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Abstract

We show that lattice dynamical systems naturally arise on infinite-dimensional invariant
manifolds of reaction-diffusion equations with spatially periodic diffusive fluxes. The result con-
nects wave pinning phenomena in lattice differential equations and in reaction-diffusion equa-
tions in inhomogeneous media. The proof is based on a careful singular perturbation analysis of
the linear part, where the infinite-dimensional manifold corresponds to an infinite-dimensional
center eigenspace.

1 Introduction

The goal of this article is to connect the dynamics of lattice differential equations with the dynamics
of reaction-diffusion systems. From a technical point of view, lattice differential equations are
ordinary differential equations, typically posed on Banach spaces such as `∞. A simple prototype
is the set of scalar, diffusively coupled ODEs

d
dt
uj = d (uj+1 − 2uj + uj−1) + f(uj), uj ∈ R, j ∈ Z, (1.1)

where d ∈ R, and f is a smooth nonlinearity. The initial value problem to (1.1) is well-posed in
forward and backward time t ∈ R, with initial condition (uj)j∈Z ∈ `∞, and norm |u|`∞ = supj |uj |.
If f(0) = 0, (1.1) is also well-posed on `2, with norm |u|2`2 =

∑
j |uj |2.

We also consider reaction-diffusion systems posed on the real line,

∂tu = uxx + f(u), x ∈ R. (1.2)

The initial-value problem to (1.2) is well-posed in forward time, t ≥ 0 on the space of uniformly
integrable functions H1

u , defined as the closure of C∞0 with respect to the norm

|u|H1
u

= |u|L2
u

+ |ux|L2
u
, |u|L2

u
= sup

j
|u(x)|L2(2πj,2π(j+1)). (1.3)

When f(0) = 0, (1.2) is well-posed on H1, too.
While lattice differential equations and reaction-diffusion systems appear to be very different on a
technical level, they share many common phenomena. For instance, with a bistable nonlinearity
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f(u) = u(1 − u)(u − b), 0 < b < 1, both exhibit stable traveling fronts u∗(j − ct), or u∗(x − ct),
respectively, between the metastable states u = 0 and u = 1.
A phenomenological difference between the two problems is the pinning of fronts: in the lattice
differential equation, there exists a nontrivial interval b ∈ (1

2 − bup,
1
2 + bup), where c = 0, the front

is pinned, it does not move. At bup, a saddle-node bifurcation of pinned fronts leads to unpinning,
the existence of propagating fronts. In the reaction-diffusion system, the pinning regime collapses,
c = 0 for b = 1/2, only. One reason for this is the different symmetry of both problems: the lattice
differential equation is invariant under discrete translations, the reaction diffusion system allows for
continuous translations. In the steady-state problem, pinned fronts are heteroclinic orbits, which
are typically transverse, hence robust in the spatially discrete set-up, but non-transverse in the
spatially continuous setup due to the trivial kernel generated by translations.
Phenomena are very similar, when reaction-diffusion systems with spatially periodic coefficients
are compared to lattice differential equations. Take for instance a periodically modulated flux
a(x) = a(x+ 2π) in

∂tu = ∂x(a(x)∂xu) + f(u), x ∈ R. (1.4)

Stationary solutions c = 0 solve a time-periodic ODE. Heteroclinic orbits are now typically trans-
verse, so that we expect pinned fronts for an interval of values of b.
Going beyond pure front propagation and pinning, one can ask more challenging questions, such
as for the interaction of fronts, the collision of fronts and coarsening, or, more generally, dynamics
on the attractor. Our main result relates the dynamics of lattice differential equations (1.1) and
reaction-diffusion systems (1.4) in a specific case of fluxes

a(x) =
1
ε
, for x ∈ (0, 2π − ε), a(x) = ε, for x ∈ (2π − ε, 2π). (1.5)

Since a is not uniformly bounded away from 0, regularization properties are not uniform in ε. We
therefore need to adapt the norm in H1

u to

|u|H1
u,ε

= |u|L2
u

+ |a(x)1/2ux|L2
u
. (1.6)

We will see below that (1.4) generates a smooth semiflow on H1
u,ε, and the embedding H1

u,ε → BC0
u,

the bounded and uniformly continuous functions, is uniformly bounded in ε.
In order to relate the dynamics on discrete physical space j ∈ Z and x ∈ R, we consider the natural
embedding

ι : u(x)x∈R 7→ (u`)`∈Z = u(2π`).

