappa^{2}}\left(\mathcal{D}_{2} \mathcal{D}_{1}-Z_{1} \mathcal{D}_{2}\right) \vartheta \wedge \varpi^{1}+\kappa^{2} \vartheta \wedge \varpi^{2}
\end{aligned}
$$

Hamiltonian operator complex

$$
\begin{aligned}
& \mathcal{B}_{1}^{1}=\kappa^{1}, \quad \mathcal{B}_{2}^{1}=\frac{1}{\mathcal{B}_{2}^{2}=\kappa^{2}, \kappa^{2}}\left(\mathcal{D}_{1} \mathcal{D}_{2}-Z_{2} \mathcal{D}_{1}\right)=-\mathcal{B}_{1}^{2}
\end{aligned}
$$

Euclidean-invariant variational problem

$$
\int P\left(\kappa^{(n)}\right) \omega^{1} \wedge \omega^{2}=\int P\left(\kappa^{(n)}\right) d A
$$

Euler-Lagrange equations

$$
\mathbf{E}(L)=\mathcal{A}^{\dagger} \mathcal{E}(P)-\mathcal{B}^{\dagger} \mathcal{H}(P)=0
$$

Special case: $\quad P\left(\kappa^{1}, \kappa^{2}\right)$

$$
\begin{aligned}
\mathbf{E}(L)=[& \left.\left(\mathcal{D}_{1}^{\dagger}\right)^{2}-\mathcal{D}_{2}^{\dagger} \cdot Z_{2}+\left(\kappa^{1}\right)^{2}\right] \frac{\partial P}{\partial \kappa^{1}}+ \\
& +\left[\left(\mathcal{D}_{2}^{\dagger}\right)^{2}-\mathcal{D}_{1}^{\dagger} \cdot Z_{1}+\left(\kappa^{2}\right)^{2}\right] \frac{\partial P}{\partial \kappa^{2}}+\left(\kappa^{1}+\kappa^{2}\right) P
\end{aligned}
$$

Minimal surfaces: $\quad P=1$

$$
\kappa^{1}+\kappa^{2}=2 H=0
$$

Minimizing mean curvature: $\quad P=H=\frac{1}{2}\left(\kappa^{1}+\kappa^{2}\right)$

$$
\frac{1}{2}\left[\left(\kappa^{1}\right)^{2}+\left(\kappa^{2}\right)^{2}+\kappa^{1}+\kappa^{2}\right]=2 H^{2}+H-K=0 .
$$

Willmore surfaces: $\quad P=\frac{1}{2}\left(\kappa^{1}\right)^{2}+\frac{1}{2}\left(\kappa^{2}\right)^{2}$

$$
\Delta\left(\kappa^{1}+\kappa^{2}\right)+\frac{1}{2}\left(\kappa^{1}+\kappa^{2}\right)\left(\kappa^{1}-\kappa^{2}\right)^{2}=2 \Delta H+4\left(H^{2}-K\right) H=0
$$

Laplace-Beltrami operator

$$
\Delta=\left(\mathcal{D}_{1}+Z_{1}\right) \mathcal{D}_{1}+\left(\mathcal{D}_{2}+Z_{2}\right) \mathcal{D}_{2}=-\mathcal{D}_{1}^{\dagger} \cdot \mathcal{D}_{1}-\mathcal{D}_{2}^{\dagger} \cdot \mathcal{D}_{2}
$$

Multi-Space

Although in use since the time of Lie and Darboux, jet space was first formally defined by Ehresmann in 1950.

Jet space is the proper setting for the geometry of partial differential equations.

In this talk, I will propose a setting, named multispace, for the geometry of numerical approximations to derivatives and differential equations.
\Longrightarrow Multi-space is the context for geometric integration.

Invariant Numerical Approximations

Key remark: Every (finite difference) numerical approximation to the derivatives of a function require evaluating the function at several points $z_{i}=\left(x_{i}, u_{i}\right)=\left(x_{i}, f\left(x_{i}\right)\right)$.

