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Third Midterm: Solutions

1. Rewrite the given equation in the form x2

2
3

+ y2
2
3

+ z2

1
= 1. This equation defines an ellip-

soid centered at the origin with the x-, y- and z- radii equal to
√

2
3
,
√

2
3

and 1 respectively.

It looks as follows:

Such an ellipsoid can be parametrized by

x(θ, φ) =

√
2

3
sinφ cos θ, y(θ, φ) =

√
2

3
sinφ sin θ, z(θ, φ) = cosφ. (1)

It is important to notice here that the parameter φ is not the angle between a radius-vector
and the z-axis.

The condition z ≥ x2 + y2 puts certain restrictions on φ. To determine them, we find the
intersection of the given ellipsoid and the surface1 z = x2 + y2:{

3(x2 + y2) + 2z2 = 2

z = x2 + y2.

We plug z = x2 +y2 into the first equation and obtain 2z2 +3z+2 = 0. The positive solution
of this quadratic equation is z = 1

2
. Now, we plug z = 1

2
into the first equation of the system

again and obtain x2 + y2 = 1
2
. Hence, the intersection is a circle of radius 1√

2
lying on the

plane z = 1
2
.

1It is a paraboloid.



If z = 1
2
, then, according to (1), φ = cos−1

(
1
2

)
= π

3
. Therefore, φ ranges from 0 to π

3
and θ

goes from 0 to 2π.
This is how the surface looks like:

2. We denote the given vector field 6xy(cos z)i+3x2(cos z)j−3x2y(sin z)k by F = (F1, F2, F3).
All Fi’s are continuously differentiable, and it is easy to verify that ∇×F = 0. Hence, F is
a conservative field and we can be sure that a function f satisfying F = ∇f exists.

We have

f(x, y, z) =

∫
F1 dx =

∫
6xy(cos z) dx = 3x2y(cos z) + h1(y, z),

f(x, y, z) =

∫
F2 dy =

∫
3x2(cos z) dy = 3x2y(cos z) + h2(x, z),

f(x, y, z) =

∫
F3 dz =

∫
−3x2y(sin z) dz = 3x2y(cos z) + h3(x, y).

Thus, f can be taken in the form f(x, y, z) = 3x2y(cos z).

3. First, we find

Φu(u, v) = (1, 1, v), Φv(u, v) = (−1, 1, u).

The cross product Φu(1, 1)× Φv(1, 1) gives a vector which is normal to the given surface at
the point Φ(1, 1) = (0, 2, 1). We calculate

Φu(u, v)× Φv(u, v) =

∣∣∣∣∣∣
i j k
1 1 v
−1 1 u

∣∣∣∣∣∣ = (u− v)i− (u+ v)j + 2k

Φu(1, 1)× Φv(1, 1) = (0,−2, 2).

This vector can be taken as a normal vector of the tangent plane at the point Φ(1, 1). Hence,
an equation of the tangent plane is

0(x− 0)− 2(y − 2) + 2(z − 1) = 0.

That finishes the first part.
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Area =

∫ ∫
S

1 dS =

∫ ∫
D

1 · ‖Φu(u, v)× Φv(u, v)‖ du dv

=

∫ ∫
D

√
(u− v)2 + (u+ v)2 + 22 du dv =

√
2

∫ ∫
D

√
u2 + v2 + 2 du dv,

where D is the unit disk.
To calculate the latter integral we use the polar coordinates. We let u = r cos θ and

v = r sin θ. Then

√
2

∫ ∫
D

√
u2 + v2 + 2 du dv =

√
2

2π∫
0

1∫
0

√
r2 + 2 · r︸︷︷︸

Jacobian

dr dθ =
√

2 · 2π · (r2 + 2)
3
2

3

∣∣∣1
0

=
2
√

2π

3
(3
√

3− 2
√

2).

4. The given cylinder can be parametrized by

T(θ, z) = (cos θ, sin θ, z), 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1.

We calculate

Tθ(θ, z) = (− sin θ, cos θ, 0)

Tz(θ, z) = (0, 0, 1)

Tθ(θ, z)×Tz(θ, z) = (cos θ, sin θ, 0).

∫ ∫
S

F dS =

∫ ∫
S

F · (Tθ ×Tr) dS =

2π∫
0

1∫
0

(cos θ, sin θ,− sin θ) · (cos θ, sin θ, 0) dz dθ

=

2π∫
0

1∫
0

(cos2 θ + sin2 θ) dz dθ = 2π.

5. The change of variables formula yields∫ ∫
B

x2 + y2 dx dy =

∫ ∫
B∗

(
x(u, v)2 + y(u, v)2

)
·
∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv, (2)

where B∗ = [1, 4]× [1, 3].

3



We know exactly how u and v depend on x and y, but expressing x and y in terms of u, v
seems to be a not so easy problem. It suggests to look for an alternative way of calculating

the Jacobian
∣∣∣∂(x,y)
∂(u,v)

∣∣∣. We will use the following property of Jacobians:

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ =

∣∣∣∣∂(u, v)

∂(x, y)

∣∣∣∣−1

. (3)

We find ∣∣∣∣∂(u, v)

∂(x, y)

∣∣∣∣ =

∣∣∣∣ 2x −2y
y x

∣∣∣∣ = 2(x2 + y2).

Then, according to the identity (3),∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ =
1

2
(
x(u, v)2 + y(u, v)2

)
Returning to (2), we obtain∫ ∫

B

x2 + y2 dx dy =

∫ ∫
B∗

(
x(u, v)2 + y(u, v)2

)
· 1

2
(
x(u, v)2 + y(u, v)2

) du dv
=

1

2

∫ ∫
B∗

1 du dv =
1

2
· Area of B∗ = 3.

We still do not know the formulas for x(u, v), y(u, v), but nevertheless, we calculated the
wanted integral using the change of variables.

6. Short Solution.

By Stokes’ Theorem, ∫
C=∂T

F dS =

∫ ∫
T

(∇× F) dS,

where F = (x+y, 2x−z, y+z) and T is the triangle with the vertices (2, 0, 0), (0, 3, 0), (0, 0, 6).
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We calculate

∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

x+ y 2x− z y + z

∣∣∣∣∣∣ = 2i− k.

Then ∫ ∫
T

(∇× F) dS =

∫ ∫
T

(∇× F) · n dS =

∫ ∫
T

(2, 0, 1) · n dS, (4)

where n is the unit normal vector to the plane containing the triangle T pointing “ upwards“
(it is chosen with respect to the right-hand rule).

To find n, let

a = (0, 3, 0)− (2, 0, 0) = (−2, 3, 0)

b = (0, 0, 6)− (2, 0, 0) = (−2, 0, 6)

and calculate

a× b =

∣∣∣∣∣∣
i j k
−2 3 0
−2 0 6

∣∣∣∣∣∣ = 18i + 12j + 6k.

Then n = a×b
‖a×b‖ . Returning to (4), we obtain∫ ∫

T

(∇× F) dS =

∫ ∫
T

(2, 0, 1) · a× b

‖a× b‖
dS =

1

‖a× b‖

∫ ∫
T

(2, 0, 1) · (18, 12, 6) dS

=
42

‖a× b‖
·
∫ ∫

T

1 dS =
42

‖a× b‖
· Area of T.

Recall that the area of a triangle with the sides a, b is equal to 1
2
‖a×b‖ and conclude that

the latter integral is equal to 21.

Long Solution.

Parametrize each side of the triangle, calculate the line integral of F over each side and
sum up the results afterwards.
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