This embedding defines a continuous, uniformly bounded map ι : H1
u,ε → `∞. Note that ι is onto

but possesses a large kernel.
For our main result, we also assume that f is globally Lipschitz continuous with Lipschitz constant
L. We think of possibly modifying f for large u, whenever f is not globally Lipschitz but dissipative,
f(u)·u < 0 for |u| > R for some sufficiently large R. For those, dissipative f , there exists a bounded
attractor Aε, with |u|H1

u,ε
< C for all u ∈ Aε. Since all the long-time dynamics is captured by

the dynamics near the attractor, we can modify f outside of a large ball and still capture the
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correct long-time dynamics. In the following, ”smooth” refers to a function of class Ck for some k
arbitrarily large but finite.

Theorem 1. Consider the semiflow Φε(t) : H1
u,ε → H1

u,ε to the reaction-diffusion system (1.4) with
a(x) given in (1.5) and f, f ′ globally Lipschitz. Let φ(t) denote the flow to the lattice differential
equation (1.1) with d = 1/(2π). For ε sufficiently small, there exists a smooth manifold Mε ⊂ H1

u,ε,
diffeomorphic to `∞, with diffeomorphism given by the restriction ι |Mε. The manifold Mε is
invariant under the flow Φε. Moreover, Φε(t) is a smooth diffeomorphism on Mε, and thereby
extends to a smooth flow. In the limit ε→ 0, we have∣∣∣ιΦε(t) (ι |Mε)

−1 − φ(t)
∣∣∣
Ck(`∞)

→ 0, (1.7)

for all t ∈ R, fixed.

The manifold Mε can be viewed as an infinite-dimensional inertial manifold [5], or an infinite-
dimensional slow manifold in the sense of Fenichel’s singular perturbation theory [3].
There has been interest in the comparison of continuum equations (both homogeneous and inhomo-
geneous) and discrete equations dating back at least to the work of Cahn [2] through comparison
of continuous and discrete potential energy functionals; see more recently [7]. We also mention
the work of Keener [6] in which averaging and homogenization techniques are used to obtain pre-
dictions on the range of pinning for a problem somewhat similar to (1.4) with (1.5). The paper
of Mallet-Paret [8] reviews recent developments in the analysis of the discrete problem (1.1), in
particular for traveling wave solutions, while the review article of Xin [14] includes results on wave
propagation for (1.4).
The remainder of this article is organized as follows. We first review the spectral theory of diffusion
operators with periodic coefficients in Section 2. We then show the existence of the invariant
manifold for the nonlinear system in Section 3, and expand the reduced flow in terms of ε. We
conclude with a brief illustration of our results, where we investigate the stationary equation for
both lattice differential equation and the reaction-diffusion system.

2 Linear theory

2.1 Bloch waves and the spectral family for periodic coefficients

We review results on spectral analysis of operators with periodic coefficients. Consider the operator
Lu = (a(x)ux)x, with spatially periodic flux, a(x) = a(x+ 2π) for all x ∈ R. We view L as a self-
adjoint operator on L2(R).
Our key ingredient is the theory of Bloch waves, similar to Floquet analysis, and a generalization
of Fourier analysis [11, XIII.16]. For u ∈ L2(R), we define the unitary transformation T : L2(R) →
L2(S1, L2(0, 2π))

w(x; γ) = (T u)(x; γ) :=
1
2π

∑
j∈Z

eijx

∫
y∈R

e−i(γ+j)yu(y)dy, γ ∈ S1 = R/Z. (2.1)
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The inverse of T is
u(x) = (T −1w)(x) :=

∫
γ∈S1

eiγxw(x; γ)dγ. (2.2)

The operator L is conjugate to the direct product of operators Lγ = (∂x + iγ)(a(x)(∂x + iγ)),
equipped with periodic boundary conditions on (0, 2π). We can formally write

