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In many circumstances, a pulse to a partial differential equation (PDE) on the
real line is accompanied by periodic wave trains that have arbitrarily large period.
It is then interesting to investigate the PDE stability of the periodic wave trains
given that the pulse is stable. Using the Evans function, Gardner has demonstrated
that every isolated eigenvalue of the linearization about the pulse generates a small
circle of eigenvalues for the linearization about the periodic waves. In this article,
the precise location of these circles is determined. It is demonstrated that the
stability properties of the periodic waves depend on certain decay and oscillation
properties of the tails of the pulse. As a consequence, periodic waves with long
wavelength typically destabilize at homoclinic bifurcation points at which multi-
hump pulses are created. That is in contrast to the situation for the underlying
pulses whose stability properties are not affected by these bifurcations. The proof
uses Lyapunov-Schmidt reduction and relies on the existence of exponential
dichotomies. The approach is also applicable to periodic waves with large
spatial period of elliptic problems on R” or on unbounded cylinders R x Q with Q
bounded. © 2001 Academic Press
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1. INTRODUCTION

Spatially-periodic travelling waves arise in a wide variety of pattern-
forming physical systems. Examples include reaction—diffusion equations
such as the FitzHugh—Nagumo equations or the Gray—Scott model, systems
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from nonlinear optics like the nonlinear Schrodinger equation as well as
hydrodynamical equations like the Euler equations for free surface waves.
In these systems, spatially-periodic standing or travelling patterns typically
exist for a continuum of wavelengths. Often, this continuum extends to
infinite wavelength where the shape of the periodic pattern on a single peri-
odicity interval approaches a pulse-like pattern. The limit of infinite
wavelength is described by a homoclinic bifurcation for the spatial
dynamics in the underlying partial differential equation (PDE). Two
natural questions that one would like to answer are the existence of peri-
odic patterns through such a homoclinic bifurcation and their stability with
respect to the PDE.

Concerning existence, a Lyapunov-Schmidt type approach to homo-
clinic bifurcations has recently been initiated that allows for a fairly systematic
study of the creation of periodic as well as multi-pulse patterns [ 24, 41, 31].
One advantage of this approach is its immediate generalization to PDEs that
are posed on multi-dimensional domains such as reaction—diffusion equa-
tions on infinite cylinders [ 29, 25] or the aforementioned Euler equations
for free surface waves.

It has been demonstrated that this approach, which is based on exponen-
tial dichotomies for the linearized problem and a careful Lyapunov—
Schmidt type reduction procedure, is particularly well suited for analyzing
the PDE-stability of bifurcating multi-pulse solutions [33].

In this paper, we show that the same approach allows us to systemati-
cally study the stability properties of long-wavelength periodic patterns
that accompany pulses. The general idea is to use as much information as
possible from the pulse to calculate the spectrum of the accompanying peri-
odic patterns using a perturbation analysis. The arguments follow those
given in [33] closely. A major difference, however, is that the spectrum of
the periodic waves consists entirely of essential spectrum. This is in contrast
to the situation for pulses and multi-pulses where stability is, in most
applications, determined by point spectrum.

The spectral stability of the limiting pulse or soliton has been established
in many of the aforementioned examples. An important tool for this kind
of analysis is the Evans function that was introduced by Evans in [9] and
has since then been further developed, in a more systematic way, in [ 1, 28,
13, 18]. Roughly speaking, the Evans function is an analytic complex-
valued function of 4 that is constructed in such a fashion that its zeros are
in one-to-one correspondence with eigenvalues, counting multiplicity.

Gardner generalized the construction of the Evans function to arbitrary
spatially-periodic patterns [11]. Later, he studied the limiting scenario
when the wavelength of the periodic patterns tends to infinity [12]; as
mentioned above, this is the case we are interested in. The main tool in
Gardner’s analysis was a topologically robust bundle construction which
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allowed him to pass to the limit of infinite wavelength. The topological
nature of the construction did, however, not allow for a precise description
of the spectra of the periodic patterns in the sense of an expansion in the
wavelength. In particular, the methods in [12] do not allow for proving
stability of periodic patterns even when the limiting pulse is exponentially
stable.

In the remaining part of the introduction, we illustrate the problem at
hand by means of an abstract reaction—diffusion system. We then sum-
marize the results obtained in [11, 12] and briefly explain our main
theorem.

Thus, consider a reaction—diffusion equation of the form

U;=Ux+ FU), (1)

where U(x, t)e RY and xe R, >0 are space and time, respectively. If the
nonlinearity F is smooth, this equation generates a smooth local nonlinear
semiflow on the Banach space X :=%° (R, R") of bounded and uniformly
continuous functions on the real line.

A travelling-wave solution U(x, ) of (1) is a pattern whose time evolu-
tion is a translation, with constant speed ¢, along the x-axis. In other
words, we have U(x, t) = Q(x — ct) for some function Q. Here, and in the
following, we allow for ¢ =0 in which case the pattern is a standing wave.
Transforming the reaction—diffusion system (1) into the moving coordinate
frame (&, t) = (x —ct, t), we obtain

U,=Usg+cU:+ FU). (2)
A travelling wave Q(x — ct) with wave speed c¢ of the original equation (1)

corresponds to a steady-state Q(&) of (2). The spectral stability properties
of the equilibrium Q(¢) are determined by the linearized operator

L(Q)=0¢e+ O+ Fy(Q). (3)
Both the steady-state equation associated with (2) and the eigenvalue
problem associated with the operator .#(Q) are ordinary differential equa-
tions (ODE). If we set u= (U, U), then U is a bounded steady-state with

if, and only if, u is a bounded solution of the 2/N-dimensional system

u' = f(u), ue R, (4)
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where ' = §; and

M= 'y o)

By the same argument, we see that J satisfies the eigenvalue problem
LO)VV=Vee+cV+Fy(Q) V=AV

for some eigenvalue A€ C if, and only if, v=(V, V) is a bounded solution
of

V' =(/lq(&))+ AB) v, (5)
where f, is the Jacobian matrix of f; ¢ = (0, Q;), and
00
B:< 1 0). (6)

It turns out that the spectrum of periodic waves Q(¢) is determined entirely
by (5) as we shall explain below.

Suppose that Q(¢&) is periodic in & with minimal period 2L. It is then true
that 1€ C is in the spectrum of the linearization #(Q) if, and only if, there
isa yeR/2nZ and a Ve X such that

L(Q) V=21V, for |&| <L (7)
and
V(L)=e"V(—L). (8)

Indeed, solutions of the above two equations yield, by extension, bounded
eigenfunctions of .#(Q). On the other hand, by Floquet theory, bounded
solutions of the “periodically-forced” linear ODE (5) are necessarily of the
form (7-8) for some purely imaginary Floquet exponent iy. It is then not
hard to see that #(Q) is indeed invertible provided all Floquet exponents
have non-zero real part; see, for instance, [ 11, Prop. 2.1] and the refe-
rences therein. In terms of the first-order system (5) of ODEs, A€ C is in
the spectrum of the linearization #(Q) if, and only if, there is a y € R/2nZ
and a bounded function v such that

v'=(/fu(q() +4B)v,  for [£]<L ©)
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Thus, once a 2L-periodic solution of the steady-state ODE (4) has been
found, its spectrum as an equilibrium of the PDE (2) can be calculated by
seeking solutions to the linearized ODE (9).

We focus on the situation where the steady-state equation (4) exhibits a
homoclinic orbit 4(&) so that, for some constant vector e e R?, we have
h(&)— e as |E| = oo. Such a homoclinic orbit corresponds to a pulse solu-
tion of the reaction—diffusion system (2). Typically, the pulse is accom-
panied by long-wavelength periodic waves as described above. In terms of
the ODE (4), these periodic waves appear as a family of periodic solutions
with large period close to the homoclinic orbit in the phase space R?".
More specifically, there is a number L, such that, for every L> L, there
is a unique 2L-periodic solution p;(&) close to A(&) for a wave speed c=c¢.
that is close to the speed ¢ =c,, of the homoclinic orbit (in the case that
¢, =0, we expect that ¢, =0 for all L).

Given that the pulse /(&) is stable with respect to the PDE (2), it is then
of interest, and indeed the main focus of this article, to determine the
stability properties of the accompanying periodic waves p;(¢). Typically,
the pulse 4(&) is stable provided A=0 is a simple eigenvalue and the rest
of its spectrum is contained in the open left half-plane and bounded away
from the imaginary axis. Note that the eigenvalue at zero is inevitable due
to the translation symmetry. Gardner [ 12, Theorem 1.2] demonstrated
that the spectrum of the periodic waves p,(&) that accompany the pulse
h(&) contains a circle of eigenvalues near A=0 that shrinks to A=0 as
L — oo. He also showed that the rest of the spectrum is contained in the
open left half-plane and bounded away from the imaginary axis uniformly
in L. To establish spectral stability or instability of the 2L-periodic wave
trains p,(&), it is then necessary to locate the circle of eigenvalues near
zero. Based upon the discussion above, this is equivalent to solving the
boundary-value problem

V=fulp(E)+AB)v, for [E|<L 00)

for 2€C close to zero. Note that one solution to (10) is given by v= p’,
y=0 and A=0. This eigenvalue is again enforced by the translation
symmetry.

As announced above, the main result of this article is an expansion of the
circle of critical eigenvalues of the long-wavelength periodic patterns in
terms of their period. Under the assumption that the underlying pulse is
stable, our main result demonstrates that the critical spectrum and the
associated eigenfunctions about the 2L-periodic wave are, to leading order,
given by
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1 . .
J=— (€7 — DY(L), K (— L) + (1 —e ") y(—L), K(L)Y)
M (11)

v(&) =e*h' (&), for Ce((2k—1)L,(2k+1)L), keZ

We shall explain the quantities that appear in these expressions. The
number y represents again the purely imaginary spatial Floquet exponent
that appears in (10). The non-zero constant M is given explicitly by the
Melnikov-type integral

M=[" Cplx), B (x)) d,

— 0

where B is determined by the type of the PDE; see (6). Here, and in the
expansion (11), the function (&) is the non-trivial bounded solution of the
adjoint variational equation

w'=—f,(h(&)* w (12)

about the homoclinic orbit A(&).

Thus, we see that the location of the circle of critical eigenvalues depends
upon the decay properties of 4(¢) and (&) Both of these are determined
by the steady-state ODE (4).

The solution /(&) to the adjoint variational equation (12) has the follow-
ing analytical and geometric properties. First, recall that we had assumed
that =0 is a simple eigenvalue of the linearization ¥(H) where
h=(H, H:) denotes the pulse. Therefore, the adjoint operator £ (H)* also
has a simple eigenvalue at zero, and we denote its eigenfunction by ¥(&).
A straightforward calculation shows that the solution /(&) is related to this
eigenfunction ¥(¢) by

e <FU<H$ ) 9/(5))1
(€)

Geometrically, in the phase space R?Y of the steady-state ODE (4), the

solution (&) spans the orthogonal complement of the tangent spaces of

stable and unstable manifolds of the asymptotic equilibrium e at the

homoclinic point 4(&): We have

span{ (&)} = (T Wo(e) + The W (e))*

for all £, where e=Ilim_ ., A({). Note that the equilibrium e of (4) is
hyperbolic since, by assumption, the essential spectrum of the pulse does
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not touch zero. Finally, in the particular case where the steady-state equa-
tion (4) is Hamiltonian with Hamiltonian function #(u), we have
W(E) = VA (h(E)).

