P-partitions revisited

Victor Reiner
(joint work with Valentin Féray)

Triangle Lectures in Combinatorics North Carolina State University April 9, 2011

Outline

(1) (q-)counting linear extensions
(2) Complete interesction posets
(3) A product formulaSome context
(5) Revisiting the ring of P-partitions

Outline

(1) (q-)counting linear extensions
(2) Complete interesction posets
(3) A product formula
(4) Some context
(5) Revisiting the ring of P-partitions

Outline

(1) (q-)counting linear extensions
(2) Complete interesction posets
(3) A product formula
(4) Some context
(5) Revisiting the ring of P-partitions

Outline

(1) (q-)counting linear extensions
(2) Complete interesction posets
(3) A product formula

4 Some context
(5) Revisiting the ring of P-partitions

Outline

(1) (q-)counting linear extensions
(2) Complete interesction posets
(3) A product formula

4 Some context
(5) Revisiting the ring of P-partitions

Posets

A poset (partially ordered set) P on labels $\{1,2, \ldots, n\}$

For $n=5$, our favorite poset P will be

Posets

A poset (partially ordered set) P on labels $\{1,2, \ldots, n\}$ is naturally labelled if $i<_{p} j$ implies $i<_{z} j$.

Example. For $n=5$, our favorite poset P will be

Linear extensions

A linear extension of P is a total order $w_{1}<_{w} w_{2}<_{w} \cdots<_{w} w_{n}$ that is stronger than P, that is, $i<_{P} j$ implies $i<_{w} j$.
The set of all linear extensions of P is denoted $\mathcal{L}(P)$.

Our favorite P has

Linear extensions

A linear extension of P is a total order $w_{1}<{ }_{w} w_{2}<{ }_{w} \cdots<{ }_{w} w_{n}$ that is stronger than P, that is, $i<_{P} j$ implies $i<_{w} j$. The set of all linear extensions of P is denoted $\mathcal{L}(P)$.

Our favorite P has

Linear extensions

A linear extension of P is a total order $w_{1}<_{w} w_{2}<_{w} \cdots<{ }_{w} w_{n}$ that is stronger than P, that is, $i<_{p} j$ implies $i<_{w} j$.
The set of all linear extensions of P is denoted $\mathcal{L}(P)$.

Example. Our favorite P has

$$
\mathcal{L}(P)=\left\{\begin{array}{lll}
12345, & 13245, & 31245 \\
12354, & 13254, & 31254, \\
13524, & 31524, & 35124
\end{array}\right\}
$$

(q-)counting

In general, $|\mathcal{L}(P)|$ is hard to count, or q-count by various statistics, such as

$$
\sum_{w \in \mathcal{L}(P)} q^{\operatorname{maj}(w)}
$$

where the major index
$\operatorname{maj}(w)$

(q-)counting

In general, $|\mathcal{L}(P)|$ is hard to count, or q-count by various statistics, such as

$$
\sum_{w \in \mathcal{L}(P)} q^{\operatorname{maj}(w)}
$$

where the major index

$$
\operatorname{maj}(w):=\sum_{i: w_{i}>w_{i+1}} i
$$

(q-)counting

In general, $|\mathcal{L}(P)|$ is hard to count, or q-count by various statistics, such as

$$
\sum_{w \in \mathcal{L}(P)} q^{\operatorname{maj}(w)}
$$

where the major index

$$
\operatorname{maj}(w):=\sum_{i: w_{i}>w_{i+1}} i
$$

Example.

$$
\operatorname{maj}(3 \cdot 15 \cdot 24)=1+3=4
$$

An example q-count

Example. Our favorite P has

$$
\sum_{w \in \mathcal{L}(P)} q^{\operatorname{maj}(w)}=\left\{\begin{array}{ccc}
12345, & 13 \cdot 245, & 3 \cdot 1245, \\
q^{0}+ & q^{2}+ & q^{1}+ \\
1235 \cdot 4, & 13 \cdot 25 \cdot 4, & 3 \cdot 125 \cdot 4, \\
q^{4}+ & q^{6}+ & q^{5}+ \\
135 \cdot 24, & 3 \cdot 15 \cdot 24, & 35 \cdot 124 \\
q^{3}+ & q^{4}+ & q^{2}
\end{array}\right\}
$$

An example q-count

Example. Our favorite P has

$$
\begin{gathered}
\begin{array}{c}
\sum_{w \in \mathcal{L}(P)} q^{\operatorname{maj}(w)}
\end{array}=\left\{\begin{array}{ccc}
12345, & 13 \cdot 245, & 3 \cdot 1245, \\
q^{0}+ & q^{2}+ & q^{1}+ \\
1235 \cdot 4, & 13 \cdot 25 \cdot 4, & 3 \cdot 125 \cdot 4, \\
q^{4}+ & q^{6}+ & q^{5}+ \\
135 \cdot 24, & 3 \cdot 15 \cdot 24, & 35 \cdot 124 \\
q^{3}+ & q^{4}+ & q^{2}
\end{array}\right\} \\
=q^{0}+q^{1}+2 q^{2}+q^{3}+2 q^{4}+q^{5}+q^{6}
\end{gathered}
$$