In other words, we seek to approximate the $n^{\text {th }}$ order jet of a submanifold $N \subset M$ by a function $F\left(z_{0}, \ldots, z_{n}\right)$ defined on the $(n+1)$-fold Cartesian product space $M^{\times(n+1)}=M \times \cdots \times M$, or, more correctly, on the "off-diagonal" part

$$
\begin{aligned}
M^{\diamond(n+1)} & =\left\{z_{i} \neq z_{j} \text { for all } i \neq j\right\} \\
& \Longrightarrow \text { distinct }(n+1) \text {-tuples of points. }
\end{aligned}
$$

Thus, multi-space should contain both the jet space and the off-diagonal Cartesian product space as submanifolds:

$$
\left.\begin{array}{c}
M^{\diamond(n+1)} \\
\downarrow \\
\mathrm{J}^{n}(M, p)
\end{array}\right\} \subset M^{(n)}
$$

Functions $F: M^{(n)} \longrightarrow \mathbb{R}$ are given by

$$
F\left(z_{0}, \ldots, z_{n}\right) \quad \text { on } \quad M^{\diamond(n+1)}
$$

and extend smoothly to J^{n} as the points coalesce. In this manner, $F \mid M^{\diamond(n+1)}$ provides a finite difference approximation to the differential function $F \mid \mathrm{J}^{n}$.

Construction of $M^{(n)}$

Definition. An $(n+1)$-pointed manifold

$$
\mathbf{M}=\left(z_{0}, \ldots, z_{n} ; M\right)
$$

M - smooth manifold
$z_{0}, \ldots, z_{n} \in M$ - not necessarily distinct

Given M, let

$$
\# i=\#\left\{j \mid z_{j}=z_{i}\right\}
$$

denote the number of points which coincide with the $i^{\text {th }}$ one.

Multi-contact for Curves

Definition. Two $(n+1)$-pointed curves

$$
\mathbf{C}=\left(z_{0}, \ldots, z_{n} ; C\right), \quad \widetilde{\mathbf{C}}=\left(\tilde{z}_{0}, \ldots, \tilde{z}_{n} ; \widetilde{C}\right)
$$

have $n^{\text {th }}$ order multi-contact if and only if

$$
z_{i}=\tilde{z}_{i}, \quad \text { and }\left.\quad \mathrm{j}_{\# i-1} C\right|_{z_{i}}=\left.\mathrm{j}_{\# i-1} \widetilde{C}\right|_{z_{i}}
$$

for each $i=0, \ldots, n$.

$$
\# i=\#\left\{j \mid z_{j}=z_{i}\right\}
$$

Definition. The $n^{\text {th }}$ order multi-space $M^{(n)}$ is the set of equivalence classes of $(n+1)$-pointed curves in M under the equivalence relation of $n^{\text {th }}$ order multi-contact.

The Fundamental Theorem

Theorem. If M is a smooth m-dimensional manifold, then its $n^{\text {th }}$ order multi-space $M^{(n)}$ is a smooth manifold of dimension $(n+1) m$, which contains the off-diagonal part $M^{\diamond(n+1)}$ of the Cartesian product space as an open, dense submanifold, and the $n^{\text {th }}$ order jet space J^{n} as a smooth submanifold.

$$
\left.\begin{array}{c}
M^{\diamond(n+1)} \\
\mathrm{J}^{k_{1}} \diamond \cdots \diamond \mathrm{~J}^{k_{\nu}} \\
\mathrm{J}^{n}(M, p)
\end{array}\right\} \quad \subset \quad M^{(n)}
$$

Example. Let $M=\mathbb{R}^{m}$
(i) $\quad M^{(1)}$ is the space of two-pointed lines

$$
M^{(1)} \simeq\left\{\left(z_{0}, z_{1} ; L\right) \mid z_{0}, z_{1} \in L \quad-\quad \text { line }\right\}
$$

\Longrightarrow Blow-up construction in algebraic geometry
(ii) $M^{(2)}$ is the space of three-pointed circles, i.e.,

$$
M^{(2)} \simeq\left\{\left(z_{0}, z_{1}, z_{2}, C\right) \mid z_{0}, z_{1}, z_{2} \in C \quad-\quad \text { circle }\right\}
$$

Straight lines are included as circles of infinite radius, but points are not included (even though they could be viewed as circles of zero radius).
\Longrightarrow Grassmann bundles.
(iii) $\quad M^{(3)} \quad$????

- Topology - local and global.

Finite Differences

Local coordinates on J^{n} are provided by the coefficients of Taylor polynomials

\Longrightarrow derivatives

Local coordinates on $M^{(n)}$ are provided by the coefficients of interpolating polynomials.

\Longrightarrow finite differences

Given $\left(z_{0}, \ldots, z_{n}\right) \in M^{\diamond(n+1)}$, define the classical divided differences by the standard recursive rule

$$
\begin{aligned}
{\left[z_{0} z_{1} \ldots z_{k-1} z_{k}\right] } & =\frac{\left[z_{0} z_{1} z_{2} \ldots z_{k-2} z_{k}\right]-\left[z_{0} z_{1} z_{2} \ldots z_{k-2} z_{k-1}\right]}{x_{k}-x_{k-1}} \\
{\left[z_{j}\right] } & =u_{j}
\end{aligned}
$$

\Longrightarrow Well-defined provided no two points lie on the same vertical line.
\Longrightarrow Symmetric functions of z_{i}.