We emphasize that it is not unexpected that the decay properties of both
the homoclinic solution and the adjoint solution are important. It has been
demonstrated in [ 24, 31] that scalar products of the form {y(L), /' (—L))>
and {y(—L), ' (L)) enter the reduced bifurcation equations that deter-
mine the existence of periodic and multi-bump homoclinic orbits near 4(¢&).
In fact, roughly speaking, whenever the sign of these scalar products
oscillates in L or their magnitude decays faster in L than expected, then
2-homoclinic orbits bifurcate that follow the original orbit A(&) twice in
phase space; see [31]. In particular, this is the case near Shilnikov
homoclinic orbits and near inclination or orbit-flip bifurcations; see [5, 16,
19, 31, 33, 34, 36]. In all these cases, the accompanying periodic orbits
undergo saddle-node or period-doubling bifurcations. These bifurcations,
however, should also lead to an instability with respect to the PDE. In the
case of a period-doubling, for instance, (10) exhibits solutions for y =0 and
y=m at A=0. While the solution with y =0 is enforced by the translation
symmetry, the other eigenvalue that has y =z should cross the imaginary
axis upon unfolding the period-doubling bifurcation. In that respect, a
change of the stability properties of the periodic waves that accompany a
pulse indicates a homoclinic bifurcation for (4), and hence the possible
appearance of other pulses.

This paper is organized as follows. We state the main reduction result in
Section 2 and prove it in Section 3. In Section 4, we supply the necessary
expansions and estimates for periodic waves that are needed to apply the
reduction theorem. Section 5 contains various stability results for periodic
waves under certain decay and oscillation assumptions on the pulse. These
results are then applied in Section 6 to three PDEs on the real line. Finally,
some comments and generalizations are collected in Section 7.

2. LOCATING THE SPECTRUM OF PERIODIC WAVES WITH
LARGE SPATIAL PERIOD

Consider the ordinary differential equation

u'=flu,p),  (up) eR" xR, (13)

where f is at least 2 with £(0, ) =0 for all . A comparison with the
example given in the introduction shows that, for reaction-diffusion
systems, the dimension n=2N of the phase space is twice the number N of
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species in the reaction-diffusion system, and the parameter x4 = c is given by
the wave speed ¢ so that p=1.

We assume that £,,(0, 0) is hyperbolic. In other words, there are positive
constants a® and a" such that, for every v e spec( f,(0, 0)), either Re v< —a®
or Rev>a". Let

a=min{a’, a"}.

The spectral projections associated with the stable and unstable eigenvalues
of £,,(0,0) are denoted by Pj and Py, respectively.

We assume that i(x) is a homoclinic orbit to (13) at ¢ =0, that is,
' = f(h,0) and

lim A(x)=0.

x— t+ oo

We assume that the intersection of stable and unstable manifolds of the
origin is as transverse as possible:

Hypothesis (N1). The only bounded solution to the variational equation
v' = f,(h(x),0) v, xeR (14)

of (13) about A(x) is given by A'(x), up to constant scalar multiples.

For the underlying reaction-diffusion system, this assumption implies
that 1=0 has geometric multiplicity one as an eigenvalue of the PDE
linearization.

Next, consider the adjoint variational equation

w' = —f,(h(x), 0)* w, xeR (15)

with respect to the standard scalar product on R”. Hypothesis (N1) implies
that (15) admits a unique, up to scalar multiples, bounded solution which
we denote by (x). Indeed, a short calculation shows that the scalar
product between solutions of the variational equation (14) and its adjoint
(15) is independent of x. Therefore, bounded solutions of the adjoint varia-
tional equation have to be orthogonal to every solution of (14) that is
bounded on either R* or R™. In other words, any bounded solution of the
adjoint variational equation lies in the orthogonal complement of the
tangent spaces to stable and unstable manifolds at the homoclinic /(x)
which, by Hypothesis (N1), is one-dimensional. It is a consequence of
hyperbolicity of the linearization f,(0,0) that the solution (x) decays
exponentially:

W(x)<Ce ™, xelR;
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see, for instance, Lemma 3.1 in Section 3.1 and the remarks thereafter.

We are interested in periodic solutions to (13) that are close to the
homoclinic orbit /(x); in particular, their period is large. Thus, assume that
pr(x) is a periodic solution of (13) close to A(x) with large period 2L for
u=u; close to u=0. We shall see later in Sections 5 and 6 that, under
quite general assumptions, such periodic solutions indeed exist. As
explained in the introduction, the PDE spectrum associated with the peri-
odic wave can be calculated as follows. A point 1€ C is in the PDE spec-
trum of the periodic wave if, and only if, there is a y € R/2zZ and a solution
v(x) to the boundary-value problem

V' =(fu(pr(x), )+ iB) v, |x| <L (16)
such that
(L) =€ v(—L). (17)

Here, B is an n x n matrix that is related to the type of the partial differen-
tial equation. Recall that, for reaction-diffusion equations, n=2N and B is
the block matrix given in (6). We concentrate on solutions of (16-17) for
A close to zero. The following theorem provides the crucial expansions that,
together with expansions for the periodic waves, is used later to prove PDE
stability or instability.

THEOREM 2.1.  Assume that Hypothesis (N1) is met. There are then
positive numbers C and 6 with the following property. Suppose that p,(x) is
a periodic solution of (13) for u=u; with period 2L such that

1
sup |po(¥)—h(x)| <o, |ul <o,  2L>5.

[xI<L

The boundary-value problem (16-17) then has a solution (4, y,v) for LeC
with || <0 and y e R/2nZ if, and only if,

E(2,7)=0 (18)
(we omit the dependence of E on L), where
E(Z,7)=(e" = ){Y(L), W' (—=L)) + (1 —e ") Y(—L), H'(L))

—;ufo CY(x), BR'(x)> dx + (e”— 1) R(Z, 7))+ A R(4, 7). (19)

Here, I'(x) is the derivative of the homoclinic orbit, Y(x) is a non-zero bounded
solution of the adjoint variational equation (15), B is an arbitrary matrix,
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and the eigenvalue A and the purely imaginary Floquet exponent 1y appear as
parameters in the boundary-value problem (16-17). The remainder terms
R(Z,y) and R(2, ) of the expansion are analytic in (A, y) and satisfy

104,05 R, )| < C(IpL(L)] (12l +e ™ + |ug | + sup |po(x) —h(x)])?

|x|<L
+e ™ (|Py(pL(—L)—h(—L))| +|Py(pL(L)—h(L))]|
+lup) + 1pL(L)]? +e2F))
107 R(Z I < CIAl+ e+ |uy| + sup |pr(x)—h(x)])

|x|<L
04102 R4 y)| < C (20)

for j, £ =0. Both R(J,y) and R(J,y) are real whenever (1., e") is real.
Finally, if (4,y) is a zero of E(A,7y) with |A| <d and ye R/2nZ, then the
associated solution v(x) of the boundary-value problem (16-17) satisfies

|o(x) —e¥h'(x)| < C1A] + |pL (L) + sup |pL(»)—h(»)])  (21)

IyI<L

for xe((2k—1) L, (2k+1) L) with ke Z.

Theorem 2.1 shows that it suffices to calculate solutions of the reduced
system (18) to determine the spectrum of periodic waves with large period.
To evaluate the terms that arise in the expansion (19), we have to derive
expansions of the solutions /#'(x) and (x) for large |x| and obtain
estimates for the various terms that appear in (20). We address these issues
in Section 5.

Theorem 2.1 applies to situations where the eigenvalue 4 =0 that is con-
tained in the PDE spectrum of the underlying pulse is simple. In some
applications, the PDE possesses a gauge symmetry that enforces a higher
geometric multiplicity of the eigenvalue at zero. One example is the com-
plex Ginzburg-Landau equation that admits a phase invariance. To
include these PDEs, we give a more general theorem, Theorem 2.2, that is
formulated in an equivariant set-up. We therefore assume equivariance of
the underlying ODE with respect to a closed connected subgroup X of the
orthogonal group O(n). Theorem 2.1 is then obtained by restricting to the
special case X = {id}.

Hypothesis (H1). There is a closed connected subgroup X of O(n) such
that f(ou, 1) = af(u, u) for every (u, u) e R"xR? and o€ 2.

We can then no longer expect that the homoclinic orbit / satisfies the
non-degeneracy condition stated in Hypothesis (N1) since % is part of the
family X'h of homoclinic orbits. In fact, any element in the tangent space of
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the manifold 24 at h(x) corresponds to a bounded solution of the varia-
tional equation (14) about A(x). Thus, the appropriate non-degeneracy
condition is that the only bounded solutions of the variational equation are
those enforced by the symmetry. To be more specific, we choose a basis in
the tangent space of 2/ in the following fashion. Let m=dim 2+ 1 and
the functions /'(x) and S;A(x) for j=1,..,m—1 are bounded solutions of
(14). Indeed, using Hypothesis (H1), we have

d

4 (€XP(8;7) h(x)) =exp(S;7) I'(x) = f(exp(S;7) h(x), 0)

for every 7€ R close to zero, where exp(S) is the exponential map from
alg(2) into X differentiating the aforementioned equation with respect to
7 at =0, we obtain

d
— (S;h(x)) = f.(h(x), 0) S;h(x).

dx
Non-degeneracy of the homoclinic orbit is then expressed in the following
hypothesis.

Hypothesis (H2) The solutions /'(x) and S;Ai(x) for j=1,..,m—1 are
linearly independent, and every bounded solution to (14) is a linear com-
bination of these functions.

In terms of the underlying PDE, this means that the eigenvalue A =0 of
the PDE linearization about the pulse A(x) has geometric multiplicity m,
and the associated eigenspace is generated by the translation symmetry and
the additional symmetry 2. Note that Hypothesis (H2) implies that the
vectors S;4(0) with j=1,..,m—1 are linearly independent. In particular,
the only element o € X' that is close to id and satisfies gh(0) = A(0) is o =id;
thus, continuous isotropies of the pulse are excluded.

Arguing as in the non-symmetric case, we see that the adjoint variational
equation (15) exhibits precisely m linearly independent bounded solutions
which we denote by y;(x) for j=1,..,m. All these solutions decay
exponentially as |x| —» co. Once more, we consider the boundary-value
problem (16-17).

THEOREM 2.2. Assume that the equivariance assumption (H1) and the
non-degeneracy condition (H2) on the homoclinic orbit h(x) are met. There
are then positive numbers C and 6 with the following property. Suppose that
pr(x) is a periodic solution of (13) for u=u, with period 2L such that

1
sup | pr(x) —h(x)| <o, |l <o, 2L>s.

|xI<L
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The boundary-value problem (16-17) has then a solution (4, y,v) for 1€ C
with || <0 and y e R/2nZ if, and only if,

det E(4, y)=0 (22)

(we omit the dependence of E on L), where E(2, y) is the m x m matrix with
entries Ey; (7, 7) given by

Eig (4 p)=(e" = 1){Yu(L), 9,(=L)> + (1 —e ") Yl — L), ¢,(L)>

—4 J_ CPix), Boy(x)y dx+ (€7 — 1) Ryy(4, 7) + 2 Rig (2, 7).
(23)

Here, the functions ¢;(x):=S;h(x) for j=1,..,m—1 and ¢, (x)=n"(x)
span the tangent space to the manifold Xh of homoclinic orbits at h. The
remainder terms Ry;(4,7) and ﬁkj(i, y) in the expansion (23) are analytic in
(4, ) and satisfy the same estimates (20) as R and R in Theorem 2.1. Also,
Ry (4, 7) and ﬁkj(/l, y) are real whenever (1, e") is real.

