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EXISTENCE AND NONEXISTENCE OF SOLITARY WAVE SOLUTIONS TO
HIGHER-ORDER MODEL EVOLUTION EQUATIONS*

SATYANAD KICHENASSAMYt1 AND PETER J. OLVERft}

Abstract. The problem of existence of solitary wave solutions to some higher-order model evolution
equations arising from water wave theory is discussed. A simple direct method for finding monotone solitary
wave solutions is introduced, and by exhibiting explicit necessary and sufficient conditions, it is illustrated
that a model admit exact sech? solitary wave solutions. Moreover, it is proven that the only fifth-order
perturbations of the Korteweg-deVries equation that admit solitary wave solutions reducing to the usual
one-soliton solutions in the limit are those admitting families of explicit sech” solutions.
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1. Introduction. In the study of equations modeling wave phenomena, one of the
fundamental objects of study is the traveling wave solution, meaning a solution of
constant form moving with a fixed velocity. The determination of such solutions is
accomplished by solving a reduced differential equation in fewer independent variables
by one. In particular, the traveling wave solutions for a one-dimensional wave equation
are found by solving a connection problem for an associated ordinary differential
equation. Of particular interest are three types of traveling waves: the solitary waves,
which are localized traveling waves, asymptotically zero at large distances, the periodic
waves, and the kink waves, which rise or descend from one asymptotic state to another.
All of these are, in the completely integrable case, solitons, coming from the inverse
scattering solution to an eigenvalue problem, and dependent on a free parameter. On
the other hand, the existence of these types of solutions is not dependent on integrability
of the model, or the connection with an inverse scattering transform method of solution,
as evidenced by the ¢* theory; cf. [37], [38], and the examples described here. Except
in the simplest instances, it is by no means obvious that such types of traveling wave
solutions even exist. In addition, once existence is known, the delicacy of the connection
problem to be solved makes their numerical computation rather difficult to effect in
an easy, practical manner.

In this paper, we concentrate on the determination of solitary waves, whose
importance for fluids came to the forefront with Scott Russell’s experimental observa-
tion of solitary water waves in the Edinburgh canal [33]. Airy’s premature dismissal
of these solutions based on a linearized analysis of the free boundary problem necessi-
tated the construction of suitable models exhibiting such solutions. This was accom-
plished, in the case of long waves over shallow water, through Boussinesq’s bidirectional
models and, subsequently, the celebrated Korteweg-deVries model, whose solitary
wave solutions are explicit sech® solutions, which, moreover, have the remarkable
soliton property of interacting without change of form. More recently, Amick and
Toland, [4], and others, [1], [2], [19], have proved the existence of such waves for the
full water wave problem. For small amplitude waves, the Korteweg-deVries solitons
do a good job of modeling solitary water waves, [13]. However, the model fails to
replicate such important physical phenomena as having a wave of maximal height,
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originally conjectured by Stokes (cf.[1]) and the breaking of large amplitude waves.
Owing to the difficulty of analyzing the water wave problem directly, the construction
of suitable models is of great importance. One possible approach is to retain higher-
order terms in the Boussinesq perturbation expansion, leading to fifth-order model
evolution equations. One of the principal purposes of this paper is to show that there
are definite difficulties with this procedure, in that for most of these higher-order
models, solitary wave solutions of the appropriate form do not even exist! Indeed, this
holds for almost all versions of the models derived from the water wave problem. (An
alternative approach would be to employ the two-timing approach advocated by Segur,
[42], and others, in which the higher-order terms in the expansion are forced evolution
equations governed by the leading order Korteweg-deVries equation. However, it is
hard to see how the requisite phenomena of maximal height and breaking would
manifest themselves in this approach.)

The present paper is devoted to the analysis of solitary wave solutions to a general
class of scalar fifth-order evolution equations; see (2.1) below. We begin by discussing
the various models that are included in this class, such as the fifth-order Korteweg-
deVries equations, other integrable equations, water wave models, and models from
elastic media with microstructure. The third section discusses known results on explicit
solitary wave solutions for certain models, numerical results, and a nonexistence result
of Amick and McLeod for the critical surface tension water wave model. Next we
present a simplified approach to the determination of explicit monotone traveling wave
solutions, which reduces the fifth-order evolution equation to a third-order ordinary
differential equation. This leads to explicit criteria for the existence of exact sech’
solitary wave solutions, which imply that these models admit either 0, 1, 2, 00, or c0+1
exact sech’ solitary wave solutions. Here oo indicates a one-parameter family of
solutions valid for a range of wave speeds, and these particular models are explicitly
characterized by a pair of simple algebraic relations on the coefficients. Interestingly,
even for fifth-order Korteweg-deVries models, there is the possibility of having more
than one solitary wave solution for a given wave speed, leading to unusual “bound
state solutions.” Finally, we present a nonexistence result that says, in essence, that
the only models which are perturbations of the usual Korteweg-deVries equation and
that possess solitary wave solutions reducing, in the limit, to Korteweg-deVries solitons
are those that have a one-parameter family of explicit sech” solitary waves. See Theorem
13 for a precise formulation. Our proof relies on a general method introduced by the
first author [24] in a similar study of breather solutions of Klein-Gordon equations,
which we outline at the end of § 3. Our result does not completely rule out all solitary
wave solutions, but only those which reduce to Korteweg-deVries solitary waves in
an appropriate scaling limit; nevertheless, it does demonstrate that ‘‘physically relevant”
solitary wave solutions do not, in general, exist. This has some interesting implications
for perturbation theories, which we discuss in the final section.

2. Higher-order model equations. We will consider a class of fifth-order model
evolution equations of the general form

Uy + Ul T AUy + Pl + St Uy + P'(1) U,
= U, + [y + QUrr + Buith + yu2+ P(u)], = 0.

Here a, B, v, 3 =2y+ B, and u are assumed to be constants, and P(u) is an analytic
function of the dependent variable. Many of these models require that P be a cubic
polynomial

(2.1)

(2.2) P(u)=pu+qu’+r’,
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where p, g, r are constants, although this will not be necessary for most of our analysis.
(However, only these models will admit explicit sech” solitary waves.) Note that we
can assume without loss of generality that p = 0 by going to a suitable moving coordinate
frame. In the models derived by perturbation expansion, the coefficients in (2.1) will
depend on a small parameter, ¢, in terms of which p is of order 1, g, u are of order
e, and a, B, 8, and r of order &7,

The general class of equations (2.1) includes many well-known equations that
have been studied at length in the literature. If the £ terms are absent, the model (2.1)
reduces to the well-known Korteweg-deVries equation

(2.3) u, + pu, + p, +2quu, =0,

which serves to model many different wave phenomena requiring a balance between
dispersion and nonlinearity, [33], [46]. Also of note is the modified Korteweg-deVries
equation

(2.4) U, + i+ il + 3ru’u, =0.

Both the Korteweg-deVries and modified Korteweg-deVries equations are known to
be integrable via inverse scattering techniques, [33], [42], [46], the scattering operator
for the Korteweg-deVries equation being the well-studied Schrédinger operator L=
D?+ v, where the potential v(x, t) is a suitable multiple of u(x, t), and D =d/dx. In
particular, their solitary wave solutions are solitons, and interact without change of
form. Their speed is related to the value of the associated spectral parameter (eigen-
value). There are additional integrable models included in the class (2.1). The particular
parameter values

(2.5) B =3ka, =Dka, r=5k’a, q=3ku,

where « # 0, describe a four-parameter family of integrable fifth-order Korteweg-
deVries equations [33], which are soluble by the scattering problem associated with
the same Schrédinger operator. (More accurately, the models given by (2.5) are linear
combinations of purely fifth-order (corresponding to the parameter ) and third-order
(corresponding to the parameter u) Korteweg-deVries equations.) The Sawada-Kotera
equation [41],

(2.6) Uy + U + 30Ut + 30U 1, + 180u%u, =0,
and the Kaup equation [21],
(2.7) U+ Uy, +30uu,, +75uu,, +180u’u, =0,

are also known to be integrable, being associated with the scattering problem for the
third-order operator M = D*+vD+w; cf.[21]. For the Sawada-Kotera equation,
v=>6u and w=0, whereas for the Kaup equation v =6u and w=3u,. However, in
contrast to the higher-order Korteweg-deVries equations, we cannot add in third-order
terms to these equations without destroying their integrability.