Unexpected factorization

$$
\sum_{w \in \mathcal{L}(P)} q^{\operatorname{maj}(w)}=q^{0}+q^{1}+2 q^{2}+q^{3}+2 q^{4}+q^{5}+q^{6}
$$

$$
=\left(1+q+q^{2}\right)\left(1+q^{2}+q^{4}\right)
$$

$$
=[3]_{q}[3]_{q^{2}}
$$

$$
=[3]_{q} \frac{[6]_{q}}{[2]_{q}}
$$

Unexpected factorization

$$
\begin{aligned}
\sum_{w \in \mathcal{L}(P)} q^{\operatorname{maj}(w)} & =q^{0}+q^{1}+2 q^{2}+q^{3}+2 q^{4}+q^{5}+q^{6} \\
& =\left(1+q+q^{2}\right)\left(1+q^{2}+q^{4}\right)
\end{aligned}
$$

$$
=[3]_{q}[3]_{q^{2}}
$$

$$
\text { where }[m]_{q}:=1+q+q^{2}+\cdots+q^{m-1}
$$

Unexpected factorization

$$
\begin{gathered}
\begin{array}{c}
\sum_{w \in \mathcal{L}(P)} q^{\operatorname{maj}(w)}=q^{0}+q^{1}+2 q^{2}+q^{3}+2 q^{4}+q^{5}+q^{6} \\
=\left(1+q+q^{2}\right)\left(1+q^{2}+q^{4}\right) \\
=[3]_{q}[3]_{q^{2}} \\
\text { where }[m]_{q}:=1+q+q^{2}+\cdots+q^{m-1}
\end{array}
\end{gathered}
$$

Unexpected factorization

$$
\begin{gathered}
\begin{array}{c}
\sum_{w \in \mathcal{L}(P)} q^{\mathrm{maj}(w)}=q^{0}+q^{1}+2 q^{2}+q^{3}+2 q^{4}+q^{5}+q^{6} \\
=\left(1+q+q^{2}\right)\left(1+q^{2}+q^{4}\right) \\
=[3]_{q}[3]_{q^{2}} \\
\text { where }[m]_{q}:=1+q+q^{2}+\cdots+q^{m-1}
\end{array}
\end{gathered}
$$

$$
=[3]_{q} \frac{[6]_{q}}{[2]_{q}}
$$

CI-posets

Such factorizations will occur for a class of posets that we call complete intersection (or Cl) posets, defined here

- first in terms of their connected order ideals,
- later characterized later in terms of their ring of P-partitions having a complete intersection presentation.

CI-posets

Such factorizations will occur for a class of posets that we call complete intersection (or Cl) posets, defined here

- first in terms of their connected order ideals,
- later characterized later in terms of their ring of P-partitions having a complete intersection presentation.

CI-posets

Such factorizations will occur for a class of posets that we call complete intersection (or Cl) posets, defined here

- first in terms of their connected order ideals,
- later characterized later in terms of their ring of P-partitions having a complete intersection presentation.

Connected order ideals

An order ideal J in P is a down-set: $j \in J$ and $i<_{p} j$ implies $i \in J$.

An order ideal J is connected if its
Hasse diagram is nonempty and connected
as a graph.

Connected order ideals

An order ideal J in P is a down-set:
$j \in J$ and $i<_{p} j$ implies $i \in J$.
An order ideal J is connected if its
Hasse diagram is nonempty and connected as a graph.

Example, with connected ideals darkly circled

Principal and nearly principal ideals

An obvious subclass of the connected order ideals are the principal ideals $P_{\leq x}=\left\{i \in P: i<_{p} x\right\}$.

An important disjoint subclass for us
are the nearly principal ideals J, defined by

- J is connected, and
- $J=J_{1} \cup J_{2}$
with J_{1}, J_{2} connected ideals having $J_{i} \subsetneq J$, and
- this expression $J=J_{1} \cup J_{2}$ is unique

Say that a poset P is a Cl-poset if every connected order ideal
of P is either principal or nearly principal

Principal and nearly principal ideals

An obvious subclass of the connected order ideals are the principal ideals $P_{\leq x}=\left\{i \in P: i<_{p} x\right\}$.

An important disjoint subclass for us are the nearly principal ideals J, defined by

- J is connected, and
- $J=J_{1} \cup J_{2}$
with J_{1}, J_{2} connected ideals having $J_{i} \subseteq J$, and
- this expression $J=J_{1} \cup J_{2}$ is unique

Say that a poset P is a Cl-poset if every connected order ideal
of P is either principal or nearly principal

Principal and nearly principal ideals

An obvious subclass of the connected order ideals are the principal ideals $P_{\leq x}=\left\{i \in P: i<_{p} x\right\}$.

An important disjoint subclass for us are the nearly principal ideals J, defined by

- J is connected, and
with J_{1}, J_{2} connected ideals having $J_{i} \subsetneq J$, and
- this expression $J=J_{1} \cup J_{2}$ is unique

Say that a poset P is a Cl-poset if every connected order ideal
of P is either principal or nearly principal

Principal and nearly principal ideals

An obvious subclass of the connected order ideals are the principal ideals $P_{\leq x}=\left\{i \in P: i<_{p} x\right\}$.

An important disjoint subclass for us are the nearly principal ideals J, defined by

- J is connected, and
- $J=J_{1} \cup J_{2}$
with J_{1}, J_{2} connected ideals having $J_{i} \subsetneq J$, and
- this expression $J=J_{1} \cup J_{2}$ is unique

Say that a poset P is a CI-poset if every connected order ideal
of P is either principal or nearly principal

Principal and nearly principal ideals

An obvious subclass of the connected order ideals are the principal ideals $P_{\leq x}=\left\{i \in P: i<_{p} x\right\}$.