This theorem is proved in Section 3 below.

3. PROOF OF THEOREM 2.2

We begin by outlining our proof which is carried out in several steps.

In Section 3.1, we provide some useful decay estimates for particular
solutions of the variational equation (14). Due to hyperbolicity of the equi-
librium, the space R” can be written as a direct sum of two subspaces.
These subspaces consists of all initial values with the property that the
associated solutions of the variational equation about the homoclinic orbit
decay exponentially in either forward or backward x-direction. This type of
splitting is generally referred to as an exponential dichotomy and has been
systematically exploited in [24, 31] to investigate homoclinic bifurcations;
see also Remark 3.1.

After these preparations, we reformulate the relevant boundary-value
problem (16-17)

V=(fdpc(X),u)+2AB)v,  xe(—L,L)
o(L)=¢e"v(—L).

First of all, we consider the linear ODE separately on the intervals (—L, 0)
and (0, L) rather than on (—L, L). We then have to match solutions at
x =0. It turns out that the resulting boundary-value problem can be solved



146 SANDSTEDE AND SCHEEL

in a unique fashion provided we relax the matching condition at x =0: we
require only that solutions for x >0 and x <0 can be patched together, at
x =0, on a certain (n—m)-dimensional subspace of R” rather than on the
entire space R”. The reduced equations (18) and (22) that arise in
Theorem 2.1 and 2.2, respectively, are the remaining matching conditions
on an m-dimensional complement of the aforementioned (n —m)-dimen-
sional subspace of R”. In other words, using Lyapunov—Schmidt reduction,
we invert a certain part of the relevant boundary-value problem and obtain
reduced equations that describe the remaining unsolved part. To solve the
invertible part of the boundary-value problem, we approximate the peri-
odic solutions by the homoclinic orbit and then use perturbation
arguments to obtain solutions to the correct problem.

3.1. The Variational Equation about the Homoclinic Orbit

In this section, we collect some useful properties of the variational equa-
tion

v'=fh(x),0)v (24)
about A(x). Let
Y¢:=span{S,h(0), ..., S,,_,7(0), F'(0)},
Y+ :=span{y(0), .., ¥,,(0)}.
Note that Y° is the subspace of initial values that lead to bounded solu-
tions of (24). Recall that we have denoted by P§ and Py the spectral projec-
tions associated with the stable and unstable eigenvalues, respectively, of

£.(0,0). The constants «® and «" are lower bounds for the distance of the
stable and the unstable eigenvalues of f,(0, 0) from the imaginary axis.

LemMa 3.1.  The evolution @ _(x, y) of (24) for x, y =0 can be written
as @, (x, y) =D (x, y)+ ®"(x, y). The operators ®°_(x, y) and P° (y, x)
satisfy

|0 (x, p)I < Ce™ =2 @Y (p, x)| < Ce™

for x=y>=0. Furthermore, the operator P° (x)=®° (x, x) is a projection
with

|PS_(x)— P5| < Ce—*
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for x=0, and we set P (x)=id—P° (x). Analogously, the evolution
D _(x,y) of (24) for x, y<O0 can be written as ®_(x, y)=®° (x, y)+
@" (x, ). The operators @° (y, x) and ®* (x, y) satisfy

|d35_(y’x)|<CefocS|y7x|’ |¢H_(X7 y)|<C67°‘“|J’*XI

for x < y<0. Furthermore, the operator P* (x)=®" (x, x) is a projection
with

|P* (x)—Ph| < Ce™* I

for x <0 and we set P% (x)=1id — P" (x). In addition, there are spaces Y*
and Y such that Y@ Y@ Y*® Y+ =R" and

R(PL(0)=Y°®Y"  R(PL(0)=Y"'@ Y,

25
R(P(0)= Y*@ ¥*,  R(P°.(0))=¥*® Y™ (25)

Proof. See, for instance, [31, Lemma 1.1 and Lemma 1.2(i1)]. |

In the phase space R” of the ODE (13), the ranges of the projections
P° (0) and P* (0) are the tangent spaces to stable and unstable manifolds
of the origin at the homoclinic point /(0):

R(PS+(0)) = Th(O) WS(O)» R(Pu_(o)) = Th(O) Wu(o)a
Y° = T, W(0) O Tyo) WH(0).

We emphasize that an analogous lemma is true for the adjoint variational
equation. Since we shall not make use of the corresponding estimates, we
omit a precise formulation. Basically, the evolution operators to the adjoint
equation are the inverses of the adjoints of @ . The corresponding projec-
tions are the adjoints of the projections of the variational equation. In par-
ticular, the exponential decay estimates of the bounded solutions /,(x) of
the adjoint variational equation (15) follow from this discussion.

Remark 3.1. Throughout Section 3, the operators @° (x,y) and
®" (y,x) are used only for x> y>0. Similarly, we use the operators
@% (y,x) and @" (x, y) only for x< y<0. This is important since the
arguments given here for ODEs carry then over to elliptic PDEs; see [29].

Notation. The subscripts + and — correspond to x>0 and x <0,
respectively. Different positive constants that are independent of L and the
parameter u are denoted by C. Also, 6 >0 is a generic small constant that
again does not depend upon L and u. The indices j and k take integer
values between 1 and m. Finally, for any direct sum R"=Y,, ® Yy, we
denote by P(Y,,, Y.) the projection with range Y,, and null space Y.
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3.2. The Reformulation

Recall that p, is a periodic solution, with period 2L, of

u' = flu, u)

for u=p, so that |u, | is close to zero, p,(x) is close to A(x) for |x| <L,
and L is large. We seek bounded solutions v of

v'=(fulpr(x), L) + AB) v (26)

for |x| <L with AeC close to zero such that
v(L)=e"v(—L) (27)

for some y e R/2nZ. We write (26-27) in the equivalent form

Vo =(flpe(x)up)+AB)v_,  xe(—L,0)
v =(flpe(x) ) +2B) vy, x€(0,L) (28)
v_(0)=v,(0)

v (L)=¢e"v_(—L)

considered as equations over the complex field.
We shall exploit that the functions ¢;(x) = S;p,(x) for j=1,..,m—1 and
@,.(x) = p'r(x) satisty (28) for (4, y) =0. Thus, we write

m

ve(xX)= ) ¢;(x) di+w o (x), (29)

Jj=1

where d = (d;) e C™ is an arbitrary vector. Define a projection Q: R" — R”
by

R(Q) =span{4,(0), ... 4,(0)}, NQ)=Y'@©r'@r-

Note that, if the periodic solution p; is J-close to the homoclinic orbit as
assumed in Theorem 2.2, then R(Q) is close to the space Y° which is a
complement to N(Q) by the results of Section 3.1. Therefore, Q is well
defined, and its norm depends only on the choice of J but not on the
periodic solution p, itself.

Using the ansatz (29), we obtain the following equivalent formulation of
the boundary-value problem (28):
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(1) wy=flh(x),0)wy+(flp(x), ur) — fulh(x),0) + AB) w .
+ A Z Bo,(x) d;
Jj=1

(ii) Ow,(0)=0 (30)
(i) w,o(0)—w_(0)e Yt

(iv) w(L)—e"w_(—L)=(e"—1) i ¢,(L)d,

and

Yi(0), w (0) —w_(0))> =0 (31)

for k=1, ..., m. Indeed, we note that (30)(iii) and (31) are met if, and only
if, w,(0)=w_(0). Next, if (w,, d) satisfies (30-31), then (v, ) defined by
(29) satisfies (28). On the other hand, suppose that (v, ) is a solution of
(28). Define d; by

m

v (0)=v,(0)=3 ¢;(0)d;+70,

Jj=1

where e N(Q). Upon defining (w ) by (29), it is easy to see that (w , d)
satisfies (30-31).

Thus, solving the boundary-value problem (26-27) reduces to solving
(31) once (30) has been solved. Note that w (x) =0 is a bounded solution
to (30-31) with A=0 and y=0 for any d.

3.3. The Reduction

In this section, we solve an approximation of the linear eigenvalue
problem (30) that is obtained by replacing the terms

m

(fulpr(x), ptr) = fu(h(x), 0) + AB) wy + 4 ), Bf;(x)d;
j=1

j=

by a function G, (x) that does not depend upon /4 or w, . The resulting
equation (32) below is referred to as the approximate linear eigenvalue
problem. To solve (32), we set up a variation-of-constants formulation that
captures all solutions to (32)(i)—(iii). Finally, using this formulation, we
solve (32) and derive expansions of the reduced equations in terms of the
period L and the right-hand side G.
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Recall the definitions of Y*" and Y* as complements of T, W"(0) N
ThoyW*(0)=Y° in Ty, W"(0) and T W*(0), respectively; see (25).
Define the spaces
V,:=%¢°(0,L],C"Y®%°([—L,0],C"
Va:=R(P5) ®R(P})
vV, =Y'®Y"
considered over the complex field and let
w=w,_,w_)eV,, a=(a,,a_)evV,, b=(b,,b_)eV,.
Our approximation of the linear eigenvalue problem is given by
(1) wy=/,(h(x),0)wy+G(x)
(i) QOw,(0)=0
)
)

=

- (32)
(iii) w,(0)—w_(0)e ¥+

=

(iv) w,o(L)—e"w_(—L)=D

for elements G=(G_,G_)eV, and DeC" We seek solutions to (32) in
V., for ye R/2nZ. Lemma 3.2 below shows that solutions of (i)—(iii) are, in

their general form, given by the following variation-of-constant formula:
w_(x)=®° (x, —L)a_+®"(x,0)b_
+[ @G dy+] @ y) G_(r)dy
0 —L
(33)
wy(x)=®%(x,L)a, +P°(x,0)b,

H 0w G| 0t G,

where the elements ae V, and b € V,, are arbitrary. We refer to Section 3.1
for the definition of the operators @%"(x, y).

LEMMA 3.2, There are constants C and L, such that the following is true
for every L> L. The right-hand side of (33) defines a linear operator

WiV, xVyxV,-V,, (ab,G)+— Wy(a, b, G).
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Furthermore, there is a linear operator By:V,xV, -V, such that w
satisfies (32)(1)—(iil) if, and only if,

w=W(a, B,(a, G), G) (34)
so that b= B,(a, G). Finally, we have the estimates

By (a, G)] < Cle ™ |a| +1G])
[Wi(a, b, G)| < C(la] +[b] +1G]) (35)
|Wi(a, By(a, G), G)| < C(|a| +|G).

Proof. Using the definition of the projection Q and the definitions of
Y*" and Y*®in (25), it is straightforward to see that (33) is the general solu-
tion of (32)(i)—(ii). Indeed, the general solution to (i) can be represented in
the form (33) with

b, b_)e(YPRY)D(Y DY)
The boundary condition (32)(iii) then restricts the allowed pairs (b, ,b_)
toV,=Y®Y"
The statements about W, follow from the exponential decay estimates
for the evolution operators provided in Lemma 3.1. It remains to show that

(32)(iii), w,(0)—w_(0)e Y+, is met for an appropriate choice of b.
Evaluating (33) at x=0, we get

wio(0)—w_(0)=b,—b_+D5(0,L)a, —D° (0, —L)a

_j @" (0, y) G, () dy— j ®° (0, y) G_(y)dy
(36)

since @%,(0,0)b, =b, and @ (0,0)b_=5b_ due to (25) and be V.