L = T −1

(∫ ⊕

γ
Lγdγ

)
T ;

see [11, XIII.16] for definitions and details on the direct integral in this equation. Each of the
operators Lγ is self-adjoint with compact resolvent. The spectrum of L is given by the union
of the spectra of the Lγ whose eigenvalues we denote by λk(γ), k = 0, 1, 2, . . . , with normalized
eigenvectors wk(γ). In our particular example, we will find that λ0(γ) is simple and moreover

min
γ
λ0(γ)− sup

k>1,γ
Reλk(γ) = δ0 > 0; (2.3)

see Section 2.2. As a consequence, λ0(γ) is analytic and periodic in γ. Moreover, the eigenvector
w0(γ) solves(

d
dx

+ iγ
) (

a(x)
(

d
dx

+ iγ
)
w0

)
= λ0(γ), w0(0) = w0(2π), w′0(0) = w′0(2π)

so that u0(x; γ) = w0(x; γ)e−iγx solves

d
dx

(
a(x)

d
dx
u0

)
= λ0(γ), ρu0(0) = u0(2π), ρu′0(0) = u′0(2π), ρ = e2πiγ . (2.4)

In particular, u0 solves a boundary-value problem which only depends on γmod1. Since u0 is
unique up to complex scalar multiples, we can write u0 = ũ0/|ũ0|L2 , where ũ0 can be assumed to
be analytic, and ũ0(x; 1) = σũ0(x; 0), with σ 6= 0. Substituting ũ0 7→ eγ log σũ0, we therefore find
ũ0 to be analytic and periodic in γ. In fact, ũ0 immediately extends to the strip γ ± iη for η small,
with again analyticity and periodicity in γ.
Using the spectral resolution, or Dunford’s integral, we find a projection on the direct sum of
the eigenspaces associated with λ0(γ), which we refer to as the center eigenspace Ec of L. The
projection on this eigenspace is the direct product of the projections on the first eigenfunctions of
the operators Lγ ,

Pγw(x; γ) =
∫

x
w0(y; γ)w(y; γ)dyw0(x; γ),

where Lγw0(x; γ) = λ0(γ)w0(x; γ), and we assumed that |w0(·; γ)|L2 = 1. In particular, any element
in the center eigenspace can be written as a direct product

w(x; γ) = v̂(γ)w0(x; γ), (2.5)

with v̂ ∈ L2(S1). By the spectral resolution formula, the projection onto the center eigenspace is
given through

[P cu](x) =
∫ 1

γ=0
eiγxw0(x; γ)

(∫
y∈R

e−iγyw0(y; γ)u(y)dy
)

dγ,
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which simplifies to

[P cu](x) =
∫

y∈R
Gc(x, y)u(y)dy, Gc(x, y) =

∫ 1

γ=0
eiγ(x−y)w0(x; γ)w0(y; γ)dγ. (2.6)

Note that Gc is 2π-periodic, Gc(x, y) = Gc(x+ 2π, y + 2π).

2.2 Spectral theory for aε

We show that in our specific example a = aε(x), defined in (1.5), the first spectral gap as defined in
(2.3) is of size ε−1, and compute the approximations to eigenfunctions and the center projection.

Lemma 2.1 (Expansion for spectrum). The spectrum of L is contained in the intervals (−2/π −
δ, 0] ∪ (−∞,−1/δ) for some δ with δ → 0 when ε→ 0. More precisely,

λ0(γ; ε) = (cos(2πγ)− 1)/π + ελ̃(γ; ε), where γ ∈ S1 = R/Z,

and λ1(γ) → −∞ as ε→ 0.

Proof. Step 1: ODE formulation
We rewrite the eigenvalue problem as two systems of differential equations

u1,x = εv1, v1,x = λu1, for x ∈ [0, 2π − ε],

and
u2,x =

1
ε
v2, v2,x = λu2, for x ∈ [2π − ε, 2π],

periodically extended in x, with continuity of u, v across the jump points. Rescaling y = 2πx/(2π−
ε) in the first and y = (x−2π+ε)/ε in the second system, we are lead to the equivalent formulation

u1,y =
2πε

2π − ε
v1, v1,y =

2π
2π − ε

λu1, for y ∈ [0, 2π], (2.7)

and
u2,y = v2, v2,y = ελu2, for y ∈ [0, 1]. (2.8)

Continuity and Floquet boundary conditions for L translate into

u1(2π − ε) = u2(0), v1(2π − ε) = v2(0), (2.9)

and
u2(2π) = e2πiγu1(0), v2(2π) = e2πiγv1(0), (2.10)

respectively.
The boundary-value problem (2.7)-(2.10) defines a closed unbounded operatorAγ