An important disjoint subclass for us are the nearly principal ideals J, defined by

- J is connected, and
- $J=J_{1} \cup J_{2}$
with J_{1}, J_{2} connected ideals having $J_{i} \subsetneq J$, and
- this expression $J=J_{1} \cup J_{2}$ is unique

Say that a poset P is a $C l-p o s e t ~ i f ~ e v e r y ~ c o n n e c t e d ~ o r d e r ~ i d e a l ~$
 of P is either principal or nearly principal

Principal and nearly principal ideals

An obvious subclass of the connected order ideals are the principal ideals $P_{\leq x}=\left\{i \in P: i<_{p} x\right\}$.

An important disjoint subclass for us are the nearly principal ideals J, defined by

- J is connected, and
- $J=J_{1} \cup J_{2}$
with J_{1}, J_{2} connected ideals having $J_{i} \subsetneq J$, and
- this expression $J=J_{1} \cup J_{2}$ is unique

Say that a poset P is a CI-poset if every connected order ideal of P is either principal or nearly principal

Our favorite example is CI

The three minimal non- Cl examples

These P_{1}, P_{2}, P_{3} are not Cl , and are the minimal obstructions to being Cl , as induced subposets.

Factorization theorem

Theorem. (Féray-R.)

Naturally labelled CI-posets P on $\{1,2, \ldots, n\}$ have

$$
\sum_{w \in \mathcal{L}(P)} q^{\operatorname{maj}(w)}=[n]!_{q} \cdot \frac{\prod_{\left\{\mathcal{J}_{1}, \mathcal{J}_{2}\right\}}\left[\left|\mathcal{J}_{1}\right|+\left|J_{2}\right|\right]_{q}}{\prod_{J}[|J|]_{q}}
$$

where

- $[n]]_{q}:=[n]_{q}[n-1]_{q} \cdots[3]_{q}[2]_{q}[1]_{q}$,
- the denominator runs over connected order ideals J, while
- the numerator runs over pairs $\left\{J_{1}, J_{2}\right\}$ of connected order ideals that intersect nontrivially, in the sense that

Factorization theorem

Theorem. (Féray-R.)

Naturally labelled CI-posets P on $\{1,2, \ldots, n\}$ have

$$
\sum_{w \in \mathcal{L}(P)} q^{\operatorname{maj}(w)}=[n]!_{q} \cdot \frac{\prod_{\left\{\mathcal{J}_{1}, \mathcal{J}_{2}\right\}}\left[\left|J_{1}\right|+\left|J_{2}\right|\right]_{q}}{\prod_{J}[|J|]_{q}}
$$

where

- $[n]_{!_{q}}:=[n]_{q}[n-1]_{q} \cdots[3]_{q}[2]_{q}[1]_{q}$,
- the denominator runs over connected order ideals J, while
- the numerator runs over pairs $\left\{J_{1}, J_{2}\right\}$ of connected order ideals that intersect nontrivially, in the sense that

Factorization theorem

Theorem. (Féray-R.)

Naturally labelled CI-posets P on $\{1,2, \ldots, n\}$ have

$$
\sum_{w \in \mathcal{L}(P)} q^{\operatorname{maj}(w)}=[n]!_{q} \cdot \frac{\prod_{\left\{J_{1}, J_{2}\right\}}\left[\left|J_{1}\right|+\left|J_{2}\right|\right]_{q}}{\prod_{J}[|J|]_{q}}
$$

where

- $[n]_{!_{q}}:=[n]_{q}[n-1]_{q} \cdots[3]_{q}[2]_{q}[1]_{q}$,
- the denominator runs over connected order ideals J, while
- the numerator runs over pairs $\left\{J_{1}, J_{2}\right\}$ of connected order ideals that intersect nontrivially, in the sense that

Factorization theorem

Theorem. (Féray-R.)

Naturally labelled CI-posets P on $\{1,2, \ldots, n\}$ have

$$
\sum_{w \in \mathcal{L}(P)} q^{\operatorname{maj}(w)}=[n]!_{q} \cdot \frac{\prod_{\left\{\mathcal{J}_{1}, \mathcal{J}_{2}\right\}}\left[\left|\mathcal{J}_{1}\right|+\left|J_{2}\right|\right]_{q}}{\prod_{J}[|J|]_{q}}
$$

where

- $[n]!_{q}:=[n]_{q}[n-1]_{q} \cdots[3]_{q}[2]_{q}[1]_{q}$,
- the denominator runs over connected order ideals J, while
- the numerator runs over pairs $\left\{J_{1}, J_{2}\right\}$ of connected order ideals that intersect nontrivially, in the sense that

$$
\varnothing \subsetneq J_{1} \cap J_{2} \subsetneq J_{1}, J_{2} .
$$

Our favorite example...

... has these connected ideals

$$
\begin{array}{ccccccc}
\text { ideal } & \{1\} & \{3\} & \{1,2\} & \{3,5\} & \{1,2,3,4\} & \{1,2,3,4,5\} \\
\text { size } & 1 & 1 & 2 & 2 & 4 & 5
\end{array}
$$

and only one (unordered) pair intersecting nontrivially, namely

$$
\left|J_{1}\right|+\left|J_{2}\right|=2+4=6 .
$$

Our favorite example...