We recall the notation P( Y,g, Y,.) for the projection onto Y,, with null

space Y,. that we introduced in Section 3.1. By (32)(ii), we have that
P(YS, Y®Y'"@YH)w,(0)=0.

To solve (32)(iii), it therefore suffices to satisfy

PY, Y®@Y'®@Y ) (w,—w_)0)=0,

PYS, Y@Y'@Y ) (w,—w_)0)=0.
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Thus, upon projecting (36) onto Y*@® Y" and using the definition of Y*
and Y™ from (25), we see that w, (0)—w_(0)e Y if, and only if,

b, =PV, Y@V @YY <¢>S_(o, D+ @060 dy)

L
bo—Prve ey (eL0.La, - [ 0.6, 0)d )

The right-hand sides of these equations define a bounded and linear
operator By: V, x V,, — V, that satisfies |B,(a, G)| < Ce ™*F |a| + |G|) due
to the uniform exponential decay properties of @° and @" that we derived
in Lemma 3.1. This completes the proof of the lemma. |

It remains to solve (32)(iv), that is, w, (L) —e”w_(—L)= D.

LemMA 3.3. There are constants C and L, such that the following is true
for any L> L. There exist analytic maps

Ay R2Z - L(C"x V., V,),  By:R2rZ—> L(C"xV,, V,),
W,: R22Z — L(C"x V,, V,)

such that w satisfies (32) if, and only if, w is given by the variation-of-
constant formula (33) with

a=A,(7)(D,G),  b=B,(y)D, G); (37)
in other words,
w=W,(y)(D, G)=W,(4,(y)(D, G), B>(y)(D, G), G), (38)

where W, has been defined in Lemma 3.2. For every ¢ =0, the operators A,,
B, and W, satisfy

1074, |+ 105B,| + 105 W,| < C. (39)
Furthermore, we have the expansion
a=(a,,a_)=4,()(D,G)=(PyD, —e""PiD) + A;(y)(D, G) (40)
for a bounded operator A5 that satisfies

|45(7)(D, G)| < C(e ™ |D| +G]). (41)
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Proof. Equation (33) evaluated at x= + L is given by

wo(L)=a, +(P*(L)—P%a, + % (L 0)b,
oLy 6L
0
w_(—L)y=a_+ (P (—L)—P))a_+®*(—L,0)b_

+[ oL G (42)

where the projections P* (x)=®* (x, x) and P" (x)= @ (x, x) have been
defined in Lemma 3.1. Note that Pyja, =a, and Pja_=a_ since aeV,.
Substituting these expressions into (32)(iv), we obtain

D=w_(L)—e"w_(—L)
=a,—e%_+ (P (L)—Py)a, +e?(P5—P°(—L))a

+ @ (L,0) b, —e"®" (—L,0)b_
s UL G 0 dy—e [ LG )y (43)

where b = B, (a, G), as defined in Lemma 3.2, with |b| < C(|¢| + |G|). Equa-
tion (43) can then be written in the more compact form

D=a, —e%a_+4,()a,G), (44)

where 4,: R2nZ - ¥(V,xV,, V,) is analytic. We shall solve this equa-
tion for a. Using the estimates in Lemma 3.1 and 3.2, it is straightforward
to verify that

1074, (y)(a, G)| < C(e™** |a] +1G]) (45)

for every />0 uniformly in p. The principal part of (44) is given by the
linear analytic map J,: R/2nZ - ¥ (V,, C") defined by

Jl(y): Va_)Cna (a+aa7) — (a+_eiya7)'
The linear operator J;(y) is an isomorphism for every j since V,=
R(P5) @ R(Py)=C" Thus, there is an L, >0 such that, for every L> L,

the operator

a = Ji(y)a+A,(y)a0)
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is invertible. We can therefore solve (44) abstractly, and its solution is
given by

a=(Ji(»)+4,() 1)~ (D= 4,(»)(0, G)=: 4,())(D, G),  (46)

where I,a=(a, 0). Note that 4,(y) is analytic in 7, linear in (D, G) and
bounded uniformly in L> L, and y e R/2zZ. It remains to solve (32)(iv).
If we set

B, (7)(D, G) := B, (4,(y)(D, G), G)
W2 (D, G) := Wi (4:(y)(D, G), B> (y)(D, G), G),

then w= W,(y)(D, G) satisfies the integral equation (33) for every (D, G)
by definition of B, and W, see Lemma 3.2, and the above construction
of 4,.

Having solved the entire boundary-value problem (32), it remains to
verify the uniform estimates (39) and the expansion (40) together with the
error estimate (41). We notice that, due to (45),

024, < C. (47)

Using this estimate together with (35) and the definitions of B, and W,, we
get

109 B, | + 10 W,| < C.

This proves the uniform estimate (39). The expansion (40) is obtained from
the expansion of (32)(iv) that we gave in (44) together with the estimates
(45) for A, and (47) for a= A,(D, G). We omit the details. |

Remark 3.2. Note that, under the assumptions of Lemma 3.3, we have
(wy(L),w_(—L))=(PyD, —e 7Py D)+ W, (y)(D, G), (48)

where W,: R/2nZ — £(C"x V,,, C") is analytic and, for every />0, we
have

|07 W, (y)(D, G)| < C(e ™ |D| +|Gl); (49)

see (42), (39) and (40).

The next remark follows from the variation-of-constant formula (33)
upon using the uniform estimates (39) for (a, b) and the exponential decay
estimates from Lemma 3.1.
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Remark 3.3. We have w= W, (y)(D, 0)+ W,(y)(0, G) and

05 WL (7)(D, 0)(x)| < Ce =+ D], for xe[—L,0]

’ L) (50)
105, WL (7)(D, 0)(x)| < Ce |D|, for xe[0, L]

for every £ =0.

In summary, we have demonstrated that w is a bounded solution of (32)
if, and only if, w is given by the variation-of-constant formula (33) where
(a, b) are defined by the bounded linear operators 4, and B, that appear
in (37); see Lemma 3.3. The solutions w_ and w_ are continuous at x =0,
that is, w, (0) =w_(0), if, and only if, the jumps

i = P(0), w (0) —w_(0) (51)

vanish identically for k=1, .., m. In the following lemma, we derive a
concrete expression for the jumps &,.

LemMa 3.4. There are constants C and L, such that the following is true
forany L>L . Let w be given by (38). The jumps &, defined above are then
given by

&e=<Yi(L), PaD) +e ™" (—L), PyD)

[ .6 (0 dx

] ), G () v Ry D, 6) (5)

for a certain analytic remainder term R,: R/2nZ — ¥(C"x V,,, C™) that
satisfies

127, (7)(D. G)| < Ce~*(e~** |D| +|GI) (53)

for every £ =0.

Proof. Throughout the proof, we choose (a, b, w) according to (37) and
(38) from Lemma 3.3 so that (32) is solved by the variation-of-constant
formula (33). Substituting the expressions for w, from (33) into the equa-
tion (51) for the jumps, we see that the jumps &, are linear in (D, G) and
analytic in y. More precisely, taking the scalar product of the equation (36)
for w, (0) —w_(0) with ,(0) and using that {y,(0), b, > =0 by defini-
tion of V,, we obtain
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Cie(0), w4 (0) —w_(0)
= {Yi(0), 4(0, L) ay ) — (Y (0), °.(0, —=L)a_)

[ (0. 0%(0.5) G (x))

[0, @00 G () dx

= n(L).ay > — U~ Lya )
[ .G dx= [ e, Gy dv. (54)

In the second identity, we used that the evolution operators of the adjoint
variational equation are given by ((@%*(x, ¥))~1*, that is, by the inverses
of the adjoints of the solution operators to the variational equation. Upon
substituting the expansion (40) from Lemma 3.3 for g, and using the estimate
(41) for the remainder term, we get

(L), ay )y —<Yp(—=L),a_)
=Yi(L), P§DY +e 7Y (—L), P§DY + O(e~*(e~** [D| +|G]))
(55)
since

Wi (x)] < Ce ™ (56)

for k=1, ..., m. Finally, all of the aforementioned estimates are also true for
derivatives with respect to y. This completes the proof of the lemma. ||

3.4. Small Linear Perturbations

We return to the original boundary-value problem (30-31) which we
consider as a perturbation of (32). In this section, we allow for arbitrary
small linear perturbations of the first equation (30)(i) that are of the form
H(x)w . More precisely, we consider the linear boundary-value problem

(1) wy=f,(h(x),0)w,+H(x)w,+ g(x)
(i) Ow,(0)=0
(i) w,(0)—w_(0)e Yt

(57)

(iv) w,(L)—e"w_(—L)=D
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for HeVy:=%¢°([—L,L], #(C"), g=(g,,g_)eV, and DeC" We
seek solutions to (57) in V,, for ye R/27Z.
We denote by U, the d-neighborhood of H=0 in V.

LemMa 3.5. There are positive constants C, L, and 6 such that the
following is true for L> L. There is a solution operator

W:R2rnZx Us— L(C"x V., V,), (y, H) — W(y, H)

that depends analytically on the parameter y and the perturbation H, such
that w satisfies the boundary-value problem (57) if, and only if, w=
Wy, H)(D, g). Furthermore, we have

00, WI<C (58)
for every >0, and
(w4 (L), w_(—L))=(PiD, —e~"P3D)
+ WL (2)(D, g) + WL ()0, HW(y, H)(D, g));  (59)

see Remark 3.2 for the definition of W,. Moreover, the components of the
Jjump of w at x =0 are given by

&= Yr(L), PeD) +e "y (—L), PaD)
L

—f_L< Yi(x), g(x)) dx + R, « (7, H)(D, g). (60)
The function Ry: R/2nZ x Us — L(C"x V,,, C™) is analytic, and its Taylor
expansion in H is given by
where

|07 To(7)(D, g)] < Ce~*(e~** D[ + | g|)

10, T, (7)(D, &)l < Cle ™™ |D| + |gl) (61)

0% 4 Ta(p, H)| < C

for every £ =0.

Proof. A comparison of the boundary-value problem (57) and the
unperturbed equation (32) shows that we have to set

G=Hw+g (62)
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in the unperturbed problem. Hence, w satisfies (57) if, and only if,
w=W,(y)(D, Hw + g),

where W,(y) is the solution operator for equation (32) that we defined in
(38); see Lemma 3.3. We write the above equation as

w=Ws(y, H)w+ W,(y)(D, g), (63)
where W5 (y, H) w= W,(y)(0, Hw) is analytic in (y, H) and
|Wi(y, Hyw| < C |H| |w| < Co |w|.
Thus, for ¢ > 0 sufficiently small but independent of y and L > L, we can

invert the operator id — W, (y, H) and obtain a unique solution of (63) that
is represented by the operator

w= Wy, H)(D, g) = (id — W;(y, H)) = W,(y)(D, g). (64)

This operator is analytic in (y, H). The expansion (59) is a consequence of

Remark 3.2 and the estimates obtained above. This proves the first part of
the lemma.

Next, we compute the jumps of the perturbed boundary-value problem.