Other models of the general form (2.1) that are (almost certainly) not integrable
also arise in applications. In [34], [35] the second author proposed certain special
cases of the general fifth-order model (2.3) as models for the unidirectional propagation
of shallow water waves over a flat surface. (See [29] for extensions which include
bottom topography.) These arose from two sources: first as the second-degree correction
to the standard Korteweg-deVries model for the undirectional propagation of long
waves in shallow water arising in the Boussinesq expansion for the full water wave
problem. Second, using a general theory of noncanonical perturbation expansions of
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Hamiltonian systems, these types of models appear as ‘“Hamiltonian versions’ of the
Korteweg-deVries model, incorporating the correct first degree expansions of both the
water wave Hamiltonian functional (energy) and the Hamiltonian operator. Indeed,
whereas the full water wave problem admits a Hamiltonian structure due to Zakharov
[50] and the Korteweg-deVries equation admits two distinct Hamiltonian structures
[36], neither of these matches the perturbation expansion of Zakharov’s structure.
Alternatively, we can verify that the first-order perturbation expansion of the water
wave energy functional is not conserved under the Korteweg-deVries flow. The Hamil-
tonian models attempt to rectify these unexpected difficulties. In the water wave models,
u(x, t) represents either the surface elevation or the horizontal velocity measured at a
fraction 0 = 6 =1 of the undisturbed fluid depth. There are two small parameters called
a, B in [34], [35], but, to avoid confusion, we denote them here by ¢, which measures
the ratio of wave amplitude to undisturbed fluid depth, and «, which measures the
square of the ratio of fluid depth to wave length. In the shallow water regime, £ and
x are assumed to have the same order of magnitude. The Bond number, which represents
a dimensionless magnitude of surface tension, is denoted by . In all models, the
leading order (Korteweg-deVries) terms are all the same:

1-37 3
2.8 =1 = ==
( ) P b I‘L K 6 2 q 4 8’
representing a Korteweg-deVries equation except when the Bond number has the
critical value 7=3. (See below.) The models differ only in the higher-order terms,

which take the following forms:
u = horizontal velocity at depth 8; second-order model
,19-307—4577 (3737 53-366°—397 r=o
K . = = — =
360 12 0 T 24 ’ ’
u = horizontal velocity at depth 6; Hamiltonian model
,(5—-66°—37)(2—36?) 53—6660°—27r
S , B=ke

29) a=

18 24 ’
(2.10) 139-1686°—817 15 ,
= K€ 5 r=——_—_-¢&,
24 32
u = surface elevation; second-order model
19-307—457° 5-67 23+157 1

2.11 =P = § =g —-—"" —_ .2
( ) a=«k 360 , B=ke o Ke— ¥ £°,

u =surface elevation; Hamiltonian model

1-3 3(1- 5

(2.12) a=0, B= 3 TKE, 82_('8—3T—)K8, r=§ez.

((2.12) corrects an error in [35, eqn. (4.28)].) It is interesting to note that none of these
models is integrable, except the Hamiltonian model (2.10) for the horizontal velocity
at the particular “magic depth”

(2.13) 0=viz—ir,

where the model turns out to be a fifth-order Korteweg-deVries equation. (This formula
corrects a misprint in reference [35].)

The model
(2.14) U+ Pl + Ul +2qUt, T+ QU =0
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arises in the study of water waves with surface tension in which the Bond number
takes on the critical value =3, where the Korteweg-deVries model no longer applies;
cf. [18]. The particular case p = u =0 arises in both magneto-acoustics and nonlinear
transmission lines; cf. [31], [49]. The equation

(2.15) U+ Uy F Ul + AUy — Ulhyy — 2U il =0

was proposed by Benney [6] as one possible model for the interaction of short and
long waves. Third-order models of the form

(2.16) U+ Uy + Ul + 2quut, + PButly + Sty +3rutu, =0,

in which B =28 #0, r=0, were proposed by Kunin [28, § 5.3] in his study of elastic
media with microstructure. Note that the Hamiltonian model (2.12) for water waves
is of this type, but with 8 =38 #0, as are both second-order models (2.9), (2.11) at
the particular Bond number 7=3%+v30—3=.3970, and the Hamiltonian model (2.10)
at depths 6*>=3 or 2—37. Additional models of the form (2.1) have been derived for
weakly nonlinear long waves in a stratified fluid [14] and free surface waves over
rotational flows [12].

Incidentally, the theory of Kodama [25] shows that all such fifth-order equations
with @ # 0, and P(u) a cubic polynomial, can be recast asymptotically into canonical
form as fifth-order Korteweg-deVries equations under an appropriate change of vari-
ables. Thus, in a certain sense, all the models (2.1), (2.2) are “approximately integrable,”
although this remark does not imply much in the way of rigorous results for them.

Very recently Ponce [39] has proved that the initial-value problem for (2.1), (2.2)
is locally well posed in any Sobolev space H*(R) for any s =4. Specifically, Ponce
proves the following result.

THEOREM 1. For any uye H*(R) with s = 4, there exists a T > 0 and a unique strong
solution u(x, t) in the space C([0, T], H*) N L*[0, T], H;.?) of the initial value problem
(2.1) with u(x, 0) = uy(x).

3. Solitary wave solutions. We now review known results concerning solitary and
other traveling wave solutions to particular models of the form (2.1). We begin by
discussing the known explicit solutions to these equations.

First recall that the Korteweg-deVries equation, modified Korteweg-deVries
equation, and the class of fifth-order Korteweg-deVries equations (2.5) all possess
explicit sech” solitary wave solutions for all wave speeds ¢> p = P'(0). The amplitude
of these waves is proportional to the wave speed. If q/u <0, then the solitary wave is
a wave of elevation, whereas if q/u> 0 it is a wave of depression. The Sawada-Kotera
equation (2.5) also admits sech® solitary wave solutions for all wave speeds ¢ > 0;
cf. [30]. On the other hand, the Kaup equaton (2.6) has solitary wave solutions of the
anomalous form

2a*(2 cosh 2£+1)
3.1 X, t)= >
(3.1) ulx, 1) (cosh 2£+2)?
Again, these exist for a range of wave speeds ¢ =16a*>0.
For the model (2.14) for water waves at critical surface tension, provided au <0,

Yamamoto and Takizawa [48] produced an explicit solitary wave of depression in
terms of a sech® function:

Tt Mo R (e 0]
2 £)=— h| /- {x+(p+ el
(3.2) H% ) = 338 g *C 520 I \? " 169a

This solution was also derived by Hereman et al. [ 15] using a more systematic procedure,

&=ax—16a’t.
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and, much later, also by Huang et al. [16]. This “anomalous” solitary wave solution
is quite surprising; it only appears for one particular (positive) wave speed: ¢=
—36u1°/169a. It is unclear whether this solution has any physical meaning. (Other
similar “anomalous” sech® solitary wave solutions will be determined for many of the
models (2.1), (2.2) in § 6.) Of less direct relevance to our results, but still of interest,
Hunter and Scheurle [17] proved the existence of traveling waves to the model (2.7)
that bifurcate from Korteweg-deVries solitons, but are no longer decreasing as |x| > co,
having small but finite amplitude oscillatory tails.