λ on L2([0, 2π],C2)×
L2([0, 1],C2) with domain H1([0, 2π],C2)×H1([0, 1],C2)∩{(2.9)−(2.10) hold}. In fact, Aγ

λ is read-
ily seen to be Fredholm of index zero and smooth in ε. The spectrum of Lγ coincides with the
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values of λ for which Aγ
λ is not invertible (this can be readily seen from Fredholm properties of

both operators and a comparison of the kernels).
Our goal is to compute kernels for Aγ

λ using perturbation from ε = 0 and Lyapunov-Schmidt
reduction.
Step 2: The singular limit spectrum
We evaluate at ε = 0,

u1,y = 0, v1,y = λu1, for y ∈ [0, 2π], (2.11)

and
u2,y = v2, v2,y = 0, for y ∈ [0, 1]. (2.12)

The explicit solution readily shows that the flow maps the values u = u1, v = v1 at y = 0 to
u = (1 + 2πλ)u1 + v1, v = 2πλu1 + v1 at y = 2π. Solving the boundary conditions therefore
amounts to the condition

0 = E0(λ; γ) =

∣∣∣∣∣ 1 + 2πλ− e2πiγ 1
2πλ 1− e2πiγ

∣∣∣∣∣ = 2e2πiγ(cos(2πγ)− 1− πλ)

In particular, λ0(γ) = (cos(2πγ)−1)/π is the sole eigenvalue, so that Aγ
λ is invertible for all λ 6= λ(γ)

at ε = 0. In particular, the norm of the resolvent is uniformly bounded for λ ∈ [−1/δ,−(2/π)− δ],
for any fixed δ > 0.
Step 4: Lyapunov-Schmidt perturbation analysis
The ε-dependent perturbations will introduce perturbations so that eigenvalues are given as roots
of E(λ; γ, ε) = E0(λ; γ) + εE1(λ; γ, ε). Since all roots are simple, we find that the spectrum in any
large disk |λ| ≤ 1/δ is given by

λ(γ; ε) =
1
π

(cos(2πγ)− 1) + ελ1(γ; ε), (2.13)

so that λ is smooth and 2π-periodic in γ. This proves the lemma.

Corollary 2.2 (Expansions for Eigenfunctions). We have the following expansions for the eigen-
functions

w0(x; γ)eiγx =
1√
2π

{
1, for x ∈ [0, 2π − ε],
x−2π+ε

ε e2πiγ , for x ∈ (2π − ε, 2π),

}
+ O(ε), (2.14)

with error terms uniformly bounded in x ∈ R.

We may also approximate the projection on the center eigenspace. The projection is given by the
integral operator Gc(x, y) defined through (see (2.6))

Gc(x, y) :=
∫ 1

0
eiγ(x−y)w0(x; γ)w0(y; γ)dγ.

Using the representation for w0 in the form

w0(x; γ) = e−iγ(x−2πk)θ(x− 2πk) + O(ε), 0 ≤ x− 2πk < 2π,
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with

θ(ξ) =

{
1, ξ ≤ 2π − ε
ξ−2π+ε

ε e2πiγ , 2π − ε ≤ ξ,

we find that for 0 ≤ x− 2πk ≤ 2π, and 0 ≤ y − 2π` ≤ 2π,

Gc(x, y) = Gc
0(x, y) + O(ε), Gc

0(x, y) =
1
2π

{
1, k = `,

0, k 6= `,

}
.

The error terms and derivatives are bounded in L1
xL

∞
y + L∞x L

1
y, so that we have the following

Corollary.

Corollary 2.3. The projection on the center subspace P c can be expanded as P c = P c
0 + O(ε) in

the space of linear bounded operators on L2, where

[P c
0u](x) =

∫
y
Gc

0(x, y)u(y)dy.

We denote the center eigenspace, given as the range of P c, as Ec.

2.3 Higher regularity

The spectral results immediately carry over to spaces based on interpolation theory with the domain
of definition of L. The domain of definition of L is given by

X1 := D(L) = {u ∈ H1 | a(x)ux(x) ∈ H1}.