Upon substituting G = Hw + g into the expansion (52) for the jumps, see
Lemma 3.4, we obtain

&= <Yx(L), P4D) +e 7Yy (= L), PyD)

L 0
=] ) B w () de= | el Hx) w_(x)) d

L
—j P (x), g(x)> dx + Ry i (7, H)(D, g), (65)

where w= W(y, H)(D, g) and

Ry:R2rZx Us —» #(C"x V,, C™), ()
R;(y, H)(D, g) := R, (y)(D, Hw + g)
is analytic. Recall from (63) that
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We set
L
Ry (y, H)(D, G) =f0 {e(x), H(x) w (x)) dx

H . O w_ (03 d

then R, is analytic in (y, H) and
Ry(y, H)(D, G)=T,(y)(D, )L H] + T>(y, H)(D, g)[ H, H]  (67)

with
1D LT = | (), H) WD, 2)(x) dx
[ el HE W50, () dx
a0, H)D, @)LH, H1= [ Chl(x) HOx) W H) WO, YD, ))) dx

0
+ [ o), Hx)
—L
x Ws(y, H) W(y, H)(D, g)(x)) dx.
It follows from the estimates for W, and W that
10, uT2(y, H| <C

for every £ > 0. Furthermore, using the estimate (50), we have

10 W,(7)(D, 0)(x)| < Ce =+ | D),
|6; W,(y)(D, 0)(x)| < Ce == |D|

for x <0 and x >0, respectively. Using these estimates, we obtain

[ et 1) w205, 000 dx

L
<) Clwet)l [H] e~ |D) dx

<Ce L |H| |D|
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and similarly

[ o, 110 w000, 000 dx| < e~ | D

Here, we made the constant a that appears in (56) a bit larger than
min{a®, a®}. We conclude that

05T, (7)(D, g)l < Cle™*|D| +|g|)

for every /> 0. In summary, we have

S = QL) PEDY + e (— L), D) = [ (), ) dv
+ Rz,k(% H)(D’ g)s

where

A

Iéz(% H) = RS(V; H) + R4(% H)
This last expression can be written as

Ry(y, H) =To(y)(D, g)+ Ty (y)(D, g)[H]+ T,(y, H)(D, g)[H, H],

where

To()(D, g) =R (y)(D, g)
Ty(y)(D, g)[H]=R,(7)(0, HW(y,0)(D, g)) + T\ (y)(D, g)[ H]
Ty(y, HX(D, g)[ H, H] =R, (y)(0, HW(y, H)— W(7,0))(D, g))
+T5())(D, g)[ H, H]

are analytic; see (66) and (67). It follows from the estimates for 7, and 7,
as well as (53) that

107 To(»)(D, g)l < Ce™*(e ™" |D| + |gl)
05T (7)(D, g)I < Ce ™ D]+ |gl)
105, 1 T>(y, H)| < C.

This completes the proof of the lemma. ||
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3.5. The Substitution

To complete the proof of Theorem 2.2, we return to the original bound-
ary-value problem (30). Define the linear operators

K,:C"—C", d=(d) i ¢;(L)d,
- (68)
K,:C">V,, d=(d;) — ) Bé;(x)d

so that
K| < Clpr(L)l, K| <C, (69)

for a certain constant C that is independent of 4 and L. A comparison of
the original boundary-value problem (30) and the boundary-value problem
(57) that we have studied in the previous section shows that they are
identical once we set

D=(e"—1)K,d
g=1K,d (70)
H=f,(pr(-), 1) — fu(h(-),0) + 4B,

where, by assumption,

|H| < COIAl + |ur] + sup [pr(x)—h(x)]) < Co. (71)

|x|<L

Thus, we can apply Lemma 3.5. We obtain a solution w that is analytic in
(4, y), and the jumps are given by

k=(eiy_1)

J

{Yu(L), Poo;(L)) d;

1

I M3

+(1—e™™) Y (y(—L), Pyg;(L)> d,

1

INEE!

J

0 X[ 0 B0 dydx+ Rl XD, ). (72)

First, we replace the functions ¢;(x) that appear in the scalar products by
the functions ¢;(x) for j=1, .., m, and change the interval of integration
from (—L, L) to R. Afterwards, we verify the estimates that appear in
Theorem 2.2.
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Recall that ¢;=S;p; and ¢,=S;h for j=1,..,m—1, while ¢,,= p’, and
@,,=Hh. On account of equivariance (H1), the operators §; € alg(2’) com-
mute with the spectral projections Pg and Pj. Thus, using (56), we obtain

[<ie(L), PgS;(pL(L) —h(—L))>| < Ce™* |P3(pL(L) —h(—L))| 73)
[<¥i(—=L), P3S;(p(L)—h(L))>| < Ce™" |Py(p (L) —h(L))|

for j=1,..,m—1 and some constant C that does not depend upon L. On
the other hand, exploiting the Taylor expansion of f, we get

[P (L), Po(p (L) = h'(=L)))| + [<¥r(—L), Po(p'(L) = (L)))]
< Ce™H(|Py(p (L) —h(— L)+ Py(pr(L) —h(L)] + |p. |
+1pL(L)? +e7). (74)

Analogously, we see that

[° ot B0y ax =" cpetn, B> dx

< C(e ™+ sup |pp(x)—h(x)]) (75)

|x| <L

for j=1, .., m. In summary, (72) is given by
Ee=(e"—1) ) {Yu(L), Pyp,(—L)) d,
j=1
(1—e~") Z L), Pyo;(L)> d;

2 X [ el By v R D, )
j=1

+O0(e ™ (IP5(pL(L) —h(—L))| + |Py(pr(L) — h(L))| + |p.|
1P (L) +e72) + 1] (e 75+ sup |po(x)—h(x)) Id].  (76)

|x| <L

It remains to substitute the expressions for D, g and H into the remainder
term R, and to verify that the estimates that appear in Theorem 2.2 are
true. Since R, is linear in (D, g), we have

122(% H)(Da g) ZRZ(% H)(Da 0) +1§2(% H)(0> g)
=(e”—1) Ry(y, H)(Ky, 0) d+ 2 Ry(p, H)(0, K;) d,
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where we replaced D, g and H by the expressions in (70). Substituting the
estimates (69) and (71) for K, , and H, respectively, into the estimates (61)
for R, in Lemma 3.5, we obtain

|Ry(p, H)(K,, 0)| S C Ky |(e ™"+ |H|)?

SClpL(D)(e ™ + |2 + lug| + sup |pr(x)—h(x)])?
x| <L (77)

IR, (y, H)(0, K»)| < C|K,|(e ™F + |H|)
<Cle ™+ A+ |up|+ sup |pr(x)—h(x))]).

Ix|<L

Analogous estimates can be derived for the derivatives with respect to
(25 7)-

It is then not difficult to check that the overall remainder term that con-
sists of R, and the additional term O( ---) that appears in (76) is of the
form

(e —1) R(J, p) d+ 7 R(J, y) d.

Furthermore, upon collecting the estimates (76) and (77), the estimates
(20) in Theorem 2.1 for the overall remainder term and its derivatives
follow.

Finally, we argue that R(4, y) and R(Z, y) are real whenever (/,e") is
real. The reason is that, if (4, e?) is real, the boundary-value problem (30)
involves only real quantities and can be solved over the field of real
numbers.

This completes the proof of Theorem 2.2.

4. EXISTENCE OF PERIODIC WAVES WITH LARGE PERIOD

In order to use Theorem 2.2 to determine the spectrum of the lineariza-
tion about a periodic wave with large spatial period, we have to estimate,
in particular, the terms

|pL(L)|+ sup |pr(x)—h(x)|.

x| <L

This is accomplished in the next theorem.

THEOREM 4.1. Assume that the equivariance hypothesis (H1) and the
non-degeneracy condition (H2) are met. There are positive constants C, o
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and L, with the following property. Let L> L, then (13) has a periodic
solution p;(x) with period 2L at u=u; such that

sup |pr(x)—h(x)| <0,  |ur|<o

[x|<L
if, and only if,
Yul(L), h(—L)y =<y (—L), h(L)

— 7 ), £, 00 dx g Ry() =0 (78)

at u=uy for k=1, .., m, where R(u) is differentiable in u and
R(u) < Cle ™+ |u)(|ul +e25), 9, R(u) < Cle™™ +|ul). (79)
Furthermore, any such periodic solution p;(x) satisfies

sup |pp(x)—h(x)| < C(lug| +eF)
x| <L (80)
IPy(pr(—L) = h(—L)| + IPy(pr(L) = (L) < Cllu | +e~2),
Proof. Tt has been demonstrated in [41, Theorem 1] that p,(x)=

h(x) + w(x) is a periodic solution with period 2L close to A4(x) if, and only
if, w satisfies

(1) wy=/f(h(x)+w,,un)—f(h(x),0)
(i) Ow,(0)=0

(81)
(i) w,(0)—w_(0)eY*
(iv) wo(L)—w_(=L)=h(—L)—h(L)
and
Y (0), wy (0)—w_(0)> =0 (82)

for k=1, .., m. Furthermore, [41, Lemma 11] asserts that (81) has a
unique solution w(u) for every L > L, and every u with |u| <dJ, and w(u)
is differentiable in 4 as a function into V,, such that

W< Cle™F+ul), 9wl <C (83)
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for £ > 1. It remains to compute the expansion of the bifurcation equation
(82). We would like to make use of the estimates in Lemma 3.5 and write

S(h(x) +w, 1) — f(h(x), 0)
=/fu(h(x), 0) w+ £, (h(x), 0) u

+ Jl [ fu(h(x)+7w,0)— f,(h 0)]dew
0

[ LG+ 10,50 = 1,00, 0)] de g
The statement of the theorem is then a consequence of Lemma 3.5 applied
with y=0 and
D=h(—L)—h(L)

0= [ LA+ 0la), 00— £,(h(x),0)] de

g(x) =1, (h(x), 0) /H‘J [ (A(x) +w(p), Ti) = [, (h(x), 0)] dz .

It is tedious but straightforward to establish the estimates (79) and (80)
using the estimates

ID|<Ce™,  |H|<C(e ™ +|u]),
|g(x) = £ (h(x), 0) u] < C |u| (€7 + |]).

We omit the details. ||

5. SOLVING THE REDUCED EIGENVALUE PROBLEM

In this section, we use Theorem 2.1 to determine the spectrum of the
linearization about a periodic wave with large spatial period. We invoke
Theorem 4.1 to express the reduced equation

E(4,y)=0

in terms of the homoclinic orbit 4(x) and the associated adjoint solution
W(x).

In Section 5.1, we consider generic vector fields that have no symmetries
at all. In Section 5.2, we assume that the vector field is reversible; this situa-
tion often arises for standing pulses that have wave speed zero. In either
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case, the bifurcating periodic waves can be stable or unstable. The location
of their spectrum depends crucially on whether the tails of the pulse con-
verge to zero monotonically or in an oscillatory fashion. In the case of
monotone tails, we have that the periodic waves are either stable for all
large L or else unstable for all L. In the case of oscillatory tails, the peri-
odic waves are alternately stable and unstable as a function of their spatial
period L; the circle of critical eigenvalues crosses the imaginary axis peri-
odically in L. Physically, we may interpret this phenomenon as a locking
phenomenon between the decaying oscillatory tails of neighboring pulses in
the periodic wave trains.

5.1. Generic Vector Fields

Consider the ordinary differential equation
u'=flu,p),  (u,u)eR"xXR (84)

so that u =0 is a hyperbolic equilibria for all . Assume that (84) admits
a homoclinic solution A(x) for =0 with A(x) — 0 as |x| —» co. Typically,
the wave speed c¢ of the pulse would supply the one-dimensional parameter
u. We recall that the variational equation about A(x) is given by

v =f,(h(x),0)0, xeR. (85)

As in Hypothesis (N1), we assume that the stable and unstable manifolds
of the equilibrium u =0 intersect as transversely as possible for u =0.