... has these connected ideals

$$
\begin{array}{ccccccc}
\text { ideal } & \{1\} & \{3\} & \{1,2\} & \{3,5\} & \{1,2,3,4\} & \{1,2,3,4,5\} \\
\text { size } & 1 & 1 & 2 & 2 & 4 & 5
\end{array}
$$

and only one (unordered) pair intersecting nontrivially, namely

$$
\begin{gathered}
\left\{J_{1}=\{3,5\} \quad, \quad J_{2}=\{1,2,3,4\}\right\} \\
\left|J_{1}\right|+\left|J_{2}\right|=2+4=6
\end{gathered}
$$

The theorem therefore asserts that

$$
\sum_{w \in \mathcal{L}(P)} q^{\mathrm{maj}(w)}=[5]!_{q} \cdot \frac{[6]_{q}}{[1]_{q}[1]_{q}[2]_{q}[2]_{q}[4]_{q}[5]_{q}}
$$

The theorem therefore asserts that

$$
\begin{aligned}
\sum_{w \in \mathcal{L}(P)} q^{\mathrm{maj}(w)} & =[5]!!_{q} \cdot \frac{[6]_{q}}{[1]_{q}[1]_{q}[2]_{q}[2]_{q}[4]_{q}[5]_{q}} \\
& =\frac{[1]_{q}[2]_{q}[3]_{q}[4]_{q}[5]_{q}[6]_{q}}{[1]_{q}[1]_{q}[2]_{q}[2]_{q}[4]_{q}[5]_{q}}
\end{aligned}
$$

The theorem therefore asserts that

$$
\begin{aligned}
& \sum_{w \in \mathcal{L}(P)} q^{\mathrm{maj}(w)}= {[5]!!_{q} \cdot \frac{[6]_{q}}{[1]_{q}[1]_{q}[2]_{q}[2]_{q}[4]_{q}[5]_{q}} } \\
&=\frac{[1]_{q}[2]_{q}[3]_{q}[4]_{q}[5]_{q}[6]_{q}}{[1]_{q}[1]_{q}[2]_{q}[2]_{q}[4]_{q}[5]_{q}} \\
&=\frac{[3]_{q}[6]_{q}}{[2]_{q}} \\
&=q^{0}+q^{1}+2 q^{2}+q^{3}+2 q^{4}+q^{5}+q^{6}
\end{aligned}
$$

Special case: forest posets

A special case of the factorization theorem occurs when the poset Cl-poset P has every connected ideal principal, so none are nearly principal.

Then P is a forest poset in the sense that every element is covered by at most one other element.

Special case: forest posets

A special case of the factorization theorem occurs when the poset Cl-poset P has every connected ideal principal, so none are nearly principal.

Then P is a forest poset in the sense that every element is covered by at most one other element.

Special case: The maj q-hook-formula for forests

Theorem. (Knuth 1973 for $q=1$, Björner and Wachs 1989)
Naturally labelled forest posets P on $\{1,2, \ldots, n\}$ have

$$
\sum_{w \in \mathcal{L}(P)} q^{\operatorname{maj}(w)}=\frac{[n]!_{q}}{\prod_{i=1}^{n}\left[\left|P_{\leq i}\right|\right]_{q}}
$$

A typical CI poset

Still, one might ask "How special are Cl -posets?" Here's a typical-looking one:

Characterizations of Cl posets

Theorem. T.F.A.E. for a poset P :

- P is CI , that is, every connected order ideal is either principal or nearly principal.
- P avoids P_{1}, P_{2}, P_{3} as induced subposets.
- P is the smallest class of posets containing the one-element poset and closed under 3 operations: disjoint union, hanging, and twinning.
- The P-partition affine semigroup ring has a complete intersection presentation ...

Characterizations of Cl posets

Theorem. T.F.A.E. for a poset P :

- P is CI , that is, every connected order ideal is either principal or nearly principal.
- P avoids P_{1}, P_{2}, P_{3} as induced subposets.
- P is the smallest class of posets containing the one-element poset and closed under 3 operations: disjoint union, hanging, and twinning.
- The P-partition affine semigroup ring has a complete intersection presentation

Characterizations of Cl posets

Theorem. T.F.A.E. for a poset P :

- P is Cl , that is, every connected order ideal is either principal or nearly principal.
- P avoids P_{1}, P_{2}, P_{3} as induced subposets.
- P is the smallest class of posets containing the one-element poset and closed under 3 operations: disjoint union, hanging, and twinning.
- The P-partition affine semigroup ring has a complete intersection presentation

Characterizations of Cl posets

Theorem. T.F.A.E. for a poset P :

- P is CI , that is, every connected order ideal is either principal or nearly principal.
- P avoids P_{1}, P_{2}, P_{3} as induced subposets.
- P is the smallest class of posets containing the one-element poset and closed under 3 operations:
disjoint union, hanging, and twinning.
- The P-partition affine semigroup ring has a complete intersection presentation

Characterizations of Cl posets

Theorem. T.F.A.E. for a poset P :

- P is Cl , that is, every connected order ideal is either principal or nearly principal.
- P avoids P_{1}, P_{2}, P_{3} as induced subposets.
- P is the smallest class of posets containing the one-element poset and closed under 3 operations: disjoint union,
- The P-partition affine semigroup ring has a complete intersection presentation

Characterizations of Cl posets

Theorem. T.F.A.E. for a poset P :

- P is Cl , that is, every connected order ideal is either principal or nearly principal.
- P avoids P_{1}, P_{2}, P_{3} as induced subposets.
- P is the smallest class of posets containing the one-element poset and closed under 3 operations: disjoint union, hanging,
- The P-partition affine semigroup ring has a complete intersection presentation

Characterizations of CI posets

Theorem. T.F.A.E. for a poset P :

- P is Cl , that is, every connected order ideal is either principal or nearly principal.
- P avoids P_{1}, P_{2}, P_{3} as induced subposets.
- P is the smallest class of posets containing the one-element poset and closed under 3 operations: disjoint union, hanging, and twinning.
- The P-partition affine semigroup ring has a complete intersection presentation

Characterizations of CI posets

Theorem. T.F.A.E. for a poset P :

- P is Cl , that is, every connected order ideal is either principal or nearly principal.
- P avoids P_{1}, P_{2}, P_{3} as induced subposets.
- P is the smallest class of posets containing the one-element poset and closed under 3 operations: disjoint union, hanging, and twinning.
- The P-partition affine semigroup ring has a complete intersection presentation ...

