Third Midterm: Solutions

1. Rewrite the given equation in the form $\frac{x^{2}}{\frac{2}{3}}+\frac{y^{2}}{\frac{2}{3}}+\frac{z^{2}}{1}=1$. This equation defines an ellipsoid centered at the origin with the x-, y - and z-radii equal to $\sqrt{\frac{2}{3}}, \sqrt{\frac{2}{3}}$ and 1 respectively. It looks as follows:

Such an ellipsoid can be parametrized by

$$
\begin{equation*}
x(\theta, \phi)=\sqrt{\frac{2}{3}} \sin \phi \cos \theta, \quad y(\theta, \phi)=\sqrt{\frac{2}{3}} \sin \phi \sin \theta, \quad z(\theta, \phi)=\cos \phi . \tag{1}
\end{equation*}
$$

It is important to notice here that the parameter ϕ is not the angle between a radius-vector and the z-axis.

The condition $z \geq x^{2}+y^{2}$ puts certain restrictions on ϕ. To determine them, we find the intersection of the given ellipsoid and the surface ${ }^{1} z=x^{2}+y^{2}$:

$$
\left\{\begin{array}{l}
3\left(x^{2}+y^{2}\right)+2 z^{2}=2 \\
z=x^{2}+y^{2}
\end{array}\right.
$$

We plug $z=x^{2}+y^{2}$ into the first equation and obtain $2 z^{2}+3 z+2=0$. The positive solution of this quadratic equation is $z=\frac{1}{2}$. Now, we plug $z=\frac{1}{2}$ into the first equation of the system again and obtain $x^{2}+y^{2}=\frac{1}{2}$. Hence, the intersection is a circle of radius $\frac{1}{\sqrt{2}}$ lying on the plane $z=\frac{1}{2}$.

[^0]If $z=\frac{1}{2}$, then, according to (1), $\phi=\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}$. Therefore, ϕ ranges from 0 to $\frac{\pi}{3}$ and θ goes from 0 to 2π.

This is how the surface looks like:

2. We denote the given vector field $6 x y(\cos z) \mathbf{i}+3 x^{2}(\cos z) \mathbf{j}-3 x^{2} y(\sin z) \mathbf{k}$ by $\mathbf{F}=\left(F_{1}, F_{2}, F_{3}\right)$. All F_{i} 's are continuously differentiable, and it is easy to verify that $\nabla \times \mathbf{F}=\mathbf{0}$. Hence, \mathbf{F} is a conservative field and we can be sure that a function f satisfying $\mathbf{F}=\nabla f$ exists.

We have

$$
\begin{aligned}
& f(x, y, z)=\int F_{1} d x=\int 6 x y(\cos z) d x=3 x^{2} y(\cos z)+h_{1}(y, z) \\
& f(x, y, z)=\int F_{2} d y=\int 3 x^{2}(\cos z) d y=3 x^{2} y(\cos z)+h_{2}(x, z) \\
& f(x, y, z)=\int F_{3} d z=\int-3 x^{2} y(\sin z) d z=3 x^{2} y(\cos z)+h_{3}(x, y)
\end{aligned}
$$

Thus, f can be taken in the form $f(x, y, z)=3 x^{2} y(\cos z)$.
3. First, we find

$$
\Phi_{u}(u, v)=(1,1, v), \quad \Phi_{v}(u, v)=(-1,1, u) .
$$

The cross product $\Phi_{u}(1,1) \times \Phi_{v}(1,1)$ gives a vector which is normal to the given surface at the point $\Phi(1,1)=(0,2,1)$. We calculate

$$
\begin{aligned}
& \Phi_{u}(u, v) \times \Phi_{v}(u, v)=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & v \\
-1 & 1 & u
\end{array}\right|=(u-v) \mathbf{i}-(u+v) \mathbf{j}+2 \mathbf{k} \\
& \Phi_{u}(1,1) \times \Phi_{v}(1,1)=(0,-2,2)
\end{aligned}
$$

This vector can be taken as a normal vector of the tangent plane at the point $\Phi(1,1)$. Hence, an equation of the tangent plane is

$$
0(x-0)-2(y-2)+2(z-1)=0
$$

That finishes the first part.

$$
\begin{aligned}
\text { Area }=\iint_{S} 1 d S & =\iint_{D} 1 \cdot\left\|\Phi_{u}(u, v) \times \Phi_{v}(u, v)\right\| d u d v \\
& =\iint_{D} \sqrt{(u-v)^{2}+(u+v)^{2}+2^{2}} d u d v=\sqrt{2} \iint_{D} \sqrt{u^{2}+v^{2}+2} d u d v
\end{aligned}
$$

where D is the unit disk.
To calculate the latter integral we use the polar coordinates. We let $u=r \cos \theta$ and $v=r \sin \theta$. Then

$$
\begin{aligned}
\sqrt{2} \iint_{D} \sqrt{u^{2}+v^{2}+2} d u d v & =\sqrt{2} \int_{0}^{2 \pi} \int_{0}^{1} \sqrt{r^{2}+2} \cdot \underbrace{r}_{\text {Jacobian }} d r d \theta=\left.\sqrt{2} \cdot 2 \pi \cdot \frac{\left(r^{2}+2\right)^{\frac{3}{2}}}{3}\right|_{0} ^{1} \\
& =\frac{2 \sqrt{2} \pi}{3}(3 \sqrt{3}-2 \sqrt{2})
\end{aligned}
$$

4. The given cylinder can be parametrized by

$$
\mathbf{T}(\theta, z)=(\cos \theta, \sin \theta, z), \quad 0 \leq \theta \leq 2 \pi, \quad 0 \leq z \leq 1
$$