Using the spectral family, one can define Lα for α ≥ 0, and Xα := D(Lα). We will use X1/2, which
can easily seen to be equivalent to H1 using the bilinear form generated by L on X,

X1/2 := D(L1/2) = {u ∈ H1 |
√
a(x)ux(x) ∈ L2} = H1.

However, the graph norm induced on X1/2 by L1/2 is not uniformly equivalent to the H1-norm as
ε → 0. In the sequel, when we write | · |Xα , we refer to the ε-dependent graph norms, not to an
ε-independent Hs-norm.

Lemma 2.4. There exists a constant C > 0, independent of ε, such that

|u|C0 ≤ C|u|X1/2 .

In particular, X1/2 embeds into the continuous functions with uniform embedding constant. More-
over, any smooth function f ∈ Ck(R) induces a smooth Nemitskii operator f̃ on X1/2 such that
norms of derivatives of f̃ are bounded in terms of derivatives of f on bounded subsets of X1/2,
uniformly in ε.
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Proof. We only prove the embedding. The consequences for the Nemitskii operator are straight-
forward, following for example [1, 4]. The difficulty in proving the embedding is the fact that the
norm in X1/2 does not control the H1-norm uniformly. However, if one changes the independent
variable x to y by rescaling y = x/ε in the intervals where a(x) = ε, one finds that the flux ã(y) ≥ 1
in the new variables, that is, the norm inX1/2 does control theH1-norm in the independent variable
y. One therefore obtains supremum bounds in the y-variable by the standard embedding H1 → C0,
which immediately give supremum bounds in the x-variable.

2.4 The lattice parametrization

It turns out that the center eigenspace Ec is naturally isomorphic to the space of functions on a
lattice.

Lemma 2.5. The map

ι : u ∈ Ec ⊂ L2 7→ (uk)k∈Z := (u(2πk))k∈Z ∈ `2,

is an isomorphism.

Proof. Since L is bounded on Ec, it follows that Ec is a closed subspace of Xα for any α. Lemma
2.4, then yields a uniformly bounded embedding Ec ⊂ C0. Explicitly, we have from Lemma 2.4

|u(2πj)|2 ≤ C

∫ 2π(j+1)

2πj

(
|a(x)ux|2 + |u|2

)
,

with C independent of ε, and, since

|u|2
X1/2 =

∑
j

∫ 2π(j+1)

2πj

(
|a(x)ux|2 + |u|2

)
,

we find
|uk|2`2 ≤ C|u|2

X1/2 = C|(1 + L1/2)u|2X ≤ C ′|u|2X
where we used boundedness of L in the last inequality. This shows that ι is a (uniformly) bounded
linear operator on Ec. It remains to show that we can invert ι. Inspecting (2.2) and (2.5), one sees
that u(x) ∈ Ec is given through the Fourier-type integral

u(x) =
∫ 1

0
û(γ)eiγxw(x; γ)dγ,

with û(γ) defined as the Bloch wave representation on the center eigenspace,

û(γ) :=
∫ 1

0
e−iγw0(y; γ)u(y)dγ.

In particular, we have

uk := u(2πk) =
∫ 1

0
e2πikγ û(γ)w0(0; γ)dγ = F (û(·)w0(0; ·)) , (2.15)
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where we introduced the Fourier transform on periodic functions

F (v(·))` :=
∫ 1

0
e2πi`γv(γ)dγ,

with inverse
v(γ) =

∑
`

F(v(·))`e−2πi`γ .

Inverting the Fourier transform in (2.15), we can reconstruct u from uk as follows. We have

û(γ) = w0(0; γ)−1
∑

k

e−2πikγuk,

so that

u(x) =
∑

k

gc(x; k)uk, gc(x; k) =
∫ 1

0

w0(x; γ)
w0(0; γ)

eiγ(x−2πk)dγ.

We claim that |gc(x; k)| ≤ Ce−η|x−2πk|. This will then show that the map from the uk to u is
bounded. To prove the claim, we first note that

w0(x; γ)
w0(0; γ)

eiγ(x−2πk) =
u0(x− 2πk; γ)

u0(0; γ)
,

where u0(x; γ) was defined in (2.4), periodic in γ and analytic in a strip γ ± iη. We can therefore
shift the integration over γ ∈ [0, 1] into the complex plain γ ∈ [0, 1] + iη,∣∣∣∣∫ 1

0

w0(x; γ)
w0(0; γ)

eiγ(x−2πk)dγ
∣∣∣∣ =

∣∣∣∣∫ 1

0

w0(x; γ + iη)
w0(0; γ + iη)

e(iγ−η)(x−2πk)dγ
∣∣∣∣ ≤ Ce−η(x−2πk),

which proves the claim since the sign of η was arbitrary.