Hypothesis (G1l). Assume that /'(x) is the only bounded solution, up
to constant scalar multiples, of the variational equation (85).

The associated non-zero bounded solution of the adjoint variational
equation

w' = —f,(h(x), 0)* w, xeR

is denoted by y(x). Finally, we assume that the stable and unstable
manifolds of u=0 cross transversely with respect to the one-dimensional
parameter u at u=0.

Hypothesis (G2). f‘foo {Y(x), [, (h(x),0)) dx#0.
Choose a> 0 so that « <min{|Re v|; vespec(f,(0,0))} <3a/2. We then

have the following existence result.

PROPOSITION 5.1.  Assume that the non-degeneracy assumption (G1) and
the Melnikov condition (G2) are met. There are then positive constants C
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and o0 with the following property. For every L>1/0, there is a unique peri-
odic solution p;(x) of period 2L of (84) for a unique u =, such that

sup |pr(x)—h(x)|<d,  |url<0.

|x|<L
Furthermore, we have

(D)l + sup |pr(x)—h(x)| < Ce™"

[x|<L
lur| < Ce— >

|PY(po(—L) = h(=L))| +P§(pr(L) —h(L))| < Ce .

Proof.  The existence part and the first two estimates had been estab-
lished in [ 3, 247]; see also Theorem 4.1. The third estimate is a consequence
of Theorem 4.1; see also [ 32, Section 5]. |

Substituting the estimates obtained in Proposition 5.1 into the reduced

equations (18-19), see Theorem 2.1, we obtain the following result.

THEOREM 5.1.  Assume that (Gl) and (G2) are met. There are positive
constants C and 6 with the following property. The boundary-value problem
(16-17) that describes eigenvalues A with spatial Floquet exponents 1y of the
periodic wave p;(x) described in Proposition 5.1 has a solution (4, y, v) for
AeC with |A| <0, ye R2rnZ and L > 1/o if, and only if,

0=(e”—1)<XY(L), i'(—=L)) + (1 —e ") Y(—L), (L))

—Ajw Cp(x), B (x)) dx + (€7 — 1) R(2, 7))+ A R(A,p).  (86)

The remainder terms are real whenever (A, e") is real, and we have

04,0, R(Z, p)| < Ce ™
105 R(Z, )| < C(|2] +e7F) (87)
0% 07 R(Z, p)| <

uniformly in L for j, £ >0.

The theorem shows that the spectrum of the periodic waves that accom-
pany the pulse A(x) depends upon the tails of the pulse, that is, on the
behavior of A(x) for large |x|.
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Before we proceed and calculate the spectrum depending on properties of
the tails of the pulse, we assume that the first-order term in A is non-zero.

Hypothesis (G3). M :=§°foo {Y(x), Bh'(x)) dx #0.

It has been shown in [ 33, Lemma 5.5] that M is equal to the derivative
of the Evans function of the pulse at A =0 for an appropriate normalization
of the Evans function. Hence, (G3) states that A =0 is a simple eigenvalue
for the pulse.

5.1.1. Real leading eigenvalues (saddle equilibria). We assume that the
eigenvalue of £,,(0, 0) that is closest to the imaginary axis is real and simple.
Without loss of generality, we may also assume that its real part is positive;
otherwise, we change x to —x.

Hypothesis (G4). There is a simple real eigenvalue v* e spec(f, (0, 0))
such that |Re v| >v" >0 for every vespec(f,(0,0)) with v# v

It is a consequence of [ 6, Chapter 3.8] that there are eigenvectors v, and
we of £,(0,0) and £, (0, 0)*, respectively, belonging to the eigenvalue v*
such that

h'(x)=e"*vy+ O(e™ +9¥) as x— —oo
N u (88)
Y(x)=e " wy+ O(e " +o)x) as X — oo.

Generically, the vectors v, and w, are non-zero. We can then compute the
spectrum of the periodic waves p,(x) that accompany the pulse /(x); see
Proposition 5.1.

THEOREM 5.2. Assume that the homoclinic orbit is non-degenerate (G1),
transversely unfolded (G2), that 2=0 is a simple eigenvalue of the pulse
(G3), and that the leading eigenvalue of f,(0,0) is real and simple (G4).
There are positive constants C and 6 and a function A(y) that is analytic in
yeR/2nZ such that the boundary-value problem (16-17) has a solution
(4, y,v) for |A] <9, yeR/2nZ and L>1/d if, and only if, 1= A(y). Further-
more, we have the expansion

) = (@ = 1e 2 (L0004 i) ) (59)

for ye R/2nZ. The remainder term is analytic in y with
|07 R(y)| < Ce™°F (90)

Sfor ¢ =0 and real-valued for ye {0, n}.
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Proof. 1t follows from [6, Chapter 3.8] and simplicity of the leading
eigenvalue (G4) that

|h'(x)| < Ce=0"+9> a5 x— o0

[W(x)] < Cet+ox as x— —oo.

Recall that (86) is the reduced equation for solutions of the eigenvalue
problem that we derived in from Theorem 5.1. Upon substituting the above
inequalities and the expansions (88) into (86), and using the properties
(87) of the remainder terms, we obtain the reduced equation

MM +O(|2] +e7%)) = (7 — 1) e =" (g, wo» +O(e %)), (91)

where the remainder terms are analytic in (4, y) and real whenever (4, e?)
is real. The statement of the theorem then follows from the Implicit Func-
tion Theorem. ||

COROLLARY 5.1.  Assume, in addition to the assumptions of Theorem 5.2,
that {vy, woy #0. The circle of critical eigenvalues close to 7. =0 has then a
quadratic tangency at zero with the imaginary axis, and the periodic waves
are spectrally stable if, and only if, M{ vy, wey > 0.

Proof. We expand the real part of

vy, Wo)

)= (e — 1y e (L

+R(y)>

in a Taylor series. The derivatives of this expression evaluated at y =0 are
given by

{(vg, wo»

2(0) =1 —2vL
(0)=1ie < i

+R(0)>

l//(o) — _e—2v“L <<UOJ"4WO> +R(O)> +2ie_2vuLR,(O).

Using the fact that R(0) is real, we get

2

Re A(y) = Re A(0) + 7 Re 2'(0) +V5 Re 2"(0) + O(7?)

1 . ; u .
— —Ze ¥t << UOMW"> + R(0)> p2+ e~ 2L Re(iR(0)) 72 + O(°).
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Using the estimate (90), we obtain

1 — 2L <<UO> WO>

Re A(y) = ¢ 7 ~|—O(e_‘5L)+O(y)> 72

This completes the proof of the corollary. |

5.1.2. Non-real leading eigenvalues (saddle-focus equilibria). The remaining
generic case is that the eigenvalues of £,(0,0) that are closest to the
imaginary axis are complex conjugate and simple. Again, we may assume
that their real part is positive.

Hypothesis (G5) There is a pair of simple complex-conjugate eigen-
values v*+if"espec(f,(0,0)) such that |Rev|>v">0 for every ve
spec(f,(0,0)) with v #v*+if". We assume that % #0.

It is a consequence of [ 6, Chapter 3.8] that

CW(L), W(—L)> =a sin(2B L +b) e~ 2" L+ O(e =@ +9L)  (92)

for certain constants a and b; see also [33, Lemma 6.1]. Generically, a is
non-zero.

THEOREM 5.3. Assume that the homoclinic orbit is non-degenerate (G1),
transversely unfolded (G2), that A=0 is a simple eigenvalue of the pulse
(G3), and that the leading eigenvalues of f,(0, 0) are simple and complex
conjugate (GS). There are positive constants C and é and a function A(y) that
is analytic in y € R/2rnZ such that the boundary-value problem (16-17) has a
solution (A, y, v) for || <0, ye R/2nZ and L>1/5 if, and only if, 1= A(y).
Furthermore, we have the expansion

My)=(e"—1)e 2" <;; sin(2ﬂ“L+b)+R(y)> (93)

Sfor yeR/2nZ. The remainder term R(y) is real-valued for ye{0,n} and
satisfies (90).

We omit the proof as it is analogous to the proof of Theorem 5.2.
Arguing as in Corollary 5.1, we then see that

Re A(y) = —% e 2L <;’4 sin(28°L + b) + O(e ~°L) + O(y)> 72

Hence, if a #0, then the periodic waves change their stability periodically
in L regardless of the sign of ¢ and M.
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5.2. Reversible Vector Fields

In many applications, the underlying partial differential equation is
invariant under the reflection x+— —x of the spatial variable x. In this
situation, a particularly interesting class of pulses consists of even standing
waves that have zero wave speed and are symmetric with respect to reflec-
tions of the x-variable. We refer to the theme issue [ 30] for examples and
more background.

The reflection symmetry of the PDE translates into a reversibility of the
associated ordinary differential equation that describes steady-states; see
Hypothesis (R1) below. Consider the ODE

u' = f(u), ue R* (94)

with f(0) =0, and assume that the ODE admits a homoclinic solution A(x)
with s(x) — 0 as |x| — oco. Again, the associated variational equation about
h(x) is given by

v'=f,(h(x)) v, xelR. (95)

We assume that (94) is reversible.

Hypothesis (R1). There is a linear involution #: R** — R** with #*=id
so that f anti-commutes with 2, that is, f(%u)= —%f(u) for every u e R*".
Furthermore, we assume that the fixed-point space Fix(#) of Z is n-dimen-
sional and that 4(0) € Fix(£).

Since /(0) € Fix(2), we have h( —x) = Zh(x), and the homoclinic orbit is
invariant as a set under %. Any orbit of (94) that is invariant as a set under
A is called symmetric or reversible.

We again assume non-degeneracy of the intersection of stable and
unstable manifolds. We emphasize that we do not need any parameters
since reversible homoclinic orbits in reversible systems are a robust
phenomenon. In addition, the long-wavelength periodic orbits that accom-
pany the homoclinic orbit /4(x) typically coexist with /(x); see [41] or
[30]. With respect to the underlying PDE, this means that the pulse as
well as the periodic waves are stationary and symmetric in Xx.

Hypothesis (R2). Assume that 4'(x) is the only bounded solution, up
to constant scalar multiples, of the variational equation (95).

The associated non-zero bounded solution of the adjoint variational
equation

w' = —f,(h(x))*w, xeR (96)
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is denoted by y(x). As before, choose a so that a<min{|Rev|;
vespec(f,(0,0))} <30/2. We then have the following existence result.

PropPoOSITION 5.2.  Assume reversibility (R1) and non-degeneracy (R2).
There are then positive constants C and 6 with the following property. For
every L>1/0, there is a unique periodic solution p;(x) of period 2L of (94)
such that

sup |pr(x)—h(x)| <o.

|x|<L
Furthermore, we have

lpL(L)] +Ij|u£L |9, (xX) — h(x)] < Ce—*E -

[Po(pr(—L) —h(—L)| +|Py(pr(L)—h(L))| < Ce ™,

Proof. The existence part has been established in [41]; note that their
existence condition

ThoyW*(0) ® Fix(2) = R*"
is satisfied on account of (R2). Indeed, if
vE Ty W*(0) @ Fix(2),

then v = Av e Ty, W"(0) by reversibility, and v is therefore the initial value
of a bounded solution of the variational equation. We shall show that
v=0. Since 2h'(0) = —h'(0), we have that 4'(0) ¢ Fix(Z#). Hence, we con-
clude from (R2) that v =0. Having established existence, the estimates (97)
are again a consequence of Theorem 4.1. |

Thus, it is the transverse intersection of W*(0) with Fix(£) that is
responsible for the structural stability of reversible homoclinic orbits.
Regarding the spectral stability of the periodic waves, we have the follow-
ing theorem.