Definition. Given an $(n+1)$-pointed graph $\mathbf{C}=$ $\left(z_{0}, \ldots, z_{n} ; C\right)$, its divided differences are defined by

$$
\begin{aligned}
{\left[z_{j}\right]_{C} } & =f\left(x_{j}\right) \\
{\left[z_{0} z_{1} \ldots z_{k-1} z_{k}\right]_{C} } & =\lim _{z \rightarrow z_{k}} \frac{\left[z_{0} z_{1} z_{2} \ldots z_{k-2} z\right]_{C}-\left[z_{0} z_{1} z_{2} \ldots z_{k-2} z_{k-1}\right]_{C}}{x-x_{k-1}}
\end{aligned}
$$

\Longrightarrow When taking the limit, the point $z=(x, f(x))$ must lie on the graph C, and take limiting values $x \rightarrow x_{k}$ and $f(x) \rightarrow f\left(x_{k}\right)$.

Theorem. Two $(n+1)$-pointed graphs $\mathbf{C}, \widetilde{\mathbf{C}}$ have $n^{\text {th }}$ order multi-contact if and only if they have the same divided differences:

$$
\left[z_{0} z_{1} \ldots z_{k}\right]_{C}=\left[z_{0} z_{1} \ldots z_{k}\right]_{\widetilde{C}}, \quad k=0, \ldots, n .
$$

Local coordinates on $M^{(n)}$

They consist of the independent variables along with all the divided differences

$$
\begin{array}{lll}
x_{0}, \ldots, x_{n} & u^{(0)}=u_{0}=\left[z_{0}\right]_{C} \quad & u^{(1)}=\left[z_{0} z_{1}\right]_{C} \\
& u^{(2)}=2\left[z_{0} z_{1} z_{2}\right]_{C} \quad \ldots & u^{(n)}=n!\left[z_{0} z_{1} \ldots z_{n}\right]_{C}
\end{array}
$$

prescribed by $(n+1)$-pointed graphs

$$
\mathbf{C}=\left(z_{0}, \ldots, z_{n} ; C\right)
$$

The n ! factor is included so that $u^{(n)}$ agrees with the usual derivative coordinate when restricted to J^{n}.

Numerical Approximations

$\Delta\left(x, u^{(n)}\right) \quad-\quad$ differential function

$$
\Delta: \mathrm{J}^{n} \rightarrow \mathbb{R}
$$

System of differential equations:

$$
\Delta_{1}\left(x, u^{(n)}\right)=\cdots=\Delta_{k}\left(x, u^{(n)}\right)=0 .
$$

Definition. An $(n+1)$-point numerical approximation of order k to a differential function $\Delta: \mathrm{J}^{n} \rightarrow \mathbb{R}$ is a $k^{\text {th }}$ order extension $F: M^{(n)} \rightarrow \mathbb{R}$ of Δ to multi-space, based on the inclusion $\mathrm{J}^{n} \subset M^{(n)}$.

$$
\begin{aligned}
F\left(x_{0}, \ldots,\right. & \left.x_{n}, u^{(0)}, \ldots, u^{(n)}\right) \\
& \longrightarrow \quad F\left(x, \ldots, x, u^{(0)}, \ldots, u^{(n)}\right)=\Delta\left(x, u^{(n)}\right)
\end{aligned}
$$

Invariant Numerical Approximations

$G \quad$ - Lie group acting on M

Basic Idea:

Every invariant finite difference approximation to a differential invariant must expressible in terms of the joint invariants of the transformation group.

Differential Invariant

$$
I\left(g^{(n)} \cdot z^{(n)}\right)=I\left(z^{(n)}\right)
$$

Joint Invariant

$$
J\left(g \cdot z_{0}, \ldots, g \cdot z_{k}\right)=J\left(z_{0}, \ldots, z_{k}\right)
$$

Semi-differential invariant $=$
Joint differential invariant
\Longrightarrow Approximate differential invariants by joint invariants

Euclidean Invariants

Joint Euclidean invariant:

$$
\mathbf{d}(z, w)=\|z-w\|
$$

Euclidean curvature:

$$
\kappa=\frac{u_{x x}}{\left(1+u_{x}^{2}\right)^{3 / 2}}
$$

Euclidean arc length:

$$
d s=\sqrt{1+u_{x}^{2}} d x
$$

Higher order differential invariants:

$$
\kappa_{s}=\frac{d \kappa}{d s} \quad \kappa_{s s}=\frac{d^{2} \kappa}{d s^{2}} \quad \ldots
$$