Kawahara, [22], claims to numerically establish the existence of ‘oscillatory
solitary wave” solutions to the model (2.14), and Nagashima [31], [32], in the case
p=un=0, “establishes” their existence experimentally (!). Also, Zufiria [51], in the
context of the water wave problem, while more concerned with periodic traveling wave
solutions, does investigate “approximate solitary waves” for this model and concludes
that they are not unique. However, Amick and McLeod [3] have, using powerful
complex-analytic methods, rigorously proved that the model (2.8) does not possess a
solitary wave of elevation for au >0, with « sufficiently small. (Note that this result
does not exclude the exact solitary wave (3.1). See also Hunter and Scheurle [18] for
a less rigorous version.) It appears to be quite difficult to extend this technique to the
more general models considered in this paper, especially in view of the fact that, for
certain models, solitary wave solutions do exist. Amick and McLeod’s result implies
that Kawahara and Zufiria’s numerical solutions cannot be correct, and we propose
an explanation for such numerical results in § 8. Indeed, many numerical procedures
for finding such waves are, in our opinion, rather suspect, as most of the nonexistence
results are of the “exponentially small” variety, i.e., to all orders in £ a solitary wave
can be shown to exist, but one may suspect that exponentially small terms (like e~ /)
prevent its final establishment. See Byatt-Smith [11], Kruskal and Segur [27], [43],
and Troy [44], for other problems of this type. Numerical schemes are hard pressed
indeed to discover such exponentially small errors!

In the third-order model (2.16), which includes Kunin’s third order models for
elastic media and some of the water wave models, the equation for solitary waves can,
in certain cases, be integrated directly, and one has the intriguing phenomenon of a
wave of maximal height, reminiscent of the Stokes phenomenon (although the maximal
height waves for these models exhibit cusps rather than corners). Indeed, for the full
water wave problem, Amick and Toland [4], have proved the existence of monotone
solitary wave solutions of small amplitudes up to a maximal height wave with a 120°
corner for the problem in the absence of surface tension. (For large values of surface
tension, meaning Bond number 7> 3, Amick and Kirchgéssner [2] and Sachs [40] have
proved the existence of monotone solitary wave solutions, while very recent results of
Iooss and Kirchgédssner [19], and Beale [5] demonstrate the existence of solitary wave
solutions with damped oscillatory tails for 0 <7<3%). See also the papers of Wadati,
Ichigawa, and Shimizu [45], and Kawamoto [23] for other types of model equations
exhibiting limiting cusp waves. It is an interesting question as to whether any of the
fifth-order models exhibit such phenomena. Also, the behavior of large amplitude
waves (including the possibility of breaking) in these models is not known.

Finally, we mention papers by Yamamoto and Takizawa [47], [48], and Kano
and Nakayama [20], which exhibit other types of traveling wave solutions, including
periodic waves and solitary sech® waves approaching a nonzero asymptotic value as
x - +00. (These can, of course, always be transformed into ‘“‘genuine” solitary wave
solutions, with zero asymptotic limits, to a different model of the same basic form
(2.1) by subtracting a suitable constant from u.)
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Our own results include the following existence and nonexistence criteria.

On the one hand, we exhibit explicit conditions for a model of the form (2.1) to
possess a sech” solitary wave solution. First, for such solutions to exist, P(u) must
necessarily be a cubic polynomial, (2.2). Interestingly, the parameter space
(e, B, 8, u, p, q, r) splits into five regions: three of these are relatively open subregions
in which there are, respectively, two, one, or no exact sech® solitary wave solutions.
In the first and second regions, most models have such a solution for a unique, or
precisely two, possible wave speeds, similar to the anomalous sech* solution to the
model (2.8). Secondly, we prove that there are two algebraic relations that must be
satisfied by the coefficients in order for the model to admit a one-parameter family of
sech? solitary wave solutions for a range of wave speeds. This family includes the
higher-order Korteweg-deVries equations, (2.4), the Sawada-Kotera equation (2.6),
and the Hamiltonian water wave model (2.10) at the particular depth (2.13), but also
many other (presumably nonintegrable) equations as well. This leads to the two further
regions, each of codimension 2, in which there is either a one-parameter family of
sech? solitary wave solutions, or such a family plus a single anomalous sech? solitary
wave solution. These results reconfirm the idea that solitary waves may arise indepen-
dently of the model being integrable. Also, since the Kaup equation (2.7) admits a
one-parameter family of solitary wave solutions for a range of wave speeds that are
not sech® solutions, we must exercise a bit of caution in drawing unwarranted con-
clusions from this result!)

On the other hand, assuming paq#0, and introducing a small parameter ¢
representing the departure of the models from the Korteweg-deVries equation, we
prove that the only models that admit solitary wave solutions that are perturbations
of the corresponding Korteweg-deVries solitons, and satisfy certain analyticity condi-
tions, are the models that satisfy these same algebraic relations. Thus the only physically
relevant solitary wave solutions that can exist are always given by sech’ functions! In
outline, our nonexistence result is proved in two basic steps, similar to earlier work
of the first author on the nonexistence of breather solutions to a general class of
nonlinear Klein-Gordon equations, including the ¢* equation and the double sine-
Gordon equation [24]. We first establish the existence of ‘“‘solitary wave tails,” i.e.,
traveling wave solutions that decay exponentially fast at either +00 or —00, by proving
the convergence of the appropriate formal power series solution. The second step in
the proof is to match this solution with a formal asymptotic expansion of the solution
starting with the one soliton solution of the Korteweg-deVries equation obtained by
omitting the fifth-order terms in the model. We then show that, by analyzing the poles
of this solution in the complex plane, the second series cannot converge to a true
solution, and so we conclude that such a solitary wave solution does not exist. The
details will become clearer in the subsequent discussion.

4. The equation for traveling waves. We begin by recalling the elementary method
for reducing the problem of traveling wave solutions to an evolution equation such as
(2.1) to a connection problem for an ordinary differential equation. A traveling wave
solution is just a solution of the particular form

(4.1) u=u(¢)=u(x—ct),

where c is the wave speed and ¢ = x — ct is the characteristic variable. Substituting the

ansatz (4.1) into (2.1), we are led to look for solutions to the fifth-order ordinary
differential equation

(4.2) au""+ (Bu+p)u" +éu'u"+[P(u)—cu] =0,
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where the primes indicate derivatives with respect to & Any solution u(¢) of (4.2) thus
provides a traveling wave solution to the original evolution equation (2.1). The ordinary
differential equation (4.2) can be integrated once, so we effectively have a fourth-order
equation

(4.3) oau"+ (Bu+ pw)u"+yu>+ Q(u) =0,
where
(4.4) Q(u)=P(u)—cu—d,

with d being a constant of integration.

Consider the case of a localized traveling wave solution, meaning one that is
asymptotically small at large distances, so u >0 as ¢&- +00. Note that this requires
Q(0) =0, which fixes the constant of integration d. As it stands, (4.3) is still invariant
under the group of translations in ¢ (and so could be integrated once more, [36, § 2.5])
and the discrete reflection & — —¢&. One way to get rid of this ambiguity is to assume
that the wave has its crest (or trough) at & =0, and is symmetric with respect to the
crest, which means that u is an even function of & Thus we have a fourth-order
boundary value problem on the half line {£> 0}, with boundary conditions

(4.5) u'(0)=u"(0)=0, and u(£)->0, ¢&->+oo.

As it stands, it is by no means obvious how to solve the nonlinear connection problem
(4.3), (4.5); in particular, the two boundary conditions at £ =0 define too small a target
to try to aim for with a standard shooting approach. This already strongly indicates
that, barring exceptional circumstances, the existence of solitary wave solutions will
be rare.

