
Math 2374
Spring 2008
Exam 2 solutions

1. (30 points) (a) (3 points each)

curl(∇f) – YES

curl(div F) – NO; div F is a real-valued function, and curl applies to vector fields.

div(curl F) – YES

∇× (∇× F) – YES

∇× (∇ · F) – NO; as above.

(b) (15) Since ||c(t)||2 = c(t) · c(t) = 1, we have d
dt(c(t) · c(t)) = 0, and 0 = d

dt(c(t) · c(t)) =
c′(t) · c(t) + c(t) · c′(t) = 2c′(t) · c(t), which implies that c(t) and c′(t) are perpendicular.

2. (20 points) Change the order of integration:∫ 2

0

∫ y2

0
e(y

3) dx dy =
∫ 2

0
y2e(y

3) dy =
1
3

∫ 8

0
eu du =

e8 − 1
3

.

3. (20 points) F = (yz2, xy2, zx2) is not the gradient of a function f(x, y, z), because curl F =
(0, 2yz − 2xz, y2 − z2) 6= 0.

4. (30 points) (a) (5) ||c(4π)− c(2π)|| = ||(1, 0, 8π)− (1, 0, 4π)|| = 8π − 4π = 4π.

(b) (10) Since c′(t) = (− sin t, cos t, 2), we have

L =
∫ 4π

2π
((− sin t)2 + (cos t)2 + 22)1/2 dt =

∫ 4π

2π

√
5 dt = 2π

√
5.

(c) (15) Since ||c′(t)|| =
√

5 as above, we have

M =
∫ 4π

2π

1
z

√
5 dt =

√
5

2

∫ 4π

2π

1
t
dt =

√
5

2
(ln(4π)− ln(2π)) =

√
5

2
ln 2.

5. (20 points) Since F = (yz2, xz2, 2xyz) is the gradient of the function f(x, y, z) = xyz2, by the
fundamental theorem we have∫

c
F · ds = f(3, 1, 2)− f(1,−2,−3) = 12− (−18) = 30.

One may also parametrize the path and calculate the line integral directly.

6. (20 points) For F = (P,Q) = (x2, xy), we have Qx − Py = y. Then by Green’s Theorem,∫
C+

F · ds =
∫∫

R
y dA,

where R is the triangular region bounded by C+. That region is bounded by the x- and y-axes
and the line x = 3− 3

2y. So we have∫
C+

F · ds =
∫ 2

0

∫ 3− 3
2
y

0
y dx dy =

∫ 2

0
(3y − 3

2
y2) dy = 2.

One may also parametrize the path (in three parts) and calculate the line integral directly.
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It also can be solved by using line integrals. See this solution in a different file. 