P-partition review

It is time to revisit the rings behind Richard Stanley's (1971) concept of P-partitions for a naturally-labelled poset P on $\{1,2, \ldots, n\}$.
These are functions $f: P \rightarrow \mathbf{N}$ which are (weakly)
order-reversing: if $i<p j$ then $f(i) \geq_{\mathrm{N}} f(j)$.

P-partition review

It is time to revisit the rings behind Richard Stanley's (1971) concept of P-partitions for a naturally-labelled poset P on $\{1,2, \ldots, n\}$.
These are functions $f: P \rightarrow \mathbf{N}$ which are (weakly) order-reversing: if $i<_{p} j$ then $f(i) \geq_{\mathbf{N}} f(j)$.

An affine semigroup ring

These P-partitions are the lattice points in a convex polyhedral cone of dimension n :

- $f(i) \geq 0$ for $i=1,2, \ldots, n$, and
- $f(i) \geq f(j)$ for $i<p j$.

Thus the sum $f_{1}+f_{2}$ of two P-partitions f_{1}, f_{2} is another; they are a (finitely generated, cancellative) semigroup under addition.

An affine semigroup ring

These P-partitions are the lattice points in a convex polyhedral cone of dimension n :

- $f(i) \geq 0$ for $i=1,2, \ldots, n$, and
- $f(i) \geq f(j)$ for $i<p j$.

Thus the sum $f_{1}+f_{2}$ of two P-partitions f_{1}, f_{2} is another; they are a (finitely generated, cancellative) semigroup under addition.

Making P-partitions f correspond to monomials x^{f}

$$
f=(5,5,2,1,0) \quad \leftrightarrow \quad x^{f}=x_{1}^{5} x_{2}^{5} x_{3}^{2} x_{4}^{1} x_{5}^{0}
$$

they form a k-basis for an affine semigroup ring $R_{P}:=k-\operatorname{span}$ of $\left\{x^{f}: f\right.$ a $P-$ partition $\}$ $\subseteq k\left[x_{1}, \ldots, x_{n}\right]$.

This ring was studied a bit by Adriano Garsia around 1980.

Making P-partitions f correspond to monomials x^{f}

$$
f=(5,5,2,1,0) \quad \leftrightarrow \quad x^{f}=x_{1}^{5} x_{2}^{5} x_{3}^{2} x_{4}^{1} x_{5}^{0}
$$

they form a k-basis for an affine semigroup ring

$$
\begin{aligned}
R_{P} & :=k-\operatorname{span} \text { of }\left\{x^{f}: f \text { a } P-\text { partition }\right\} \\
& \subseteq k\left[x_{1}, \ldots, x_{n}\right] .
\end{aligned}
$$

This ring was studied a bit by Adriano Garsia around 1980.

Making P-partitions f correspond to monomials x^{f}

$$
f=(5,5,2,1,0) \quad \leftrightarrow \quad x^{f}=x_{1}^{5} x_{2}^{5} x_{3}^{2} x_{4}^{1} x_{5}^{0}
$$

they form a k-basis for an affine semigroup ring

$$
\begin{aligned}
R_{P} & :=k-\operatorname{span} \text { of }\left\{x^{f}: f \text { a } P-\text { partition }\right\} \\
& \subseteq k\left[x_{1}, \ldots, x_{n}\right] .
\end{aligned}
$$

This ring was studied a bit by Adriano Garsia around 1980.

Why major index ?

Introduce a standard grading on R_{P} where $\operatorname{deg}\left(x_{i}\right)=1$.
Stanley's Basic lemma on P-partitions gives
a unimodular triangulation of the polyhedral cone,
with maximal cones indexed by $\mathcal{L}(P)$,
and the following easy Hilbert series computation:

Garsia (1980) interpreted this algebraically.

Why major index ?

Introduce a standard grading on R_{P} where $\operatorname{deg}\left(x_{i}\right)=1$.
Stanley's Basic lemma on P-partitions gives a unimodular triangulation of the polyhedral cone, with maximal cones indexed by $\mathcal{L}(P)$,
and the following easy Hilbert series computation:

Garsia (1980) interpreted this algebraically.

Why major index?

Introduce a standard grading on R_{P} where $\operatorname{deg}\left(x_{i}\right)=1$.
Stanley's Basic lemma on P-partitions gives a unimodular triangulation of the polyhedral cone, with maximal cones indexed by $\mathcal{L}(P)$, and the following easy Hilbert series computation:

Garsia (1980) interpreted this algebraically.

Why major index ?

Introduce a standard grading on R_{P} where $\operatorname{deg}\left(x_{i}\right)=1$.
Stanley's Basic lemma on P-partitions gives a unimodular triangulation of the polyhedral cone, with maximal cones indexed by $\mathcal{L}(P)$, and the following easy Hilbert series computation:
$\operatorname{Hilb}\left(R_{P}, q\right)=\sum_{f} q^{f(1)+\cdots+f(n)}$

Garsia (1980) interpreted this algebraically.