5. An equation for monotone solitary waves. We introduce an effective direct
method for determining explicit “monotone” (see Definition 2 below) traveling wave
solutions to general one-dimensional evolution equations, reducing the fourth-order
boundary value problem (4.3), (4.5) on the half line to a (singular) third-order “initial-
value problem.” The method could also be used to effectively compute solitary and
periodic waves (when they exist) numerically, although we have not tried to implement
it. (In fact, the method was originally developed by the second author in a failed
attempt to prove general existence results concerning solitary wave solutions to these
models!) It draws its inspiration from a paper by Kano and Nakayama [20], in which
they showed the existence of explicit periodic solutions involving combinations of
elliptic functions to certain particular fifth-order models by proving that a suitable
polynomial solution w to the reduced equation could be determined; see also Krishnan
[26], where a similar method is applied to systems of Boussinesq type. Our method is
much more direct and easier to implement than that of Hereman et al. [15].

DEFINITION 2. A monotone solitary wave solution is a localized traveling wave
solution, i.e., u>0 as ¢£-+00, which is monotone on the open intervals (-0, &),
(&, 90), and symmetric about the point &,. The solitary wave is a wave of elevation
(depression) if u is montone increasing (decreasing) on (-, &), in which case
uo=u(&) is called the crest (trough). A monotone periodic wave solution is a traveling
wave solution which is periodic in ¢, is monotone on the intervals between crests and
troughs, and is symmetric about any crest or trough. A monotone kink wave solution
is a traveling wave solution which is monotone on the entire real line and approaches
limiting values at large distances, so u - u, as £ —00, and u > u, as £ c0.
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Rather than try to look directly for the required solution u(£), we assume that it
can be reconstructed as the solution of the simple first-order ordinary differential
equation
_du
=i
where w(u) is a function to be determined. Clearly, once the function w(u) is known,
(5.1) can be solved explicitly for u(£) by a simple quadrature:

(5.1) u?=w(u), u'

“ dv
(5.2) L \/W—(U—)Zf_‘-k

Examples of solutions that have this form are the soliton and cnoidal wave solutions
of the Korteweg-deVries equation [46, § 13.12], where the function w(u) is a cubic
polynomial. In particular, if u(¢) is a monotone function on a given interval, the
function w(u) is defined implicitly by the relation (5.1).

The key is the behavior of the function w(u) near its zeros. A simple zero will
correspond to a crest or a trough, while a double zero will provide an asymptotic
exponential tail for u(£) near 0o or —0. Thus, a solitary wave solution will correspond
to a positive solution w(u) between a double zero at u =0 and a simple zero at the
crest or trough u,. (See Fig. 1). Similarly, a periodic wave solution will correspond to
a positive solution w(u) between two consecutive simple zeros, (Fig. 2), while a kink
solution has two consecutive double zeros, (Fig. 3). We thus have the following useful
criterion for the existence of monotone traveling wave solutions to such models.

w(u)

u 0\ u

F1G. 1. Solitary wave solution.
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u®
ut

w(u)

/ul 2\ .

F1G. 2. Periodic wave solution.

ProrosiTION 3. Let w(u) be an analytic function of u, which is positive on the
interval uy<u <uy, with w(uy) = w(u,) =0. Let u(£¢) be the corresponding solution to the
first-order ordinary differential equation (5.1). If u, and u, are simple zeros of w, then u
is a monotone periodic traveling wave, oscillating between a peak u, and a trough u,. If
u, is a double zero and u, a simple zero of w, then u is a monotone solitary wave of
elevation with peak u, and asymptotic value u, at 0. Conversely, if u, is a double zero
and uy a simple zero of w, then u is a monotone solitary wave of depression with trough
u, and asymptotic value u, at +co. Finally, if u, and u, are both double zeros of w, then
u is a monotone kink wave with asymptotic values u,, u, at £ (either going from u, to
u, or the reverse by the reflectional symmetry).

Using the ansatz (5.1), we substitute into the ordinary differential equation for
the traveling wave solution u(¢), and thereby obtain an ordinary differential equation
for the function w(u) of order one less than that for u. The goal is then to determine
suitable solutions w(u) (if any exist) of this reduced ordinary differential equation.
Differentiating our basic equation (5.1), we find that, as long as u’# 0,

u =w,
1
ulI=_2_wl,
uw'u" = %err’
m 1 my X o roon
u" =sww" +zw'w’,
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u®

7

w(u)

Fi1G. 3. Kink wave solution.

where the primes on w indicate derivatives with respect to u. Substituting into (4.3),
we deduce that w must satisfy the third-order ordinary differential equation

1
(5.3) %{2ww’"+ w’w”}+§(Bu+p,)w’+ yw+ Q(u)=0.

Any solution to (5.3) will implicitly determine a special traveling wave solution to the
original wave equation (2.1) via the integral (5.2). In particular, for a monotone solitary
wave solution to the original equation, we need to find a solution w(u) to (5.3) satisfying
the initial conditions

(5.4) w(0)=w'(0)=0, w"(0)>0,
is positive, w(u) >0, for u between 0 and a # 0, and
(5.5) w(a)=0, w'(a)#0, w'(a)<oco.

In this case a will be the amplitude (crest or trough depending on the sign) of the
solitary wave.

6. Exact solitary wave solutions. In certain special cases, we can use the representa-
tion (5.1) to easily find exact sech” solitary wave solutions to our original evolution
equation (2.1). For a solitary wave solution of the specific form

(6.1) u(x, t) = a sech® A(x —ct), A>0,
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the corresponding function w(u) must be a cubic polynomial:

1
(6.2) w(u)=4/\2(u2~; u3) = pu’+ou’,
where
2
(6.3) p=4r>>0, 0'=—4—2—¢0

are constants to be determined from the equation. Note that since a =—p/o, we see
that o <0 gives a wave of elevation, and o > 0 a wave of depression. Substituting (6.2)
into (5.3), we first deduce that Q(u) (and hence P(u)) must be a cubic polynomial,
(6.4) Qu)=(p—c)u+qu’+r’,

with Q(0)=0; cf. (2.2), (4.4). Moreover, the coefficients p and o must satisfy three
polynomial equations:

(6.5) ap’+up+(p—c)=0,
(6.6) 15apo+2(B+y)p+3uc+2q=0,
(6.7) 15a0*+(3B+2y)o+2r=0,

arising as the coefficients of the powers of u in (5.3). The fact that the solution p of
the indicial equation (6.5) must be positive places certain inequality constraints on the
wave speed ¢ depending on the relative signs of the coefficients a, u. As long as we
also have a nonzero solution o to (6.7), then (6.6) imposes a single compatibility
condition on all the coefficients of the evolution equation (2.1) and the wave speed c.
As we will see, this implies that there are three open regions in parameter space
(coordinated by «, B, v, u, p, g, r), where the model (2.1), (2.2) has precisely 0, 1, or 2
sech? solitary wave solutions, for a particular value of the wave speed c.

For a special five-parameter family of models, there is actually a continuum of
sech? solitary wave solutions for all sufficiently large wave speeds. Note that according
to (6.5), p will depend on the wave speed ¢, whereas (6.7) implies that o does not.
Therefore, if the compatibility condition (6.6) is to hold for a range of wave speeds,
the coefficient of p and the constant term must lead to the same equation for o. We
conclude that the models for which this occurs are those for which

(6.8) (B+y)u=5qa and 15ar=pB(B+7y).

In particular, the four-parameter family of integrable fifth-order Korteweg-deVries
equations (2.5), and the Sawada-Kotera equation, (2.6), both satisfy these constraints.
However, these do not exhaust all the models satisfying the constraints (6.8); presum-
ably most of the others are not integrable. (Although the Kaup equation, (2.7), has a
continuum of solitary wave solutions, they are not of sech® type, and so it is in a
different class.)