THEOREM 5.4. Assume that the reversibility assumption (R1) and the
non-degeneracy hypothesis (R2) are met. There are positive constants C and
0 such that the boundary-value problem (16-17) for eigenvalues A with spatial
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Floquet exponent iy has a solution (A, y, v) for || <06, ye R/2rnZ and L>1/0
if, and only if,

0=2(cos(y) — D)XY(L), h'(=L)) — 4 [O (W(x), Bh'(x)) dx

+(e?”—1) R(4, y) + A R(4, ), (98)

where the remainder terms satisfy the estimates (87), and R and R are
real-valued whenever (4, e") is real.

Proof. It has been proved in [41, Lemma 4(ii)—(iii)] that Z*y(0) =
Y(0). Thus, Z*y(L)=y(—L). We also have #h'(L)= —h'(—L) since
h(x)=Rh( —x). Substituting these expressions together with the estimates
obtained in Proposition 5.2 into the expansion (18-19) that we derived in
Theorem 2.1 completes the proof of the theorem. ||

Note that the theorem shows that the spectrum is real to leading order.
We would expect this since reversibility and self-adjointness of the
linearized operator are related (though not the same). We again assume
that the eigenvalue 4 =0 is simple.

Hypothesis (R3). —§°° {Y(x), Bh'(x)) dx #0.

Note that the spectrum of f,(0) is symmetric with respect to reflections
across the imaginary axis. More precisely, it is invariant under multiplica-
tion with —1 which can be seen by exploiting the identity %f,(0)=
—1.,(0) # that is an immediate consequence of the reversibility assumption
(R1).

5.2.1. Real leading eigenvalues (saddle equilibria). First, we consider the
case that the eigenvalues of f,(0) that are closest to the imaginary axis are
real and simple. Recall that, by reversibility, the spectrum of f,(0) is sym-
metric with respect to the imaginary axis.

Hypothesis (R4). There is a simple real eigenvalue v* € spec( f,,(0)) such
that |Re v| > v" >0 for every vespec(f,(0)) with v# + v

Again, there are eigenvectors v, and w, of f,,(0) and £, (0)*, respectively,
belonging to the eigenvalue v* such that

h'(x)=e"*vy+ O(e™ +9%) as xX— —oo

. . (99)
Y(x)=e"""wo+ Oe ™" +x) as x— oo.

THEOREM 5.5. Assume that the reversibility assumption (R1) and the
non-degeneracy hypothesis (R2) are met, that the eigenvalue A =0 is simple
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(R3) and that the leading eigenvalues of f,(0) are simple and real (R4).
Under these conditions, there are positive constants C and 6 and a function
AMy) that is analytic in yeR/2rnZ such that the boundary-value problem
(16-17) has a solution (4, y, v) for || <9, ye R2nZ and L > 1/9 if, and only
if, A=Ay). Furthermore, we have the expansion

—2yur, <003 W0>

I +(e”—1)e " R(y)  (100)

AMy)=2(cos(y)—1)e

for yeR/2nZ. The remainder term R(y) is real-valued for ye{0,n} and
satisfies (90).

We omit the proofs of the theorem and the next corollary since they are
analogous to the proofs in Section 5.1.

COROLLARY 5.2. Assume that, in addition to the assumptions of
Theorem 5.5, {vy, woy #0. The circle of critical eigenvalues then has a
quadratic tangency at zero with the imaginary axis, and the periodic waves
are spectrally stable if, and only if, M vy, wyy > 0.

5.2.2. Non-real leading eigenvalues (saddle-focus equilibria). Finally, we
assume that the eigenvalues of £,(0) that are closest to the imaginary axis
are simple and complex conjugate.

Hypothesis (RS5). There is a pair of simple, complex conjugate eigen-
values v* +if" € spec( f,,(0)) such that |Re v| >v" >0 for every v e spec(f,(0))
with v# +v* +if" We assume that f* #0.

THEOREM 5.6. Assume that the hypotheses (R1)—(R3) and (RS) are met.
Under these conditions, there are positive constants C and 0 and a function
AMy) that is analytic in ye R/2nZ such that the boundary-value problem
(16—17) has a solution (4, y, v) for |A| <9, ye R2nZ and L > 1/o if, and only
if, .= A(y). Furthermore, we have the expansion

Ay) =2(cos(y) —1) e 2" :—4 sin(2B°L 4+ b) + (e? — 1) O(e @'+ L)
(101)
Sfor yeR/2nZ, where the remainder term R(y) is real-valued for ye {0, n}
and satisfies (90).

We omit its proof since it is analogous to the proof of Theorem 117. It
follows as in Section that, if a #0, then the periodic waves change their
stability periodically in L regardless of the sign of ¢ and M.
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6. APPLICATIONS

In this section, we apply the results on the stability of periodic wave
trains with large period from the previous section to the FitzHugh—
Nagumo equation and a fourth-order equation that models the propaga-
tion of signals in optical fibers with phase-sensitive amplifiers. Both equa-
tions support stable pulses, and we demonstrate that the accompanying
periodic waves are also spectrally stable.

To illustrate the kind of arguments that are needed to invoke our
stability results, we start with a straightforward application of these results
to the real Ginzburg-Landau equation.

6.1. The Real Ginzburg—Landau Equation

We consider the scalar parabolic equation
u,=u, +u(l—u?), ueR, xeR, t>0.

This equation is symmetric under reflections of x and in u. It admits two
stable front or layer solutions that are given explicitly by

u, (x)=tanh(x/\/2),  u_(x)=tanh(—x/,/2).

These two layer solutions are accompanied by a family of stationary
periodic patterns that are periodic solutions of the ODE

u' =v, v = —u(l —u?). (102)

The ODE is Hamiltonian with energy H(u, v) = 3(v*+u*— iu*). The two
layers form a heteroclinic cycle that connects the equilibrium (1, 0) with
(—1,0) and vice versa.

On account of Sturm—Liouville theory, the layer solutions are stable
waves of the PDE; the linearized operator 0., + 1 —3L¢2ir has a simple
eigenvalue at zero and the rest of its spectrum is strictly contained in the
open left half-plane.

The periodic waves that accompany the layers are unstable. This is most
easily seen by Sturm-Liouville theory. The eigenvalue problem is again a
Sturm-Liouville problem, and the eigenfunction to the zero-eigenvalue,
induced by translation, possesses two zeros. The leading eigenvalue is
therefore unstable, and its eigenfunction is strictly positive. We give an
independent proof that does not make use of the maximum principle and
that, in addition, gives more detailed information on the leading unstable
eigenvalue of the periodic waves.

Our goal is to apply Corollary 5.2 which is concerned with reversible
homoclinic orbits that have monotone tails. We argue that the signs of the



176 SANDSTEDE AND SCHEEL

constants that appear in the statements of Corollary 5.2 can be readily
calculated by merely inspecting the phase portrait to the ODE (102).

In order to view the two heteroclinic solutions as a homoclinic orbit, we
consider the quotient space of the phase space R? under the symmetry
(u, v)—~(—u, —v), and represent the quotient space by the upper half-
plane. Thus, the homoclinic orbit is represented by the upper layer solution
h(x)=(uy(x),u' (x)). It is not hard to see that, in the reduced phase
space, we still detect all possible eigenvalues A with Floquet exponents iy.
In any case, we shall see that there is a circle of unstable eigenvalues.

The bounded solution of the adjoint equation is given by

Y(x)=VH(u, (x),u', (%)) = (/ (x), u", (x)* = (—u" (x), 0/, (x)).

Also, the matrix B that indicates the type of the PDE is given by

#=(31 o)

so that

Therefore,

M=[" ) By de=[" (u,(x)) dx>0.

— o0 — o0

On the other hand, with this choice of ¥/(x), we have that vy= —w, in
Corollary 5.2. Indeed, for x — oo, the adjoint solution (x) converges to
the part of the unstable manifold of (1, 0) that is not included in the
heteroclinic cycle. We conclude that M<wv,, wy,> <0 and, by Corollary 5.2,
the periodic waves are unstable.

The most unstable eigenvalue corresponds to y =z. On account of the
expansion (21) in Theorem 2.1, the associated eigenfunction v,(x) is a con-
catenation of u’, (x) and —u’_(x), and both of these functions are positive.
Thus, the eigenfunction v,(x) that represents the most unstable mode is
positive, at least to leading order. Physically, the resulting instability
manifests itself in the following fashion: Upon adding a small constant
positive multiple of v, (x) to the periodic pattern, the layers u_ (x) move to
the left, while the layers u_(x) move to the right. Therefore, as the
instability develops, the distance between adjacent layers u, and u_
increases, while the distance between adjacent layers #_ and u_ decreases.
Adding a negative multiple of v, (x) has the opposite effect. In any case, the
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resulting instability is created by attracting and repelling forces between
adjacent layers. That is in accordance with results on the interaction
between finitely many layers; see [4, 10] and, for a more general theory,
[35].

6.2. The FitzHugh—Nagumo Equation
The FitzHugh—-Nagumo equation is given by

U=ty + flu)—w
4 (103)
w,=¢&(u—yw),

where xeR, f(u)=u(l—u)(u—a) and ae(0,%). This equation is a
simplification of the Hodgkin-Huxley equation that models the propagation
of impulses in nerve axons. We are interested in travelling waves
(u, w)(x,t)=(u, w)(x+ct). In the new variables (&, )= (x+ct,t), the
FitzHugh—-Nagumo equation (103) takes the form

Uy=Uge—cCUe+ flu)—w

(104)
W, = —cwe+e(u—yw).
Waves that travel with speed ¢ are then solutions of the ODE
U=FU,c), U=(u,v, w), (105)

where '=d/d¢ and F(u, v, w, ¢) = (v, cv — f(u) +w, (u—yw)). It has been
shown in [14] that (105) exhibits a homoclinic solution with positive
speed to the equilibrium U = (u, v, w) =0. We refer to this homoclinic orbit
as the fast pulse.

THEOREM 21. Fix a in the interval (0,3). There exists a number
&, = &y(a) with the following property. For every ¢ with 0 <e<e,, there is
an L,=L,(e) so that the fast pulse to the FitzHugh—-Nagumo system is
accompanied by periodic wave trains with period 2L for any L> L, and all
these wave trains are spectrally stable.

Note that the minimal period L (¢) permitted in the above theorem will
tend to infinity as ¢ tends to zero. In other words, our approach is valid
only in the following limit: first, fix ¢ > 0 and consider the fast pulse for that
value of ¢; then consider the periodic wave trains that accompany the fast
pulse for sufficiently large periods L, =L (¢) where L, (e) = oo as ¢ = 0.
Eszter [8] investigated the stability of periodic wave trains to the
FitzHugh—Nagumo system in a different limit: he first fixed the period L of
a singular spatially-periodic wave train and then varied ¢ > 0 near zero with
& < é&,(L); the maximal allowed value ¢,(L) will tend to zero as the period L
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tends to infinity. In this sense, his and our results are complementary: there
is a region in parameter space in which neither his nor our results apply.