Remark 2.6. In fact, all we used for this result is the fact that w0(0; γ) > 0 for all γ ∈ [0, 1].
One can go further and weaken this assumption by choosing a local average around 2πk instead of
a pointwise evaluation at 2πk for ι.

Using the parametrization by the map ι from Lemma 2.5, we find that

uγ
k := ι(w0(x; γ)eiγx)k = e2πiγk.

In the lattice coordinates, we therefore have the linear operator L0 diagonalized in terms of the uγ
k ,

that is
Luγ

k = λ(γ)uγ
k .

If we set ej = δjk, the indicator function unit basis vector in the lattice coordinate space `2, and
exploit that

e0 =
∫ 1

0
e2πiγkdγ,
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we find

Le0 =
∫ 1

0
λ(γ)e2πiγkdγ =

1
2π

(e1 + e−1 − 2e0) + O(ε),

which in turn yields the representation

(Lv)j =
1
2π

(vj+1 − 2vj + vj−1) + ε(R(ε)v)j .

By the exponential decay estimates on g, the remainder terms are a discrete convolution, translation
invariant,

(R(ε)v)j =
∑
j′

Rj−j′vj′ , |Rk| ≤ Ce−c|k|/ε.

2.5 Spectral theory in L2
u

In order to include traveling waves, which are not necessarily in H1 or L2, we extend our functional
analytic setup to uniformly integrable spaces. In order to invert (and thereby define) L− id on L2

u,
we first decompose

g =
∑

j

gj ∈ L2
u, gj(x) = χ[0,2π](x− 2πj)g(x), so that |g|L2

u
= sup

j
|gj |L2 .

Next, consider the exponentially weighted space L2
η, with norm

|u|L2
η,j

= | cosh(η(· − 2πj))u(·)|L2 .

Note that |gj |L2
η,j
≤ C|g|L2

u
, where C = 1 + O(η), independent of j.

Next, we claim that we can invert L − id on L2
η,j with uniform bounds in j and η ∼ 0, small.

We can define the operator L on L2
η,j via the associated quadratic form. Using the isomorphism

ψη,j : L2
η,j → L2, u 7→ cosh(η(· − 2πj))u, we find that L on L2

η is conjugate to

ψ−1
η,jLψη,j = L+ η2a+ η tanh(η(· − 2πj))((au)x + aux).

In particular, (ψ−1
η,jLψη,j − L)(id − L)−1 is bounded and smooth in η. The resolvent identity then

yields smooth dependence of the resolvent of L on η (when pulled back to L2 with the isomorphism
ψ). Moreover, the pointwise Greens function which defines the resolvent of L in L2 also yields
the resolvent in L2

η,j , since the two resolvents coincide on L2 ⊂ L2
η,j . Because of the discrete shift

symmetry, the resolvents are bounded uniformly in j ∈ Z. Using the resolvent in L2
η,j , we find

bounds on the solution uj = (id − L)−1gj of the form

| cosh(η(· − 2πj))uj(·)|L2 ≤ C|gj |L2 ,

where C does not depend on j. We next define

u = (id − L)−1g :=
∑

j

uj =
∑

j

(id − L)−1gj .
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We find that by definition,
|u|L2

u
≤ sup |χ[0,2π](· − 2π`)uj(·)|L2 ,

and

|χ[0,2π](· − 2π`)uj(·)|L2 ≤
∑

j

cosh−1(2πη(j − `))C|gj |L2 ≤
C ′

η
|g|L2

u
.