For these particular models, the nature of the sech” solitary waves, which comes
from an elementary analysis of the conditions for (6.5), (6.7) to admit real solutions
p, 0, and the resulting signs, is of interest. Since the wave amplitude is given by the
formula a =3up/(2q), and p > 0, if qu > 0, then the solitary wave is a wave of elevation,
whereas if qu <0 it is a wave of depression, as in the Korteweg-deVries case (2.3).
Substituting into (6.5), we deduce the following quadratic equation relating wave speed
and amplitude:

2

4 2
(6.9) c= 9aqz a2+-§ ga+p,  signa=sign qu.
w
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If ap >0, then there is a unique solitary wave for each supercritical wave speed ¢ > p.
However, if @ and u have opposite signs, then besides these supercritical sech®
solutions, there is a nonzero sech” solitary wave at the critical wave speed ¢ = p, and
two distinct sech” solitary waves for the range of subcritical wave speeds between p
and p—u?/(4a), reducing to a single wave of amplitude a*=—3u*/(4aq) at the
limiting wave speed c*=p—u’/(4a). Figures 4 and 5 graph the different possible
relationships (6.9) between wave speed and amplitude for the one-parameter family
of sech’ solutions to the models satisfying (6.8).

The elementary observation that a model of the form (2.1) can admit more than
one distinct solitary wave solution for a given wave speed does not appear to be well
known, even for the integrable fifth-order Korteweg-deVries models. In this particular
case, this result can also be detected using the associated scattering problem as follows.
The Lax pair for such an equation takes the form L,=[B, L], where L is the usual
second-order Schrodinger operator, and B = uB;+ aBs= uLY?*+ aL? is a linear com-
bination of the third- and fifth-order operators giving the homogeneous third- and
fifth-order Korteweg-deVries equations. The eigenvalue for the soliton is constant,
and the associated norming constant has the time dependence m(t)°=
m(0)” exp [8utn® — an’]. The corresponding wave speed is then ¢ = (8un’—an’)/27.
Thus, we can clearly have ranges of wave speeds for which there are two distinct sech?
solitons traveling at the same speed. Note that the corresponding two-soliton solution
for two such waves represents a bound state with two humps traveling at the same

n<o0 u>0
c
c
a>0 P
2 p
p-F 1
20
a a
c
c
MZ
P" 2%
P
a<0 p

N \

F1G. 4. Wave speeds and amplitudes for qu > 0.
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p<o p>0

a>0

F1G. 5. Wave speeds and amplitudes for qu <0.

speed. This phenomenon is reminiscent of the construction of bound states to the
sine-Gordon equation, consisting of several solitons with phases having real parts with
the same speed, the sine-Gordon breather being an example. However, the present
property is much stronger, and its appearance for the fifth-order Korteweg-deVries
equation is, we believe, a new observation. Note that similarly, we can arrange bound
states for linear combinations of higher-order Korteweg-deVries equations to have
any number of desired humps traveling in tandem.

Let us summarize our general results completely characterizing models admitting
exact sech” solitary wave solutions. The different possibilities are: 0, 1, or 2 exact sech’
solitary wave solutions, a one-parameter family of sech” solutions, or a one-parameter
family along with a single additional exact sech® solution. The first three occur on
relatively open subsets of parameter space, whereas the latter two occur on parts of
the boundaries between these subsets.

THEOREM 4. Consider the model evolution equation (2.1), assuming a # 0. If P(u)
is not a cubic polynomial, then the model has no exact sech® solitary wave solutions. If
P(u) is given by (2.2), then we define

(6.10) {=(3B+2y) —120ar,
so that (6.7) has 0, 1, or 2 real roots

-(38+2y)+V{

(6.11) 0, 0,= 30w
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according to whether { is negative, zero, or positive. If r # 0, the real roots are nonzero,
if r=0, one root, namely o,=—(3B+2vy)/(15a), is nonzero unless B =—3vy also. Then
the model (2.1), (2.2) will have 0,1, or 2 exact sech’® solitary wave solutions for each
nonzero real root o;, which also satisfies

3M0'i+2q>

(6.12) v;=15a0;+2(B+y) #0, pi= 0.

Vi
Finally, if (B+y)u=5qa and 15ar=B(B+v), then the model has a one-parameter
family of exact sech” solitary wave solutions valid for a range of wave speeds corresponding
to the first root oy = —2(B + vy)/(15a). Moreover, if v # 0, the second root o,=—B/(15a)
gives rise to a single additional exact sech” solitary wave solution provided p,, as defined
by (6.12), is positive.

Example 5. The only possible water wave model which has a one-parameter family
of exact sech” solitary wave solutions, i.e., satisfies the conditions (6.8), is the Hamil-
tonian model (2.10) at the particular depth (2.13). Otherwise, these models all fail to
have families of sech” solitary wave solutions of the requisite type. However, Theorem
4 implies that many of the water wave models admit one or two anomalous sech®
solitary wave solutions. The precise numerical values for which the different possibilities
occur are rather strange; we will just summarize the results, which
were deduced with the help of MATHEMATICA. First, in the case of the second-order
depth model (2.9) provided a #0, i.e., except for the particular Bond number
T=(2v/30—-5)/15=.3970, the model admits a single exact sech” solitary wave solution
unless 38 +2vy =0, which occurs when 7= (73 —-3667)/51. For

2v/30-5 73 -366°
<l >

0=~ or T
15 51
the anomalous solitary wave is a wave of elevation, while for

2305 73 -366°
<Tr<<
15 51

it is a wave of depression.
Similarly, for the second-order surface model (2.11) there are one or two exact
sech’ solitary wave solutions provided a #0, and ¢ >0, which requires

4/19866 — 249 -
O§T<6—s.9453, T;é@sswo.
333 15
On the range
+ p—
‘/gfo d = 4740 <7< —‘2331707291 = 6068,

there are two anomalous solitary wave solutions; otherwise, there is just one. In all
cases, these are waves of elevation. The Hamiltonian depth model (2.10) also admits
exact solitary wave solutions for various ranges of values of the Bond number and
depth, but the results are too complicated to warrant inclusion here. We are not sure
of the physical significance (if any) of such exact solutions.

7. Existence of solitary wave tails. We now turn to the consideration of more
general types of solitary wave solutions. We begin by proving the existence of ““solitary
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wave tails,” meaning solutions to the ordinary differential equation (4.3) for traveling
waves with the correct asymptotic behavior at +00. First, let

(7.1) Qu) = i;lqmu'"

be the power series expansion of Q at u =0. (Note that Q(0) =0 is necessary for the
existence of an asymptotically decreasing solution to (4.3).) If P(u) is a cubic of the
form (2.2), then

(7.2) @=p—¢ q=q, q3=1, Gn=0, m>3,

where c is the wave speed.
DEFINITION 6. A solitary wave tail is an exponentially decreasing solution u(¢)
to the equation for traveling waves with asymptotic expansion

(7.3) u(@~u e % tu, e ru; e %+

b

with 6 >0, which converges for ¢ sufficiently large.

Of course, we can also discuss solitary wave tails at £ = —o0, but these are found
by using the reflectional symmetry replacing £ by —£& We can also consider “oscillatory
solitary wave tails,” i.e., convergent expansions of the form (7.3) with 6§ complex and
Re 6 > 0. Our convergence proof will work more or less the same way in this case, but
we will just concentrate on the real exponentials for simplicity.

The existence of such an expansion leads to immediate restrictions on the exponent
0 and the coefficients in the model. These result from an analysis of the balance
equations obtained by substituting (7.3) into (4.3), and equating terms in the various

exponentials e “%, k=1,2,3, - - -. The first few of these are easily found.
(7.4) e % (ab*+ub>+q)u, =0,

(7.5) e % (16a0*+4ub’+q)u,+[(B+v)0>+ ¢, ]ui =0,

(7.6) e % (81a0*+9ub’+q)us+[(58+4y)0°+2q,1uu, + qsui =0.