Euclidean-invariant differential equation:

$$
F\left(\kappa, \kappa_{s}, \kappa_{s s}, \ldots\right)=0
$$

Three point approximation

Heron's formula

$$
\begin{gathered}
\widetilde{\kappa}(A, B, C)=4 \frac{\Delta}{a b c}=4 \frac{\sqrt{s(s-a)(s-b)(s-c)}}{a b c} \\
s=\frac{a+b+c}{2} \quad-\quad \text { semi-perimeter }
\end{gathered}
$$

Expansion:

$$
\begin{aligned}
\tilde{\kappa}=\kappa & +\frac{1}{3}(b-a) \frac{d \kappa}{d s}+\frac{1}{12}\left(b^{2}-a b+a^{2}\right) \frac{d^{2} \kappa}{d s^{2}}+ \\
& +\frac{1}{60}\left(b^{3}-a b^{2}+a^{2} b-a^{3}\right) \frac{d^{3} \kappa}{d s^{3}}+ \\
& +\frac{1}{120}(b-a)\left(3 b^{2}+5 a b+3 a^{2}\right) \kappa^{2} \frac{d \kappa}{d s}+\cdots .
\end{aligned}
$$

Higher order invariants

$$
\kappa_{s}=\frac{d \kappa}{d s}
$$

Invariant finite difference approximation:

$$
\tilde{\kappa}_{s}\left(P_{i-2}, P_{i-1}, P_{i}, P_{i+1}\right)=\frac{\tilde{\kappa}\left(P_{i-1}, P_{i}, P_{i+1}\right)-\widetilde{\kappa}\left(P_{i-2}, P_{i-1}, P_{i}\right)}{\mathbf{d}\left(P_{i}, P_{i-1}\right)}
$$

Unbiased centered difference:

$$
\tilde{\kappa}_{s}\left(P_{i-2}, P_{i-1}, P_{i}, P_{i+1}, P_{i+2}\right)=\frac{\widetilde{\kappa}\left(P_{i}, P_{i+1}, P_{i+2}\right)-\widetilde{\kappa}\left(P_{i-2}, P_{i-1}, P_{i}\right)}{\mathbf{d}\left(P_{i+1}, P_{i-1}\right)}
$$

Better approximation (M. Boutin):

$$
\begin{array}{r}
\widetilde{\kappa}_{s}\left(P_{i-2}, P_{i-1}, P_{i}, P_{i+1}\right)=3 \frac{\widetilde{\kappa}\left(P_{i-1}, P_{i}, P_{i+1}\right)-\widetilde{\kappa}\left(P_{i-2}, P_{i-1}, P_{i}\right)}{\mathbf{d}_{i-2}+2 \mathbf{d}_{i-1}+2 \mathbf{d}_{i}+\mathbf{d}_{i+1}} \\
\mathbf{d}_{j}=\mathbf{d}\left(P_{j}, P_{j+1}\right)
\end{array}
$$

Affine Joint Invariants

$$
\mathbf{x} \rightarrow A \mathbf{x}+b \quad \operatorname{det} A=1
$$

Area is the fundamental joint affine invariant

$$
\begin{aligned}
{[i j k] } & =\left(P_{i}-P_{j}\right) \wedge\left(P_{i}-P_{k}\right) \\
& =\operatorname{det}\left|\begin{array}{lll}
x_{i} & y_{i} & 1 \\
x_{j} & y_{j} & 1 \\
x_{k} & y_{k} & 1
\end{array}\right| \\
& =\text { Area of parallelogram } \\
& =2 \times \text { Area of triangle } \Delta\left(P_{i}, P_{j}, P_{k}\right)
\end{aligned}
$$

Syzygies:

$$
\begin{gathered}
{[i j l]+[j k l]=[i j k]+[i k l]} \\
{[i j k][i l m]-[i j l][i k m]+[i j m][i k l]=0}
\end{gathered}
$$

Affine Differential Invariants

Affine curvature

$$
\kappa=\frac{3 u_{x x} u_{x x x x}-5 u_{x x x}^{2}}{9\left(u_{x x}\right)^{8 / 3}}
$$

Affine arc length

$$
d s=\sqrt[3]{u_{x x}} d x
$$

Higher order affine invariants:

$$
\kappa_{s}=\frac{d \kappa}{d s} \quad \kappa_{s s}=\frac{d^{2} \kappa}{d s^{2}} \quad \ldots
$$