Why major index?

Introduce a standard grading on R_{P} where $\operatorname{deg}\left(x_{i}\right)=1$.
Stanley's Basic lemma on P-partitions gives a unimodular triangulation of the polyhedral cone, with maximal cones indexed by $\mathcal{L}(P)$, and the following easy Hilbert series computation:
$\operatorname{Hilb}\left(R_{P}, q\right)=\sum_{f} q^{f(1)+\cdots+f(n)}=\frac{\sum_{w \in \mathcal{L}(P)} q^{\operatorname{maj}(w)}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}$.
Garsia (1980) interpreted this algebraically.

Why major index?

Introduce a standard grading on R_{P} where $\operatorname{deg}\left(x_{i}\right)=1$.
Stanley's Basic lemma on P-partitions gives a unimodular triangulation of the polyhedral cone, with maximal cones indexed by $\mathcal{L}(P)$, and the following easy Hilbert series computation:

$$
\operatorname{Hilb}\left(R_{P}, q\right)=\sum_{f} q^{f(1)+\cdots+f(n)}=\frac{\sum_{w \in \mathcal{L}(P)} q^{\operatorname{mij}(w)}}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)} .
$$

Garsia (1980) interpreted this algebraically.

Rings to the rescue!

Thus if one can compute that Hilbert series differently, e.g. from structural knowledge or a resolution of the ring R_{P},
then one can compute

and count $|\mathcal{L}(P)|$ by setting $q=1$.

Rings to the rescue!

Thus if one can compute that Hilbert series differently, e.g. from structural knowledge or a resolution of the ring R_{P}, then one can compute

$$
\sum_{w \in \mathcal{L}(P)} q^{\operatorname{maj}(w)}
$$

and count $|\mathcal{L}(P)|$ by setting $q=1$.

Rings to the rescue!

Thus if one can compute that Hilbert series differently, e.g. from structural knowledge or a resolution of the ring R_{P},
then one can compute

$$
\sum_{w \in \mathcal{L}(P)} q^{\operatorname{maj}(w)}
$$

and count $|\mathcal{L}(P)|$ by setting $q=1$.

Generators for R_{P}

It's easy to see that R_{P} is generated by the monomials $x_{J}:=\prod_{i \in J} x_{i}$ as one runs through the order ideals J of P, e.g.

Generators for R_{P}

It's easy to see that R_{P} is generated by the monomials $x_{J}:=\prod_{i \in J} x_{i}$ as one runs through the order ideals J of P, e.g.

$$
\begin{aligned}
x^{f} & =x_{1}^{5} x_{2}^{5} x_{3}^{2} x_{4}^{1} x_{5}^{0} \\
& =\left(x_{1} x_{2} x_{3} x_{4}\right)\left(x_{1} x_{2} x_{3}\right)\left(x_{1} x_{2}\right)^{3} .
\end{aligned}
$$

$\mathrm{f}=(5,5,2,1,0)$

Why connected order ideals?

It's also easy to see that monomials x_{J} for disconnected ideals J give redundant generators, e.g.

$$
x_{1} x_{2} x_{3}=x_{1} x_{2} \cdot x_{3}
$$

(Boussicault-Féray-Lascoux-R.)

- Extreme rays of the P-partition cone are the connected ordered ideals J of P, and
- their $\left\{x_{J}\right\}$ give the unique Hilbert basis (=minimum semigroup generating set) for the P-partitions, and the ring R_{P}.

Why connected order ideals?

It's also easy to see that monomials x_{J} for disconnected ideals J give redundant generators, e.g.

$$
x_{1} x_{2} x_{3}=x_{1} x_{2} \cdot x_{3}
$$

Proposition. (Boussicault-Féray-Lascoux-R.)

- Extreme rays of the P-partition cone are the connected ordered ideals J of P, and
- their $\left\{x_{J}\right\}$ give the unique Hilbert basis (=minimum semigroup generating set) for the P-partitions, and the ring R_{P}.

Why connected order ideals?

It's also easy to see that monomials x_{J} for disconnected ideals J give redundant generators, e.g.

$$
x_{1} x_{2} x_{3}=x_{1} x_{2} \cdot x_{3}
$$

Proposition. (Boussicault-Féray-Lascoux-R.)

- Extreme rays of the P-partition cone are the connected ordered ideals J of P, and
- their $\left\{x_{J}\right\}$ give the unique Hilbert basis (=minimum semigroup generating set) for the P-partitions, and the ring R_{P}.

Revisiting the ring of P-partitions

Minimal presentation for R_{P}

Introducing indeterminates U_{J} for the connected ideals J, one has a surjection $k\left[U_{J}\right] \rightarrow R_{P}$ sending $U_{J} \mapsto x_{J}$. Its kernel is often called the toric ideal I_{P}.

where

- \boldsymbol{J}, J_{2} are connected order ideals that intersect nontrivially:
$\varnothing \subset J_{1} \cap J_{2} \subset J_{1}, J_{2}$, and

Minimal presentation for R_{P}

Introducing indeterminates U_{J} for the connected ideals J, one has a surjection $k\left[U_{J}\right] \rightarrow R_{P}$ sending $U_{J} \mapsto x_{J}$. Its kernel is often called the toric ideal I_{P}.