Since u, # 0, (but is otherwise arbitrary), the first balance equation leads immediately
to the indicial equation

(7.7) af*+ u6>+q,=0.
The existence of positive real solutions 6 to the indicial equation (7.7) places constraints
on the coefficients «, u, g, of the linearized model so that exponentially decaying

solutions can exist; see Theorem 7 below. Assuming these hold, we eliminate g, using
(7.7), and the balance equation resulting from the coefficient of e "% takes the form

(7.8) ((n*+1)ab*+ wo>Hu, =¥,

where ¥, is a (complicated) polynomial involving the coefficients of the equation and
the previous coefficients uy, - - -, u,_,. Therefore, as long as the nonresonance condition

(7.9) (n*+1)ab’*+p#0, n=2,3---,
holds for the root 6 of the indicial equation, we can solve recursively for all the
coefficients u,, n=1,2,- - -, in the expansion (7.3) and thereby determine a formal

solitary wave tail for the equation. Note that if « and u have the same sign, then the

nonresonance condition (7.9) automatically holds. The resonant case is quite intriguing,

but we have not investigated it in any detail, and we leave it aside in what follows.
Note in particular, if u(£)= a sech® A£, then

(7.10) 0=-2A, u,=4a, u,=-8a, u;=12a.
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Substituting (7.10) into the three balance equations (7.4), (7.5), (7.7), and using (7.2),
(6.3), we recover our earlier three equations (6.5), (6.6), (6.7), relating the equation
parameters and the solitary wave parameters a, A. Thus, we can deduce our earlier
parameter restrictions for the existence of sech’ solitary waves by an alternative
procedure based on the asymptotic expansion at c©0. However, in contrast to the earlier
direct method, this does not prove that the sech”> wave is actually a solution to (4.3),
since we must also verify the higher-order balance equations. Remarkably, these are
all satisfied; see § 8. This observation strongly indicates that only the first three balance
equations are important for solitary waves, a fact borne out in the following section.

THEOREM 7. Consider the model (2.1), and let Q(u) = P(u)— cu — P(0). If any one
of the conditions (a) aQ'(0) <0, (b) au <0 and Q'(0)=0, (¢) aw <0 and 4aQ’'(0) = u°,
or (d) a =0 and uQ'(0) <0, then there exists a unique solitary wave tail (7.3) provided
the nonresonance condition (7.9) holds. If 0<4aQ'(0)<u’ and au <0, then, again
provided the nonresonance condition (7.9) holds, there are two solitary wave tails. In all
other cases there are no convergent analytic exponentially decreasing solitary wave tails.

The conditions of Theorem 7 place restrictions on the possible wave speeds ¢ for
which there is any possibility of a solitary wave solution decaying exponentially fast
to 0 at £00. In the case au > 0, for a unique asymptotic tail, we need the usual condition
that the wave speed be supercritical: ¢> p = P'(0). (For the water wave models, this
gives the standard result that the wave speed of a solitary wave (if it exists) must be
larger than 1.) However, if « and u have opposite signs, there is the possibility of
nonunique solitary wave tails for some subcritical wave speeds c¢<p. Indeed, this
corresponds precisely to what we observed in § 5 for the cases where explicit sech’
solutions exist.

Proof of Theorem 7. Rather than work with the formal asymptotic expansion for
u(£) directly, it turns out to be simpler to employ the method introduced in § 5. We
let w(u)=u"> and prove that there is a convergent power series expansion

(7.11) wu)= Y wau*=wu*+wul+- -,
K=2

for w at u =0, which solves the third-order equation (5.3) with the initial conditions
(7.12) w(0) =w'(0)=0, w"(0)=2w,>0.

It is easy to express the coefficients w, of w in terms of the coefficients u; of u; in
particular, w, = 6. Clearly, proving the existence of such an analytic solution w will
imply that the corresponding solution u(¢) will have a convergent series expansion
(7.3), which is exponentially decreasing as &-co. Substituting (7.11) into (5.3), we
find that the only constant term is Q(0), which must necessarily vanish. The terms
involving the first power of u give our by now familiar indicial equation

(7.13) aws+ uw,+q,=0;

cf. (6.5), (7.7). Assuming that we have a positive solution w, to (7.13) (cf. the hypotheses
of the theorem), we construct the corresponding power series for w recursively. The
coefficient of u™, m=2, in (5.3) is

D a(j—1)(j—2) Bmw,, + u(m~+1)w,

[jwioiw; +iww;_ ]+ 5 +yW,, + ¢, =0.

i+j=m+4 2
i=3,j=3

Extracting the terms involving w,,, from the sum, we find the recurrence relation
a Yi—3 k(k=1)(m+k=1) WiWm_ici3+2(Bm +2y) W, + 44,
2(m+1D)[aw,(m*+1)+pu] )

(7.14) Wi ==
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Since w, = 67, the denominator does not vanish owing to the nonresonance condi-
tion (7.9), so we can continue to implement the recurrence relation (7.14), and thus
construct a formal series solution to (5.3) with the prescribed initial conditions (7.12).
We now need to prove convergence, which will follow from the next lemma.

LEMMA 8. Let w,= 0> be a positive root to the indicial equation (7.13). Assume
that the nonresonance condition (7.9) holds, and let w,,, m =3, satisfy the recurrence
relation (7.14). Then there exist positive constants A and M such that

m—3

A
(7.15) [W,a| =

s m=3.

Proof. Given the convergent power series expansion (7.1) for Q, we know that
there exists a number R>1 such that the coefficients of the expansion satisfy the
inequality

(7.16) |gm|=R™ for all m=1.

The nonresonance condition implies that there exists a constant K >0 such that
the inequality

(7.17) m>+m =2K|aw,(m*+1)+ u/
is valid for all m = 3. Thus, we have the following estimate on the denominator of (7.14):
+1)°
(7.18) 2(m+1)|aw2(m2+1)+,um!§(—m—KM.
Define the following constants:
2 4R*> R

. A=9 M=K ‘aA, = + —_—, =
(1.19) i max { w2 g+ 1), 5 5 |
A straightforward induction, starting at m =3, will prove the validity of (7.15). We
estimate all of the terms in the numerator of (7.14) in turn. For the summation, we have
m APM™ Pk(k—1)(m+k—1)

— +k— _ =
k§3 k(k 1)(m k 1)|Wk||wm k+3| k§3 kZ(m_k+3)2

m m+k
=AMy TR
L m—k?

§ A2Mm—3 mz_s 2m2_.]
j=0 J
72A2mMm—3
3
AmM™?
="
3Ka

lIA

For the next two terms, we find, since m=3,
2A(Blm+2ypM™

m2
S2Am(|m+|~y|)M'"*3SAmM'"“2
o 9 -~ 3K °’

2(18lm +2|yDlw.| =
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and, by (7.16),
AmM™ 2
3K’

both following from the definition (7.19) of M. Substituting these three estimates and
(7.18) into (7.14) easily proves the inductive step for the inequality (7.15).