Conic Sections

$$
A x^{2}+2 B x y+C y^{2}+2 D x+2 E y+F=0
$$

Affine curvature:

$$
\begin{gathered}
\kappa=\frac{S}{T^{2 / 3}} \\
S=A C-B^{2}=\operatorname{det}\left|\begin{array}{ll}
A & B \\
B & C
\end{array}\right| \\
T=\operatorname{det}\left|\begin{array}{lll}
A & B & D \\
B & C & E \\
D & E & F
\end{array}\right|
\end{gathered}
$$

Ellipse:

$$
\begin{gathered}
\kappa=(\pi / \mathbf{A})^{2 / 3} \\
\mathbf{A}=\pi \frac{T}{S^{3 / 2}}=\text { Area }
\end{gathered}
$$

Affine arc length of ellipse:

$$
\begin{aligned}
\int_{P}^{Q} d s & =\left.\frac{T^{1 / 3}}{S^{1 / 2}} \arcsin \sqrt{\frac{-C T}{S^{2}}}\left(x+\frac{C D-B E}{S}\right)\right|_{P} ^{Q} \\
& =2 S T^{-2 / 3} \mathbf{A}(P, Q)
\end{aligned}
$$

$\mathbf{A}(P, Q):$

Triangular approximation:

$$
\Delta(O, P, Q):
$$

Total affine arc length:

$$
\mathbf{L}=2 \sqrt[3]{\mathbf{A}}=-2 \pi \frac{\sqrt[3]{T}}{\sqrt{S}}
$$

Conic through five points P_{0}, \ldots, P_{4} :

$$
\begin{aligned}
{[013][024][\mathrm{x} 12][\mathrm{x} 34]=[012][034][\mathrm{x} 13][\mathrm{x} 24] } & \\
& \mathbf{x}
\end{aligned}=(x, y) \text {. }
$$

Affine curvature and arc length:

$$
\begin{aligned}
\kappa= & \frac{S}{T^{2 / 3}} \\
d s= & \text { Area } \Delta\left(O, P_{1}, P_{3}\right)=\frac{1}{2}\left[O, P_{1}, P_{3}\right]=\frac{N}{2 S} \\
4 T= & \prod_{0 \leq i<j<k \leq 4}[i j k] \\
4 S= & {[013]^{2}[024]^{2}([124]-[123])^{2}+} \\
& +[012]^{2}[034]^{2}([134]+[123])^{2}- \\
& -2[012][034][013][024]([123][234]+[124][134]) \\
4 N= & -[123][134]\left\{[023]^{2}[014]^{2}([124]-[123])+\right. \\
& +[012]^{2}[034]^{2}([134]+[123])+ \\
& +[012][023][014][034]([134]-[123])\}
\end{aligned}
$$

Theorem. $P_{0}, P_{1}, P_{2}, P_{3}, P_{4}$ - points on the convex curve \mathcal{C}.
κ - affine curvature of \mathcal{C} at P_{2}

$$
\widetilde{\kappa}=\widetilde{\kappa}\left(P_{0}, P_{1}, P_{2}, P_{3}, P_{4}\right)
$$

- affine curvature of conic
$L_{i}=\int_{P_{2}}^{P_{i}} d s$
affine arc length of conic
Expansion:

$$
\widetilde{\kappa}=\kappa+\frac{1}{5}\left(\sum_{i=0}^{4} L_{i}\right) \frac{d \kappa}{d s}+\frac{1}{30}\left(\sum_{0 \leq i \leq j \leq 4} L_{i} L_{j}\right) \frac{d^{2} \kappa}{d s^{2}}+\cdots
$$

Multi-Invariants

$G \quad$ - Lie group which acts smoothly on M
$\Longrightarrow G$ preserves the multi-contact equivalence relation
$G^{(n)} \quad-\quad n^{\text {th }}$ multi-prolongation to $M^{(n)}$
\Longrightarrow On $\mathrm{J}^{n} \subset M^{(n)}$ it coincides with the usual jet space prolongation
\Longrightarrow On $M^{\diamond(n+1)} \subset M^{(n)}$ it coincides with the ($n+1$)-fold Cartesian product action.
$K: M^{(n)} \rightarrow \mathbb{R} \quad-\quad$ multi-invariant

$$
K\left(g^{(n)} \cdot z^{(n)}\right)=K\left(z^{(n)}\right)
$$

$\Longrightarrow K \mid \mathrm{J}^{n} \quad-\quad$ differential invariant
$\Longrightarrow K \mid M^{\diamond(n+1)} \quad —$ joint invariant
$\Longrightarrow K \mid \mathrm{J}^{k_{1}} \diamond \cdots \diamond \mathrm{~J}^{k_{\nu}} \quad-\quad$ joint diff. invariant

The theory of multi-invariants is the theory of invariant numerical approximations!