Similar estimates hold for derivatives. As a consequence, the resolvent exists and is bounded in
L2

u whenever it exists and is bounded in L2. Both resolvents coincide on L2 ⊂ L2
u, so that the

representation of the resolvent on L2
u is given by the same Greens function. From the construction,

the domain of definition is given by

D(L) = {u ∈ L2
u | a(x)ux ∈ H1

u}

where H1
u is defined as in (1.3). Interpolation theory then implies that the interpolation space X1/2

u

is given through
D(L) = {u ∈ L2

u | a(x)1/2ux ∈ L2
u},

with associated norm.
As a consequence of the resolvent characterization and the representation of spectra via bounded
eigenfunctions, the spectra coincide in the spaces L2 and L2

u. Using the representation of the
spectral projections via Dunford’s integral, we find that spectral projections on both spaces are
given by the same kernel Gc(x, y).
Using the same technique, one can also extend the lattice parametrization to a bounded invertible
map

ι : u ∈ Ec ⊂ L2
u 7→ (uk)k∈Z ∈ `∞.

2.6 Dichotomies

The spectral results immediately imply exponential decay estimates on the heat flow since the
operators are sectorial in the spaces we are considering. We are interested in the behavior when ε
tends to zero and the spectral gap is large.

Lemma 2.7. Assume that [α−, α+] is contained in the first gapand denote by Ec and Ess the
center eigenspace and its spectral complement. Then the heat equation solution operator possesses
an exponential dichotomy: there exists a constant C such that∣∣eLt|Ec

∣∣
Y→Y 1/2 ≤ Ct−1/2eα+t, t ≤ 0∣∣eLt|Ess

∣∣
Y→Y 1/2 ≤ Ct−1/2eα−t, t ≥ 0,

with Y = X or Y = Xu. In particular, C is uniformly bounded in ε for a choice α− = −1/δ and
α+ = −3/π, and δ → 0 as ε→ 0.

Proof. The estimates are an immediate consequence of the spectral resolution in the self-adjoint
case X = L2. In case of L2

u, the estimates follow from the uniform resolvent estimates for the
sectorial operators.
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3 Nonlinear theory — invariant manifolds

3.1 Invariant manifolds

We find invariant manifolds using the standard variation-of-constant formula for the unstable man-
ifold

u(t) = eLtuc
0 +

∫ t

0
eL(t−τ)P cf(u(τ))dτ +

∫ t

−∞
eL(t−τ)P ssf(u(τ))dτ. (3.1)

We solve this equation in the case of uniform spaces Xu, the L2-case is similar.
We claim that the right-hand side defines a mapping on the space of functions

Zη = {u ∈ C0(R−, X1/2
u ) | |u|η <∞}, ‖u‖η = sup

t
eηt|u(t)|

X
1/2
u
, η ∈ (α−, α+),

where α± are chosen as in Lemma 2.7. Indeed, we can view f as a smooth, globally Lipschitz-
continuous f̃ mapping from X

1/2
u into C0; see Lemma 2.4. With the embedding C0 → L2

u, and
using the estimates on the semigroups as maps from Xu into X1/2

u , we see that the right-hand side
defines a globally Lipschitz continuous map on Zη. The Lipschitz constant depends only on the
Lipschitz constant of f , norms of embeddings, and the norms of the integral convolution operators.
For the latter ones, these are estimated by the L1 norms in τ of the integral kernels eLτP ss and
e−LτP c, ∫ ∞

0

(∣∣∣e(L+η)τP ss
∣∣∣
Xu→X

1/2
u

+
∣∣∣e−(L+η)τP c

∣∣∣
Xu→X

1/2
u

)
dτ ≤ C̃δ

1/2
0 .

We choose η = (α+ − α−)/2, in the center of the spectral gap. The fixed point u∗(t) is Lipschitz
continuous in the parameter uc

0. A fiber contraction argument [12, 10] shows that the dependence
is actually Ck′ provided the spectral gap is large enough. The projection at time t = 0 yields
the graph Ψ of the invariant manifold, Ψ(uc

0) := P ssu∗(0;uc
0). From the above discussion and the

estimates of Section 2.2, we immediately conclude the following corollary.

Corollary 3.1. In the explicit example, with a(x) given by (1.5), we have the estimate on the
representation of the invariant manifold as a graph,

|Ψ|BC1(Ec,Ess) ≤ Cε.