4|g.|=4R™ =4R°M™ =

8. Nonexistence of solitary waves. Having dealt with existence of explicit solitary
wave solutions to particular types of the general model (2.1), we now turn our attention
to a nonexistence result. We begin by explicitly introducing the small parameter ¢ into
our model, and restrict our attention from the beginning to models in which P(u) is
a cubic polynomial. However, this restriction is inessential, and, coupled with the
results from Theorem 4, we can deduce that only in this case is there any possibility
of suitable solitary wave solutions existing. In the physical models of the form (2.1),
(2.2), there is a small parameter ¢, relative to which the translation coefficient p has
order 1, the Korteweg-deVries terms have coefficients u, g of order ¢, and the fifth-order
terms have coefficients a, 8, y (or 8), and r of order £°>. We also assume that u, g, and
a are all nonzero, so that the model is truly fifth-order, and, moreover, reduces to a
Korteweg-deVries equation when the O(&?) terms are neglected. We are interested in
the behavior of solutions in the limit £ - 0, but this is rather trivial without further
rescaling since all the terms except the translation will scale out, and everything will
reduce to zero. Rather than this, we need to introduce a rescaling of the equation in
which the fifth-order terms still have order &7, but the translation and Korteweg-deVries
terms are of order 1, and compare these solutions in the £ >0 limit. In terms of the
physical limit, then, we expect the solutions to be order & perturbations of the
corresponding Korteweg-deVries solutions, which are themselves of order . Note
that, in this limit, the velocity of a Korteweg-deVries soliton has order ¢ = p+ O(&?).

We begin with the once-integrated equation for traveling waves (4.3), which, using
(2.2), we write in the form

(8.1) (p—c)u+pu"+qu’+ au™+ Buu"+ yu">+ ru* = 0.

Introduce the scaling

(8.2) E=gm, u=«’v, c—p=«’s,

where ¢, k are small parameters, and s # 0. Rewriting (8.1) for v =v(n), we have
(8.3) e pv"+ k> (qu° — sv) + e*av” + k2> (Bov" + yv'?) + k*rv* =0.

The condition that the rescaled equation (8.3) possess solutions having the proper
expansions in powers of e~ " at n = +o0 is that the rescaled indicial equation

(8.4) sk’=eX(u+ag’),

relating the two scaling parameters, hold. This allows us to eliminate x and rewrite
the traveling wave equation in terms of the single small parameter &:

o « 1 r
v —o+dp24 82[_ (0" = o)+ 2 4= (Bov"+ yo'2) + 2 03]
s ® T s
(8.5)

2
a ra a’r

+ 54[——- (Bov"+ yv'*)+2—5— 03] +e* 5= v’ =0.
su s’ s

PrOPOSITION 9. There exists a formal asymptotic solution to (8.5) of the form

(8.6) v(e, 7))~ vo(M)+e’vy(n)+e*v(m)+- - -,
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in which

3s
2q

and each v, = P)(v,) is a polynomial in sech® (n/2), with P,(0)=0.

Remark. The expansion (8.6) will formally represent the proposed solitary wave
solution to the original model reducing to the Korteweg-deVries soliton, (8.7), in the
limit £ » 0. Thus each v;(7) satisfies the condition that it describe a solitary wave; in
particular, it is an exponentially decreasing function of n € R. The numerically observed
solitary wave solutions [22],[31], [50] can, we believe, be explained by the existence
of this nonconvergent formal series. Indeed, a numerical code would be an approxima-
tion to a finite truncation of the series (8.6), which would appear to be a numerical
approximation to a genuine solitary wave. But owing to the ultimate nonconvergence
of the series, the numerically observed solitary wave solution cannot, in fact, be
considered to approximate any actual solution to the ordinary differential equation
(8.5).

Proof. Note first that (8.7) is the unique even, decaying solution to the zeroth-order
equation

(8.7) vo(n) = sechzin?:,

(8.8) ol — vo+§ v2=0.

To avoid complications in the subsequent formulae, it helps to introduce a further
rescaling

(8.9) {=

N3

)

in terms of which (8.5) takes the form

V= VIV EG{ VT = VAV BVVI+ V47V

8.10 A
(8:10 +e'@[BVV'+ V2 +27V?]+£°a%FV> =0,
where

. a A 38 . 3y . ur
(811) a=—, B:——’ y==—, F=".

p 8u 8u 4q°

The solution V(¢) will have a formal asymptotic expansion
(8.12) V)~ V(D) +e* Vi) +e* Vo) +- - -,

with leading term V,(¢) =sech® £.
Using the abbreviation S(Z) for sech® {, we group here a few formulae that are
elementary, but which will be required in the sequel:

(8.13) $?=48*(1-8), S"=45-657
2
(8.14) j—(zS"‘=mS"’[4m—(4m+2)S].

Iterating (8.14) yields

— 8" =16m*S™ —16m(2m+1)2m>+2m+1)S™"!

(8.15) -
+4m(m+1)2m+1)2m+3)S™™.
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Consider the particular Schrodinger operator

d2

8.16 L=——+4-12S5(0).

(8.16) i )

We note that —12S5({) is a three-soliton potential (cf. [33]), so that the spectrum of
(8.16) consists of the eigenvalues {—5,0,3} and a continuous spectrum {A=4};
moreover, zero is a simple eigenvalue, with eigenfunction S’(¢), which is odd. Thus,
L is invertible on even functions in L>. Also, (8.14) implies

(8.17) L(S™)=mS™[4(1—m?) +(4m*+2m —12)S].

Together, these facts imply the following.
LemMA 10. The differential equation

(8.18) Lf=S*P(S), P a polynomial

has a unique even solution which has the form f = SQ(S), where Q is a polynomial.
Now, inserting the expansion (8.12) in (8.10), each coefficient of £* results in an
equation of the form

1Vi—= Vi +3S8Vi=F(0),
or, in view of (8.16)
(8.19) L(V,)=—4F.({).

One can see by induction that V, must have the form SP,(S), where P, is a polynomial.
Indeed, according to Lemma 10, we need only prove that F,({) has the form S°R,(S),
where R, is a polynomial in S. This results from the following:
(i) The remaining terms in V* have the form V;V,_,, 1=i=k—1, and, by the

induction hypothesis, each V; has the form SP;(S);

(ii) The coefficient of £2* in the terms £2V?, V>, £*V>, and £°V? is similarly
determined from V,,-- -, V,_q;

(iii) V'*is a sum of terms of the form P(S)'Q(S)’, and S*> has S” as a factor by
(8.13);

(iv) VV” has S as a factor by (8.13) again;

(v) (8.15) shows that 15 V,,;, — V also has the form S*R(S) if V =SP(S).

Therefore, we have proved that there exists a formal series solution to (8.10) of
the form

(8.20) V({)~sech® {+ Ozo e*Pc(sech® {),
k=1

where the P, are polynomials, P,(0)=0. This completes the proof of Proposition 9.
ProrosITION 11. If the expansion (8.6) converges to a holomorphic function in &
and sech® n/2 for n >, and & near zero, then its associated solitary wave tail is a
translate of the exponentially decaying tail previously constructed in Lemma 7.
Proof. By hypothesis, we have a convergent expansion for the tail of the form

(8.21) vie,n)=a,(e) e "+ay(e)e T+,

We must show that a(e) = a,(&) never vanishes so that we may replace n by n +log a(e)
to obtain the series

(8.22) B(e,m)=e "+by(e) e M+
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which can be compared to the previous form of the tail. To achieve this, we assume
a(gy) =0 for some g, (possibly complex). Since (8.21) must solve (8.5), the series
argument from § 7 immediately shows that in this case, all the coefficients vanish at
the point gy, ai(g,) =0, and hence v(gy, n) =0 vanishes for all n. We show that this
implies that every & derivative (3"v/9¢")(&o, 1) =0 of v also vanishes at the point &,
for all » which, by the holomorphy assumption, ensures v(g, n) =0, which is impossible
since vo(n) #0.

Note first that if v(ey, n) vanishes for all n, so do all its n-derivatives; therefore,
the first e-derivative z(n) = v.(&o, n) solves the linear ordinary differential equation

(8.23) z”—z+s§g{z””—z}=0,
m

since all the nonlinear terms vanish at g,. Moreover, since v(g, i) is holomorphic, we
also have that z— 0 exponentially fast at infinity. But it is easy to see (e.g., by using
the Fourier transform) that (8.23) has no nonzero L’ solutions. Similarly, an easy
induction proves that each derivative z = (3"v/d&")(&,, 1) also solves (8.23), and must,
therefore, also be identically zero. This completes the proof and demonstrates the
connection between our two series solutions.