Moving frames provide a

systematic algorithm for
 constructing multi-invariants!

A moving frame on multi-space

$$
\rho: M^{(n)} \quad \longrightarrow \quad G
$$

is called a multi-frame.

Example. $G=\mathbb{R}^{2} \ltimes \mathbb{R}$

$$
(x, u) \quad \longmapsto \quad\left(\lambda^{-1} x+a, \lambda u+b\right)
$$

Multi-prolonged action: compute the divided differences of the basic lifted invariants

$$
y_{k}=\lambda^{-1} x_{k}+a, \quad v_{k}=\lambda u_{k}+b
$$

We find

$$
\begin{aligned}
v^{(1)} & =\left[w_{0} w_{1}\right]=\frac{v_{1}-v_{0}}{y_{1}-y_{0}} \\
& =\lambda^{2} \frac{u_{1}-u_{0}}{x_{1}-x_{0}}=\lambda^{2}\left[z_{0} z_{1}\right]=\lambda^{2} u^{(1)}, \\
v^{(n)} & =\lambda^{n+1} u^{(n)} .
\end{aligned}
$$

Moving frame cross-section

$$
y_{0}=0 \quad v_{0}=0 \quad v^{(1)}=1
$$

Solve for the group parameters

$$
\begin{aligned}
a=-\sqrt{u^{(1)}} x_{0} \quad b= & -\frac{u_{0}}{\sqrt{u^{(1)}}} \quad \lambda=\frac{1}{\sqrt{u^{(1)}}} \\
& \Longrightarrow \text { multi-frame } \rho: M^{(n)} \rightarrow G
\end{aligned}
$$

Multi-invariants:

$$
\begin{array}{cc}
y_{k}: & H_{k}=\left(x_{k}-x_{0}\right) \sqrt{u^{(1)}}=\left(x_{k}-x_{0}\right) \sqrt{\frac{u_{1}-u_{0}}{x_{1}-x_{0}}} \\
u_{k}: & K_{k}=\frac{u_{k}-u_{0}}{\sqrt{u^{(1)}}}=\left(u_{k}-u_{0}\right) \sqrt{\frac{x_{1}-x_{0}}{u_{1}-u_{0}}} \\
u^{(n)}: & K^{(n)}=\frac{u^{(n)}}{\left(u^{(1)}\right)^{(n+1) / 2}}=\frac{n!\left[z_{0} z_{1} \ldots z_{n}\right]}{\left[z_{0} z_{1}\right]^{(n+1) / 2}} \\
K^{(0)}=K_{0}=0 \quad K^{(1)}=1
\end{array}
$$

Coalescent limit

$$
K^{(n)} \quad \longrightarrow \quad I^{(n)}=\frac{u^{(n)}}{\left(u^{(1)}\right)^{(n+1) / 2}}
$$

$\Longrightarrow K^{(n)}$ is a first order invariant numerical approximation to the differential invariant $I^{(n)}$.
\Longrightarrow Higher order invariant numerical approximations are obtained by invariantization of higher order divided difference approximations.

$$
\begin{aligned}
F\left(\ldots x_{k}\right. & \left.\ldots u^{(n)} \ldots\right) \\
& \longrightarrow \quad F\left(\ldots H_{k} \ldots K^{(n)} \ldots\right)
\end{aligned}
$$

Invariantization

To construct an invariant numerical scheme for any similarity-invariant ordinary differential equation

$$
F\left(x, u, u^{(1)}, u^{(2)}, \ldots u^{(n)}\right)=0
$$

we merely invariantize the defining differential function, leading to the general similarity-invariant numerical approximation

$$
F\left(0,0,1, K^{(2)}, \ldots, K^{(n)}\right)=0 .
$$

\Longrightarrow Nonsingular!

Example. Euclidean group SE(2)

$$
y=x \cos \theta-u \sin \theta+a \quad v=x \sin \theta+u \cos \theta+b
$$

Multi-prolonged action on $M^{(1)}$:

$$
\begin{array}{ll}
y_{0}=x_{0} \cos \theta-u_{0} \sin \theta+a & v_{0}=x_{0} \sin \theta+u_{0} \cos \theta+b \\
y_{1}=x_{1} \cos \theta-u_{1} \sin \theta+a & v^{(1)}=\frac{\sin \theta+u^{(1)} \cos \theta}{\cos \theta-u^{(1)} \sin \theta}
\end{array}
$$