We calculate

$$
\begin{gathered}
\mathbf{T}_{\theta}(\theta, z)=(-\sin \theta, \cos \theta, 0) \\
\mathbf{T}_{z}(\theta, z)=(0,0,1) \\
\mathbf{T}_{\theta}(\theta, z) \times \mathbf{T}_{z}(\theta, z)=(\cos \theta, \sin \theta, 0) \\
\iint_{S} \mathbf{F} d \mathbf{S}=\iint_{S} \mathbf{F} \cdot\left(\mathbf{T}_{\theta} \times \mathbf{T}_{r}\right) d S=\int_{0}^{2 \pi} \int_{0}^{1}(\cos \theta, \sin \theta,-\sin \theta) \cdot(\cos \theta, \sin \theta, 0) d z d \theta \\
=\int_{0}^{2 \pi} \int_{0}^{1}\left(\cos ^{2} \theta+\sin ^{2} \theta\right) d z d \theta=2 \pi
\end{gathered}
$$

5. The change of variables formula yields

$$
\begin{equation*}
\iint_{B} x^{2}+y^{2} d x d y=\iint_{B^{*}}\left(x(u, v)^{2}+y(u, v)^{2}\right) \cdot\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d u d v \tag{2}
\end{equation*}
$$

where $B^{*}=[1,4] \times[1,3]$.

We know exactly how u and v depend on x and y, but expressing x and y in terms of u, v seems to be a not so easy problem. It suggests to look for an alternative way of calculating the Jacobian $\left|\frac{\partial(x, y)}{\partial(u, v)}\right|$. We will use the following property of Jacobians:

$$
\begin{equation*}
\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\left|\frac{\partial(u, v)}{\partial(x, y)}\right|^{-1} \tag{3}
\end{equation*}
$$

We find

$$
\left|\frac{\partial(u, v)}{\partial(x, y)}\right|=\left|\begin{array}{cc}
2 x & -2 y \\
y & x
\end{array}\right|=2\left(x^{2}+y^{2}\right)
$$

Then, according to the identity (3),

$$
\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=\frac{1}{2\left(x(u, v)^{2}+y(u, v)^{2}\right)}
$$

Returning to (2), we obtain

$$
\begin{aligned}
\iint_{B} x^{2}+y^{2} d x d y & =\iint_{B^{*}}\left(x(u, v)^{2}+y(u, v)^{2}\right) \cdot \frac{1}{2\left(x(u, v)^{2}+y(u, v)^{2}\right)} d u d v \\
& =\frac{1}{2} \iint_{B^{*}} 1 d u d v=\frac{1}{2} \cdot \text { Area of } B^{*}=3
\end{aligned}
$$

We still do not know the formulas for $x(u, v), y(u, v)$, but nevertheless, we calculated the wanted integral using the change of variables.

6. Short Solution.

By Stokes' Theorem,

$$
\int_{C=\partial T} \mathbf{F} d \mathbf{S}=\iint_{T}(\nabla \times \mathbf{F}) d \mathbf{S},
$$

where $\mathbf{F}=(x+y, 2 x-z, y+z)$ and T is the triangle with the vertices $(2,0,0),(0,3,0),(0,0,6)$.

We calculate

$$
\nabla \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x+y & 2 x-z & y+z
\end{array}\right|=2 \mathbf{i}+\mathbf{k} .
$$

Then

$$
\begin{equation*}
\iint_{T}(\nabla \times \mathbf{F}) d \mathbf{S}=\iint_{T}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d S=\iint_{T}(2,0,1) \cdot \mathbf{n} d S \tag{4}
\end{equation*}
$$

where \mathbf{n} is the unit normal vector to the plane containing the triangle T pointing " upwards" (it is chosen with respect to the right-hand rule).

To find \mathbf{n}, let

$$
\begin{aligned}
& \mathbf{a}=(0,3,0)-(2,0,0)=(-2,3,0) \\
& \mathbf{b}=(0,0,6)-(2,0,0)=(-2,0,6)
\end{aligned}
$$

and calculate

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-2 & 3 & 0 \\
-2 & 0 & 6
\end{array}\right|=18 \mathbf{i}+12 \mathbf{j}+6 \mathbf{k} .
$$

Then $\mathbf{n}=\frac{\mathbf{a} \times \mathbf{b}}{\|\mathbf{a} \times \mathbf{b}\|}$. Returning to (4), we obtain

$$
\begin{aligned}
\iint_{T}(\nabla \times \mathbf{F}) d \mathbf{S} & =\iint_{T}(2,0,1) \cdot \frac{\mathbf{a} \times \mathbf{b}}{\|\mathbf{a} \times \mathbf{b}\|} d S=\frac{1}{\|\mathbf{a} \times \mathbf{b}\|} \iint_{T}(2,0,1) \cdot(18,12,6) d S \\
& =\frac{42}{\|\mathbf{a} \times \mathbf{b}\|} \cdot \iint_{T} 1 d S=\frac{42}{\|\mathbf{a} \times \mathbf{b}\|} \cdot \text { Area of } T
\end{aligned}
$$

Recall that the area of a triangle with the sides \mathbf{a}, \mathbf{b} is equal to $\frac{1}{2}\|\mathbf{a} \times \mathbf{b}\|$ and conclude that the latter integral is equal to 21 .

Long Solution.

Parametrize each side of the triangle, calculate the line integral of \mathbf{F} over each side and sum up the results afterwards.

[^0]: ${ }^{1}$ It is a paraboloid.