Now, by analysis of the analyticity properties of the solutions to our earlier balance
equations for the coefficients in the expansion (8.6) we deduce our final nonexistence
result.

THEOREM 12. Suppose (8.5) possesses a series solution (8.6), which is holomorphic,
convergent on a region of the form

(8.24) leP< |l +ko, e <k,
S5a

for ko, k> 0. Then the equation necessarily satisfies the constraints (6.8) and thus has
a one-parameter family of exact sech’ solutions.

Remark. The exact sech’ solutions are clearly holomorphic in a region of the
indicated form (8.24) provided k, is chosen sufficiently small.

Proof. We begin by writing (8.5) in the more convenient form

v+ e%av™ — (14 e2@)v

8.24' .
( ) — _q(1+82&){vz+82[ﬁvvu+ ,)7012_’_(1_’_82&)“1';”3]}’
where

La s B .y .
(8'25) =, nga B:——’ Yy=-, r=—,.
M s q q q

We substitute the expansion (8.21) into (8.24') to compute the balance equations; cf.
(7.4), (1.5), (7.6), for the coefficients a;. The indicial equation, i.e., the terms in e 7,
are already balanced by design. The terms in e " lead to the equation

(8.26) 3(1+58%@)a, = —G(1+2a){(1+5e2@) + e2(B+ 7 —5d)}a’.

Thus, a, will have poles at £>=1/(5a&), contradicting the hypothesis of the theorem,
unless B~ + vy =>5a, which, in view of (8.25), is the same as the first condition in (6.8).
Assuming this holds, and using (8.26) to solve for a,, the remaining terms in e " lead
to the further balance equation

8(1+10&%d)as

~

8.27 .
:27) =3¢°(1+e’a){(1+10e°d) +3e*(58 +47 —3F —20d)}a3.
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Thus, a; will have poles at £’ = 1/(19&), unless 5[§+4& =37+20a, which, in view of
the previous condition reduces to B =37, and, by (8.25) is the same as the second
condition in (6.8); therefore, the expansion will be holomorphicin the indicated domain
if and only if the conditions (6.8) hold and the equation admits exact sech® solutions.
This completes the proof of Theorem 12.

The assumption of analyticity in Theorem 12 parallels that of [24]. It is likely that
the constant u/(5«) in the domain (8.24) can be replaced by any positive constant
£9>0, as the following argument plausibly indicates. Set, for simplicity,

___ 6%
G(1+e*a)’
Then the nth balance equation can, by a simple induction, be shown to take the form

6n+o,

qg(1+e*a)’

where each ®, is a rational function in &, with poles at ¢?=-1/((k*+1)a), for
k=2,3,---,n—1, and which vanishes identically if the sech” conditions (6.8) hold.
In order that the expansion (8.6), and hence the a; depend analytically on ¢ in some
neighborhood of ¢ =0, these coefficients cannot have complex poles accumulating at
¢ =0. Thus, for n sufficiently large, each ®,+6n must vanish at £>=—1/((n*+1)&).
This infinite collection of polynomial conditions seems highly unlikely in the absence
of (6.8). Indeed, we can straightforwardly reduce the size of the domain (8.24) by an
involved analysis of the first few of the rational functions @, for n small, perhaps
using MATHEMATICA, but we have not tried to implement this.

Note finally that the proof of Theorem 12 can be readily extended to include the
case when P(u) is an analytic function, in which case the hypotheses imply that P(u)
must be a cubic polynomial also. Indeed, by the above arguments, analyticity of (8.6)
in a region (8.24) implies that not only the first three coefficients p = p;, ¢ = p,, r = ps,
in the Taylor expansion of P(u) =} p,u" satisfy (8.6), but, moreover, a simple induction
will then show that all remaining coefficients must vanish if the poles in the general
recursion relation (8.28) are to cancel, so that p, =0 for n =4. We leave the remaining
details to the reader, and conclude this section by summarizing our basic nonexistence
result in a convenient unscaled form.

THeorReM 13. Consider an evolution equation of the form

(8.29) U, + [ epty + £2(Qlyprx + Buthe + yul) + P(u, €)1, =0,

a,

(8.28) (n*-1)(1+(n*+1)e’d)a, =

where ¢ is a small parameter, a, B, v, u are constants, and P is an analytic function of
the form

(8.30) P(u, &) =pu+equ’+e’ru’+e’u’R(u, €),

where p, g, r are constants, and R is analytic. Assume qu # 0, so that the O(¢) terms are
of Korteweg-deVries type. Then the model has a solitary wave solution of the form
u=u(x—ct, £) with speed c=p+e°s+- -, which has a formal expansion of the form

(8.31) u=cep[Ve(x—ct)]+e’p\[Ve(x—ct) ]+’ p.[Ve(x—ct)]+- - -,

which reduces to the Korteweg-de Vries soliton ¢o(n) ={(35)/(2q)} sech® /2 in the limit.
Assume that the expansion (8.31) converges to an analytic function in a complex domain
of the form |e|> <|u/(5a)|+ K, k>0, x —ct »0. Then, necessarily, R =0; so P(u, €) is
a cubic polynomial in u, and the coefficients of (8.29), (8.30) are related by the conditions

(8.32) (B+y)u=5qa and 15ar=B(B+Yy),
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which guarantee the existence of a one-parameter family of exact sech® solitary wave
solutions to the model.

In summary, then, the models (2.1) which admit a one-parameter family of exact
sech” solitary wave solutions are distinguished by the analyticity properties of their
solutions. This result is in direct analogy with those of [24], in which the linear, sine-,
and sinh-Gordon equations were distinguished among all one-dimensional Klein-
Gordon equations by similar types of analyticity properties. However, our result is
more revealing of the general method in that we no longer distinguish, by the smoothness
properties of their solutions, just integrable equations, but rather those having particular
explicit solutions. The method used here and in [24] is rather general, and is applicable
to a wide variety of similar problems.

9. Conclusions and further work. We have been able to prove, under certain
reasonable hypotheses, the nonexistence of solitary wave solutions to most fifth-order
evolution equations that arise as models for nonlinear water waves. This is very strange,
since most of the water wave models, except for the model (2.10) at the particular
depth (2.13), where the Hamiltonian model is a fifth-order Korteweg-deVries equation,
do not satisfy the requisite conditions (6.8) on the coefficients in the equation. Thus,
by trying to do better in modeling real solitary water waves, which are known to exist
[4], we, in a sense, do worse. The Korteweg-deVries model does have solitary wave
(soliton) solutions that do a reasonably good job approximating solitary water waves
[71, [8], [13]. But trying to get a more accurate model by retaining terms in & leaves
us with no solitary wave solutions at all! Of course, this is not really an unequivocal
problem since presumably the model does do a reasonable job approximating the
solitary water waves for times on the order of 1/¢” (the Kortweg-deVries model being
accurate for times on the order of 1/¢). Nevertheless, the results of this paper should
give one pause in the noncritical application of naive perturbation expansions as a
means for deriving model equations.

This leads us to wonder about the following questions: what happens to initial
conditions corresponding to solitary water waves as the time > +00? We expect that
small amplitude waves decay by dispersion or radiation, whereas it is plausible that
larger waves may even break. Is there a wave of maximal height? How do they behave
under collision—specifically do they emerge unscathed as true solitons [33], or is there
a small, but nonzero nonelastic effect, as in the BBM equation, [9]? It appears that
there is a need for good numerical integration procedures to study these models in
more detail. However, these must be long time accurate, and take into account
exponentially small effects. For Hamiltonian models, some form of symplectic
integrator [10] might be a good bet for investigating these questions. There is a lot of
work remaining to be done in this direction.
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