Cross-section

$$
y_{0}=v_{0}=v^{(1)}=0
$$

Right moving frame

$$
\begin{aligned}
& a=-x_{0} \cos \theta+u_{0} \sin \theta=-\frac{x_{0}+u^{(1)} u_{0}}{\sqrt{1+\left(u^{(1)}\right)^{2}}} \\
& b=-x_{0} \sin \theta-u_{0} \cos \theta=\frac{x_{0} u^{(1)}-u_{0}}{\sqrt{1+\left(u^{(1)}\right)^{2}}}
\end{aligned}
$$

Euclidean multi-invariants

$$
\begin{gathered}
\left(y_{k}, v_{k}\right) \longrightarrow \quad I_{k}=\left(H_{k}, K_{k}\right) \\
H_{k}=\frac{\left(x_{k}-x_{0}\right)+u^{(1)}\left(u_{k}-u_{0}\right)}{\sqrt{1+\left(u^{(1)}\right)^{2}}}=\left(x_{k}-x_{0}\right) \frac{1+\left[z_{0} z_{1}\right]\left[z_{0} z_{k}\right]}{\sqrt{1+\left[z_{0} z_{1}\right]^{2}}} \\
K_{k}=\frac{\left(u_{k}-u_{0}\right)-u^{(1)}\left(x_{k}-x_{0}\right)}{\sqrt{1+\left(u^{(1)}\right)^{2}}}=\left(x_{k}-x_{0}\right) \frac{\left[z_{0} z_{k}\right]-\left[z_{0} z_{1}\right]}{\sqrt{1+\left[z_{0} z_{1}\right]^{2}}}
\end{gathered}
$$

Difference quotients

$$
\begin{aligned}
& {\left[I_{0} I_{k}\right]=\frac{K_{k}-K_{0}}{H_{k}-H_{0}}=\frac{K_{k}}{H_{k}}=\frac{\left(x_{k}-x_{1}\right)\left[z_{0} z_{1} z_{k}\right]}{1+\left[z_{0} z_{k}\right]\left[z_{0} z_{1}\right]} } \\
I^{(1)}= & {\left[I_{0} I_{1}\right]=0 } \\
I^{(2)}= & 2\left[I_{0} I_{1} I_{2}\right]=2 \frac{\left[I_{0} I_{2}\right]-\left[I_{0} I_{1}\right]}{H_{2}-H_{1}} \\
= & \frac{2\left[z_{0} z_{1} z_{2}\right] \sqrt{1+\left[z_{0} z_{1}\right]^{2}}}{\left(1+\left[z_{0} z_{1}\right]\left[z_{1} z_{2}\right]\right)\left(1+\left[z_{0} z_{1}\right]\left[z_{0} z_{2}\right]\right)} \\
= & \frac{u^{(2)} \sqrt{1+\left(u^{(1)}\right)^{2}}}{\left[1+\left(u^{(1)}\right)^{2}+\frac{1}{2} u^{(1)} u^{(2)}\left(x_{2}-x_{0}\right)\right]\left[1+\left(u^{(1)}\right)^{2}+\frac{1}{2} u^{(1)} u^{(2)}\left(x_{2}-x_{1}\right)\right]}
\end{aligned}
$$

Invariant numerical approximation to the Euclidean curvature:

$$
\lim _{z_{1}, z_{2} \rightarrow z_{0}} I^{(2)}=\kappa=\frac{u^{(2)}}{\left(1+\left(u^{(1)}\right)^{2}\right)^{3 / 2}}
$$

Euclidean-invariant approximation for $\kappa_{s}=\iota\left(u_{x x x}\right)$:

$$
I^{(3)}=6\left[I_{0} I_{1} I_{2} I_{3}\right]=6 \frac{\left[I_{0} I_{1} I_{3}\right]-\left[I_{0} I_{1} I_{2}\right]}{H_{3}-H_{2}}
$$

Higher Dimensional Submanifolds

$$
\left.T^{(n)} M\right|_{z}-n^{\text {th }} \text { order tangent space }
$$

Proposition.

Two p-dimensional submanifolds N, \widetilde{N} have $n^{\text {th }}$ order contact at a common point $z \in N \cap \widetilde{N}$ if and only if

$$
\left.T^{(n)} N\right|_{z}=\left.T^{(n)} \widetilde{N}\right|_{z}
$$

\Longrightarrow Requires $\binom{p+n}{n}$ coalescing points to approximate $n^{\text {th }}$ order derivatives

Surfaces $\quad p=2$

n	$\binom{p+n}{n}$
0	1
1	3
2	6
3	10
\vdots	\vdots

Definition. A subspace $\left.V \subset T^{(n)} M\right|_{z}$ is called admissible if for every vector

$$
\left.\mathbf{v} \in V \cap T^{(k)} M\right|_{z}, \quad 1 \leq k \leq n,
$$

there exists a submanifold $N \subset M$ such that $\left.\mathbf{v} \in T^{(k)} N\right|_{z} \subset V$.