Theorem. (Féray-R.)
The presentation $R_{P} \cong k\left[U_{J}\right] / I_{P}$, has the toric ideal I_{P} minimally generated by the binomials
where

- J_{1}, J_{2} are connected order ideals that intersect nontrivially:
$\varnothing \subsetneq J_{1} \cap J_{2} \subsetneq J_{1}, J_{2}$, and

Minimal presentation for R_{P}

Introducing indeterminates U_{J} for the connected ideals J, one has a surjection $k\left[U_{J}\right] \rightarrow R_{P}$ sending $U_{J} \mapsto x_{J}$. Its kernel is often called the toric ideal I_{P}.

Theorem. (Féray-R.)
The presentation $R_{P} \cong k\left[U_{J}\right] / I_{P}$, has the toric ideal I_{P} minimally generated by the binomials

$$
U_{J_{1}} U_{J_{2}}-U_{J_{1} \cup J_{2}} \cdot \prod_{i} U_{J^{(i)}}
$$

where

Minimal presentation for R_{P}

Introducing indeterminates U_{J} for the connected ideals J, one has a surjection $k\left[U_{J}\right] \rightarrow R_{P}$ sending $U_{J} \mapsto x_{J}$. Its kernel is often called the toric ideal I_{P}.

Theorem. (Féray-R.)
The presentation $R_{P} \cong k\left[U_{J}\right] / I_{P}$, has the toric ideal I_{P} minimally generated by the binomials

$$
U_{J_{1}} U_{J_{2}}-U_{J_{1} \cup J_{2}} \cdot \prod_{i} U_{J^{(i)}}
$$

where

- J_{1}, J_{2} are connected order ideals that intersect nontrivially: $\varnothing \subsetneq J_{1} \cap J_{2} \subsetneq J_{1}, J_{2}$, and

Minimal presentation for R_{P}

Introducing indeterminates U_{J} for the connected ideals J, one has a surjection $k\left[U_{J}\right] \rightarrow R_{P}$ sending $U_{J} \mapsto x_{J}$. Its kernel is often called the toric ideal I_{P}.

Theorem. (Féray-R.)
The presentation $R_{P} \cong k\left[U_{J}\right] / I_{P}$, has the toric ideal I_{P} minimally generated by the binomials

$$
U_{J_{1}} U_{J_{2}}-U_{J_{1} \cup J_{2}} \cdot \prod_{i} U_{J^{(i)}}
$$

where

- J_{1}, J_{2} are connected order ideals that intersect nontrivially: $\varnothing \subsetneq J_{1} \cap J_{2} \subsetneq J_{1}, J_{2}$, and
- $J^{(i)}$ are the connected components of $J_{1} \cap J_{2}$.

The running example

Example. Our favorite example has

$$
\left.\begin{array}{rlllll}
R_{P} & =k\left[x_{1},\right. & x_{3}, & x_{1} x_{2}, & x_{3} x_{5}, & x_{1} x_{2} x_{3} x_{4}, \\
& \left.x_{1} x_{2} x_{3} x_{4} x_{5}\right] \\
& \cong k\left[U_{1},\right. & U_{3}, & U_{12}, & U_{35}, & U_{1234}, \\
U_{12345}
\end{array}\right] \quad / I_{P},
$$

where I_{P} is the (principal) ideal generated by the element

in degree $2+4=6$.
Consequently,
$\operatorname{Hilb}\left(R_{P}, q\right)=\frac{1-q^{6}}{(1-q)(1-q)\left(1-q^{2}\right)\left(1-q^{2}\right)\left(1-q^{4}\right)\left(1-q^{5}\right)}$

The running example

Example. Our favorite example has

$$
\left.\begin{array}{rlrccc}
R_{P} & =k\left[x_{1},\right. & x_{3}, & x_{1} x_{2}, \quad x_{3} x_{5}, & x_{1} x_{2} x_{3} x_{4}, & \left.x_{1} x_{2} x_{3} x_{4} x_{5}\right] \\
& \cong k\left[U_{1},\right. & U_{3}, & U_{12}, & U_{35}, & U_{1234}, \\
U_{12345}
\end{array}\right] \quad / I_{P}
$$

where I_{P} is the (principal) ideal generated by the element

$$
U_{35} U_{1234}-U_{12345} U_{3}
$$

in degree $2+4=6$.
Consequently,
$\operatorname{Hilb}\left(R_{P}, q\right)$

The running example

Example. Our favorite example has

$$
\left.\begin{array}{rlrccc}
R_{P} & =k\left[x_{1},\right. & x_{3}, & x_{1} x_{2}, & x_{3} x_{5}, & x_{1} x_{2} x_{3} x_{4}, \\
& \left.x_{1} x_{2} x_{3} x_{4} x_{5}\right] \\
& \cong k\left[U_{1},\right. & U_{3}, & U_{12}, & U_{35}, & U_{1234}, \\
U_{12345}
\end{array}\right] \quad / I_{P}
$$

where I_{P} is the (principal) ideal generated by the element

$$
U_{35} U_{1234}-U_{12345} U_{3}
$$

in degree $2+4=6$.
Consequently,

$$
\operatorname{Hilb}\left(R_{P}, q\right)=\frac{1-q^{6}}{(1-q)(1-q)\left(1-q^{2}\right)\left(1-q^{2}\right)\left(1-q^{4}\right)\left(1-q^{5}\right)}
$$

The running example

Example. Our favorite example has

$$
\begin{aligned}
& R_{P}=k\left[x_{1}, \quad x_{3}, \quad x_{1} x_{2}, \quad x_{3} x_{5}, \quad x_{1} x_{2} x_{3} x_{4}, \quad x_{1} x_{2} x_{3} x_{4} x_{5}\right] \\
& \cong k\left[\begin{array}{llll}
U_{1} & U_{3}, & U_{12}, & U_{35},
\end{array} U_{1234}, \quad U_{12345}\right] \quad / I_{P}
\end{aligned}
$$

where I_{P} is the (principal) ideal generated by the element

$$
U_{35} U_{1234}-U_{12345} U_{3}
$$

in degree $2+4=6$.
Consequently,

$$
\operatorname{Hilb}\left(R_{P}, q\right)=\frac{1-q^{6}}{(1-q)(1-q)\left(1-q^{2}\right)\left(1-q^{2}\right)\left(1-q^{4}\right)\left(1-q^{5}\right)}
$$

implying our formula for $\sum_{w \in \mathcal{L}(P)} q^{\operatorname{maj}(w)}$ and $\left|\mathcal{L}\left(P_{\rho}\right)\right|$.