3.2 The reduced flow

We focus on our specific example of a(x) given by (1.5) and derive the expansion of the flow on the
invariant manifold in terms of ε.
Our goal in this section is to compute the reduced vector field. On the slow manifold, we find

d
dt
uc = Luc + P cf(uc + Ψ(uc)). (3.2)

Since Ψ = O(ε), we find to leading order the nonlinearity evaluated on the center eigenspace
and then projected back onto the center eigenspace. We parametrize the center eigenspace by
uj = u(2πj). The function u(x) is then given by u(x) =

∑
g(x; k)uk ∈ Ec, which is to leading

12



order given by linear interpolation on intervals of length ε between step functions on intervals
[2πj, 2π(j + 1)− ε]. We next substitute into the nonlinearity and project. Now feff = P cf(u(x)) is
given by

fj = feff(u(2πj)) =
∫

y
Gc(2πj; y)f(

∑
j

g(y; j)uj).

For ε → 0, fj → f(uj), uniformly on
⋃

j [2πj + δ, 2π(j + 1) − δ]. Projection and evaluation shows
that

fj = f(uj) + r(ε, (u)k−j),

where the error terms are bounded, smooth in uk ∈ `∞, and exponentially localized, ∂umr =
O(e−η|m|) for some η > 0. This concludes the proof of Theorem 1.

Remark 3.2. Most of our results can be obtained from the assumption of a large spectral gap,
only, thus allowing for a much larger class of fluxes and more general inhomogeneities in the linear
operator. In fact, the exponential separation and the strong localization of Greens functions and
spectral projections are related: resolvents can be continues to exponentially weighted spaces L2

η,j as
long as η|(λ − L)−1| is small. Since the norm of the resolvent is estimated by the distance to the
spectrum in the self-adjoint case, we can let η →∞ when the gap becomes large, δ0 →∞.

4 Pinned fronts — an illustration

We examine the existence of standing fronts in both the lattice differential equation and the reaction-
diffusion system. For the reaction-diffusion system, steady-states solve

u′ =
1

a(x)
v, vx = −f(u),

with a(x) = ε on xmod2π ∈ (2π − ε, 2π), and a = 1/ε otherwise.
We want to expand the time-one map of this periodically forced flow, expanded in ε. On 0 ≤ x ≤
(2π − ε), we find

ux = εv, vx = −f(u),

on 2π − ε ≤ x ≤ 2π, we have

ux =
1
ε
v, vx = −f(u),

or, equivalently, on 0 ≤ y ≤ 1,
uy = v, vx = −εf(u),

We write u0, v0 for the values at x = 0, u1, v1 for the values at x = 2π− ε, and u2, v2 for the values
at x = 2π. We immediately find

u1 = u0 + O(ε), v1 = v0 − 2πf(u0) + O(ε), u2 = u1 + v1 + O(ε), v2 = v1 + O(ε),

so that
u2 = u0 + v0 − 2πf(u0) + O(ε), v2 = v0 − 2πf(u0) + O(ε).
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Changing variables, w = u− v, we find

w2 = u0 + O(ε), u2 = 2u0 − w0 − 2πf(u0) + O(ε),

so that
w4 − 2w2 + w0 + 2πf(w2) = O(ε).

In particular, at leading order after relabeling indices, we find the steady-state problem to the
lattice differential equation

ẇ =
1
2π

(wn+1 − 2wn + wn−1) + f(wn).

Pinned traveling waves are transverse heteroclinic orbits for this discrete-time dynamical system.
They are hence robust under perturbations of size O(ε). Unpinning, and hence the transition
towards propagating fronts occurs for a parameter value bup in f(u) = u(1− u)(u− b), where the
intersection of stable and unstable manifolds of 0 and 1, respectively, is not transverse, with a
quadratic tangency. This tangency unfolds in the parameter b ∼ bup. Again, the unfolding of the
tangency is robust as a singularity, so that we recover the same dynamics in the reaction-diffusion
system with small diffusivities, for unpinning parameter values b = bup + O(ε).
We note that this result can also be inferred from our main theorem, where the unpinning corre-
sponds to a saddle-node of hyperbolic equilibria in the lattice differential equation, which persists
on the slow manifold of the reaction-diffusion system.
The unpinning as the transition towards traveling waves has been studied recently in lattice differ-
ential equations; see the review [8] and the references therein. Our main theorem lifts these results
to a specific class of reaction-diffusion systems with periodic fluxes. We refer to [14, 13] for results
on propagating fronts in reaction-diffusion systems.
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