Definition. Two submanifolds N, \widetilde{N} have $r^{\text {th }}$ order subcontact at a common point if and only if for some n, there exists an admissible common r dimensional subspace

$$
\left.\left.\left.S \subset T^{(n)} N\right|_{z} \cap T^{(n)} \widetilde{N}\right|_{z} \subset T^{(n)} M\right|_{z}
$$

Example. Surfaces: $S, \widetilde{S} \subset M$

order	Conditions
0	$z \in S \cap \widetilde{S}$ - common point
1	tangent curves: $\left.\quad T C\right\|_{z}=\left.T \widetilde{C}\right\|_{z}$
2	$\begin{cases}\text { tangent surfaces: } & \left.T S\right\|_{z}=\left.T \widetilde{S}\right\|_{z} \\ \text { osculating curves: } & \left.T^{(2)} C\right\|_{z}=\left.T^{(2)} \widetilde{C}\right\|_{z}\end{cases}$
3	$\left\{\begin{array}{l} \left.T S\right\|_{z}=\left.T \widetilde{S}\right\|_{z} \quad \text { and }\left.\quad T^{(2)} C\right\|_{z}=\left.T^{(2)} \tilde{C}\right\|_{z} \\ \left.T^{(3)} C\right\|_{z}=\left.T^{(3)} \widetilde{C}\right\|_{z} \end{array}\right.$
:	:
5	$\left\{\begin{array}{c} \left.T^{(2)} S\right\|_{z}=\left.T^{(2)} \tilde{S}\right\|_{z} \\ \left.T S\right\|_{z}=\left.T \widetilde{S}\right\|_{z},\left.T^{(3)} C\right\|_{z}=\left.T^{(3)} \widetilde{C}\right\|_{z},\left.{ }_{2}{ }^{\prime}{ }^{\prime}{ }^{(2)} C^{\prime}\right\|_{z}=T^{(2)} \tilde{C}_{z} \\ \left.T S\right\|_{z}=\left.T \widetilde{S}\right\|_{z},\left.T^{(4)} C\right\|_{z}=\left.T^{(4)} \tilde{C}\right\|_{z} \\ \left.T^{(5)} C\right\|_{z}=\left.T^{(5)} \tilde{C}\right\|_{z} \end{array}\right.$

Multi-space and Multi-variate Interpolation

Definition. Let M be a smooth manifold.
The $n^{\text {th }}$ order multi-space $M^{(n)}$ is the set of all n-point interpolant data

$$
\mathbf{Z}=\left(z_{0}, \ldots, z_{n-1} ; V_{0}, \ldots, V_{n-1}\right),
$$

consisting of
(a) an ordered set of n points $z_{0}, \ldots, z_{n-1} \in M$.

$$
\# i=\#\left\{j \mid z_{j}=z_{i}\right\}
$$

(b) an ordered collection of admissible subspaces $\left.V_{i} \subset T^{(n)} M\right|_{z_{i}}$ such that

$$
\left\{\begin{array}{l}
V_{i}=V_{j} \quad \text { if } z_{i}=z_{j} \\
\operatorname{dim} V_{i}=\# i-1
\end{array}\right.
$$

In particular, if $\# i=1$, and so z_{i} only appears once in \mathbf{Z}, then $V_{i}=\{0\}$ is trivial.

Multivariate Hermite Interpolation

Definition. An interpolant to \mathbf{Z} is a submanifold $N \subset M$ such that $z_{i} \in N$ and $\left.V_{i} \subset T^{(n)} N\right|_{z_{i}}$.

Conjecture. The multispace $M^{(n)}$ is a manifold of dimension $(n+1) m$. It contains

- $M^{\diamond n}$ as an open, dense submanifold
- all $\mathrm{J}^{k}(M, p)$ that have dimension $\leq(n+1) m$ as submanifolds
- various off-diagonal copies of multi-jet spaces $\mathrm{J}^{i_{1}}(M, p) \diamond \cdots \diamond$ $\mathrm{J}^{i_{k}}(M, p)$ for $i_{1}+\cdots+i_{k}=n-k$ as submanifolds.
\Longrightarrow smooth or analytic

Difficulties

A Multi-variate interpolation theory.
A Multi-variate divided differences.
© Coordinates at coalescent points.
A Topological structure - local and global