Complete intersections

The same trick works just as well whenever $R_{P} \cong k\left[U_{J}\right] / I_{P}$ is a complete intersection presentation, that is,

- the Krull dimension n for R_{p}, and
- the Krull dimension m for $k\left[U_{J}\right]$,
equal to the number of connected order ideals,
together with
- the number of relations r, equal to the number of pairs $\left\{J_{1}, J_{2}\right\}$ of connected ideals intersecting nontrivially, achieve equality in $r \geq m-n$.

Complete intersections

The same trick works just as well whenever $R_{P} \cong k\left[U_{J}\right] / I_{P}$ is a complete intersection presentation, that is,

- the Krull dimension n for R_{P}, and
- the Krull dimension m for $k\left[U_{J}\right]$,
equal to the number of connected order ideals,
together with
- the number of relations r, equal to the number of pairs $\left\{J_{1}, J_{2}\right\}$ of connected ideals intersecting nontrivially, achieve equality in $r \geq m-n$.

Complete intersections

The same trick works just as well whenever $R_{P} \cong k\left[U_{J}\right] / I_{P}$ is a complete intersection presentation, that is,

- the Krull dimension n for R_{P}, and
- the Krull dimension m for $k\left[U_{J}\right]$, equal to the number of connected order ideals, together with
- the number of relations r, equal to the number of pairs $\left\{J_{1}, J_{2}\right\}$ of connected ideals intersecting nontrivially, achieve equality in $r>m-n$.

Complete intersections

The same trick works just as well whenever $R_{P} \cong k\left[U_{J}\right] / I_{P}$ is a complete intersection presentation, that is,

- the Krull dimension n for R_{P}, and
- the Krull dimension m for $k\left[U_{J}\right]$, equal to the number of connected order ideals, together with
- the number of relations r, equal to the number of pairs $\left\{J_{1}, J_{2}\right\}$ of connected ideals intersecting nontrivially,
achieve equality in $r \geq m-n$.

Complete intersections

The same trick works just as well whenever $R_{P} \cong k\left[U_{J}\right] / I_{P}$ is a complete intersection presentation, that is,

- the Krull dimension n for R_{P}, and
- the Krull dimension m for $k\left[U_{J}\right]$, equal to the number of connected order ideals, together with
- the number of relations r, equal to the number of pairs $\left\{J_{1}, J_{2}\right\}$ of connected ideals intersecting nontrivially, achieve equality in $r \geq m-n$.

Complete intersection posets

Theorem. (Féray-R.)
A poset P is Cl
(connected order ideals either principal or nearly principal)

This gives the earlier factorization theorem.

Complete intersection posets

Theorem. (Féray-R.)
A poset P is Cl
(connected order ideals either principal or nearly principal) if and only

$$
r=m-n
$$

This gives the earlier factorization theorem.

Complete intersection posets

Theorem. (Féray-R.)
A poset P is Cl
(connected order ideals either principal or nearly principal) if and only

$$
r=m-n .
$$

This gives the earlier factorization theorem.

Two remarks

Remark 1.

These generators form a Gröbner basis for the toric ideal with respect to certain term orders.

- This corresponds to a new (non-unimodular) triangulation of the P-partition cone.
- It shows that a certain associated graded ring is Koszul.

Two remarks

Remark 1.

These generators form a Gröbner basis for the toric ideal with respect to certain term orders.

- This corresponds to a new (non-unimodular) triangulation of the P-partition cone.
- It shows that a certain associated graded ring is Koszul.

Two remarks

Remark 1.

These generators form a Gröbner basis for the toric ideal with respect to certain term orders.

- This corresponds to a new (non-unimodular) triangulation of the P-partition cone.
- It shows that a certain associated graded ring is Koszul.

Two remarks

Remark 2.

Can one resolve R_{P} when P is a Ferrers diagram poset P, and recover the usual ($q-$)hook-length formula for $\mathcal{L}(P)$, that is, the q-count by major index for standard Young tableaux of shape P ?

Ferrers posets are not covered by our factorization theorem,
that is, R_{P} is not a complete intersection

Two remarks

Remark 2.

Can one resolve R_{P} when P is a Ferrers diagram poset P, and recover the usual ($q-$)hook-length formula for $\mathcal{L}(P)$, that is, the q-count by major index for standard Young tableaux of shape P ?

Ferrers posets are not covered by our factorization theorem,
that is, R_{p} is not a complete intersection

Two remarks

Remark 2.

Can one resolve R_{P} when P is a Ferrers diagram poset P, and recover the usual ($q-$)hook-length formula for $\mathcal{L}(P)$, that is, the q-count by major index for standard Young tableaux of shape P ?

Ferrers posets are not covered by our factorization theorem, that is, R_{P} is not a complete intersection

Thanks for listening!