Proof. 1t has been proved in [ 17, 42] that the fast pulse is stable. It
therefore suffices to calculate the spectrum of the periodic waves near A =0.

Linearized stability of a wave (u, w) of (104) is determined by the spec-
trum of the linear operator

L(i, W)=<

ﬁéé—cﬁi-i-fu(u)ﬁ—ﬂ/). (106)

—cWe + (il — pi)

In particular, eigenvalues 4 with corresponding eigenfunction (i, w) of &
are given by bounded solutions of

00 0
10 0

V'=(Fy(Uc)+4iB)V,  B= , (107)
1
00 —-
Cc

where F, is evaluated at the fast pulse 4(&) = (i, v, w)(£). In the following,
we collect various properties of (105) and (107) that can be found in the
literature [ 17, 42].

The spectrum of the linearization of (105) about the equilibrium U=0
in the relevant parameter regime is given by three simple eigenvalues
v <vi<0<y® with v">|v®|. Thus, (G4) is met for the time-reversed
system. Note also that (G1) is automatically satisfied since the unstable
manifold of (105) is one-dimensional. Furthermore, it follows from [6,
Chapter 3.8] that there are eigenvectors V" and V*® of F (0, c) to the
eigenvalues v* and v, respectively, as well as eigenvectors W*" and W* to
F,(0, ¢)* such that

h(E) _{Vuevmo(e(”s“”f), & o
e+ O(e™ ), > —©

sy = [T OE ), e
W4 O(e (P96, - —oo,

where /(&) is the bounded solution to the adjoint variational equation. We
choose (&) such that { V™, W*"» = 1. With this choice, it follows from [ 42,
(2.18-2.19)] and [ 34, (5.7-5.8)] that

M=[" ), B (@) dé=|

— o0

(&), Fe(h(&), ¢)) d&>0.

(o)

[ee)
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In particular, taking u = ¢, we see that the Melnikov condition (G2) is met
so that the pulse unfolds transversely with respect to the wave speed c¢. In
addition, Hypothesis (G3) is met, that is, zero is a simple eigenvalue of the
PDE linearization about the fast pulse. Finally, it has been demonstrated
in [20, Proposition 6] that the fast pulse is orientable. Given that
VY, W*y =1, orientability is equivalent to

VS, ey >0.
Therefore, we get
(&) =v Ve +0(e™ ¢
and
CY(—=L), (L)Y =v{ Vs, W) e L+ O(e®—9 L),

Since v° <0, it follows from (89), using the proof of Theorem 5.2, that the
periodic waves that accompany the fast pulse are stable. ||

6.3. The PSA Equation

As another application, we consider a fourth-order equation that arises
when studying propagating pulses in optical fibers. It has been proposed in
[22] to utilize periodically spaced phase-sensitive amplifiers to compensate
for the attenuation of pulses inherent to such fibers. Each such amplifier
exhibits an associated reference phase. The part of the signal in phase with
this reference phase is amplified, while the out-of-phase component is
attenuated; see again [22] for the details. In the last reference, it has also
been shown that the dynamics of the in-phase component U of the pulse
amplitude under the influence of phase-sensitive amplifiers is governed by
the fourth-order equation

CLCN(A VAT L
ot 4 ox* Iv/ 2) 0x?
tanh I/ oUN* [k s s
+3<2— = >U<ax> +<4—Aa> U—xkUP+US = 0. (108)

Here, 1€ R measures the distance along the fiber, and xe R is the time
variable in a frame moving with the group velocity of light in the optical
fiber. Furthermore, x is related to the reference phase associated with each
amplifier. The parameter Ao« measures the amount of over-amplification,
that is, the amount of energy remaining after compensating for the loss
in the fiber. Finally, I/ is the product of the linear loss rate /" in the fiber
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and the distance / of the amplifiers. For /=0, (108) exhibits the explicit

pulse
Q(x):\/ic+2\/£ sech(\/ic—i-Z\/ﬂx)

that exists for 0 < dx < x?/4 for each fixed x > 0.

It has been demonstrated in [ 23] that this pulse is stable with respect to
(108) provided Aa is sufficiently close to zero. In [2], it has been proved
that the pulse persists for /7 >0 small, and that the resulting pulses are
stable for every fixed da with 0 < dx <x?/4 and every I/ >0 sufficiently
small. Furthermore, in [36], the existence of stable multi-hump pulses has
been demonstrated. Here, we prove that the periodic waves that accom-
pany the pulse for small 7/ >0 are also stable.

THEOREM 6.2. Fix Ao with 0 < Aa<1c*/4. The periodic waves P (x) that
accompany the pulse Q(x) are spectrally stable for every I't >0 sufficiently
small and L > L, sufficiently large where L, depends upon I'¢.

Note that the PSA equation exhibits multi-bump pulses for 77 >0 that
resemble equally spaced concatenated copies of the primary pulse Q. These
multi-bump pulses are unstable; see [ 36]. One would expect that the peri-
odic waves that accompany the pulse Q would then also be unstable. Note,
however, that Theorem 6.2 is only valid for sufficiently large periods L. The
multi-bump pulses that bifurcate at I/ =0 have distances at />0 that
are smaller than L,. Hence, we expect that the periodic waves destabilize
once their period gets too small.

Proof. We write (108) as

oU
5, He)=o.

The linearization about a wave U is then given by #(U)= ®,(U). Note,
however, that the wave U is stable if, and only if, the spectrum of Z(U)
is in the right half-plane.

The steady-state equation @(U)=0 associated with (108) is a fourth-
order ODE that can be written in the form

u' = f(u), (109)

where u=(U, U,, U,,, U,,,.). Furthermore, the eigenvalue problem
associated with linearized operator Z(U) about a wave wu=

v'=(f,(u)+ AB) v, (110)
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where

— o O O
S O O O
S O O O
S O O O

Let h=(0, O, Qx> Orxx) be the homoclinic orbit of (109) that
corresponds to the pulse Q of (108). Equation (109) admits a reversibility
operator #. It has been proved in [2, 36] that (109) and the pulse Ai(x)
satisfy the Hypotheses (R1) and (R2). For 7'/ >0, (108) satisfies (R4); see
[36]. Finally, it follows from the arguments given in [ 36, p. 197] that

{0y, wo)y >0,

while the calculations in [ 36, p. 199] demonstrate that
M= fo (), B (x)) dx <0.

Therefore, (R3) is met, and we conclude from Theorem 5.5 that the circle
of eigenvalues to the periodic waves that accompany the pulse / is con-
tained in the right half-plane. In this context, that means that the periodic
waves are stable; see above. ||

7. DISCUSSION

We have presented a reduction method that allows us to explore the
stability and instability properties of long-wavelength periodic patterns in
a systematic fashion. The reduction results in a bifurcation equation for the
eigenvalue /4 and the spatial Floquet exponent iy; in addition, we have
derived the leading-order terms of the bifurcation equation. Utilizing these
results, the critical spectrum of long-wavelength periodic waves can be
calculated under quite minimal assumptions on the underlying PDE.

Our main conclusions regarding the spectral stability of spatially peri-
odic patterns that accompany a stable pulse can be summarized as follows.
In general, the precise location of the critical spectrum near zero depends
crucially on the decay properties of the tails of the pulse. If the tails decay
in an oscillatory fashion, then locking occurs: The periodic patterns that
exist for sufficiently large periods 2L stabilize and destabilize alternately
with increasing period 2L. This process of critical spectrum crossing the
imaginary axis forth and back occurs periodically in 2L, and its frequency
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is given by the frequency of the oscillations in the tails of the pulse. If, on
the other hand, the tails of the pulse decay monotonically, then the peri-
odic patterns are either all stable or else all unstable regardless of their
period 2L. Which of these two cases occurs depends on the sign of a certain
coefficient in the expansion of the bifurcation equation. This coefficient can
be calculated using spectral information for the primary pulse (for instance,
from the Evans function associated with the pulse) and a geometric quan-
tity that describes whether a certain bundle about the homoclinic orbit of
the steady-state ODE is orientable or not.

An interesting aspect of the results in Section 5 is that, in every case con-
sidered there, spectral stability of a periodic pattern with period 2L on the
real line is equivalent to spectral stability of the same pattern considered on
an interval of length 4L, that is twice the period, with periodic boundary
conditions. Indeed, in any of the cases studied in Section 5, the Floquet
exponent with y =7 decides upon stability. The resulting eigenfunction is
periodic with period 4L and is therefore visible once the underlying PDE
is considered on an interval of length 4L with periodic boundary condi-
tions.

In the remaining part of this section, we shall explain a number of
generalizations of our results and comment on some open problems.

7.1. Elliptic PDEs on Cylinders with One Unbounded Direction

Consider the parabolic equation
U=U,+4U+ f(U), (x, y)eRxQ (111)

on an unbounded cylinder R x Q, where Q < R” is a bounded domain with
smooth boundary, and 4 is the Laplace operator in the y-variable. We
impose appropriate boundary conditions such as Neumann or Dirichlet
conditions on 02, and assume that f is analytic. In a moving frame, travel-
ling waves to (111) satisfy the elliptic problem

Ups + AU+ cU-+ f(U)=0, (& y)eRx Q. (112)

Suppose that (112) exhibits a pulse solution /(&, y). In [25, Corollary 2.6],
we demonstrated that, under appropriate assumptions, the pulse / is again
accompanied by periodic wave trains of (112). Their spectral stability
properties with respect to (111) are then determined by Theorem 2.2.
Indeed, as emphasized in Remark 3.1, we utilized only exponential
dichotomies for the proof of our results. In [29], we had demonstrated
that elliptic problems such as (112) admit exponential dichotomies. We
refer to [38] for more details.
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7.2. Modulated Pulses

We were motivated to investigate the stability of periodic wave trains
when we studied Hopf bifurcations of pulses in reaction-diffusion systems

U=Us;+cU:+FUyp), EeR (113)

Suppose that 4(&) is a pulse to (113) that experiences a super-critical Hopf
bifurcation at 4 =0. Thus, for u > 0, there exists a time-periodic modulated
pulse i(¢, t) to (147), possibly for a slightly different wave speed ¢. In par-
ticular, there is a 7> 0 such that (&, 1+ T)=h(&, t) for all . Since we
assumed that the Hopf bifurcation is super-critical, the solution A(¢, ¢) is
stable with respect to (147). Note that the pulse 4(&) is accompanied by
L-periodic wave trains p, (&) that satisfy p,(E+ L) = p (&) for all L. It is
then natural to expect that the modulated pulses A(¢&, f) that bifurcate at
the Hopf-bifurcation point are accompanied by modulated periodic waves
pr(&, t) that satisfy

pr(C+ L 0)=pr (&) =pr(1+T)

for all (&, ¢) with a suitably chosen ¢ =c¢(L). Here, T is close to the Hopf
period of the pulse, while L > L, for some sufficiently large L,,. Given that
these modulated periodic waves exist, one would then like to investigate
their stability. The existence and stability analysis of these waves is carried
out in [ 38] utilizing the results presented here. Note that such an analysis
requires the investigation of the time-7" map of (113) about a solution
p(&, t) that is periodic in space and time with periods L and T, respec-
tively. It turns out, however, that, from a technical viewpoint, the spectral
analysis of the time-7 map associated with a modulated wave is quite
similar to the spectral analysis for pulses in cylinders; we refer to the pre-
vious section and to [38] for more details.

We remark that a similar issue arises when a periodic wave train /1, (£) is con-
sidered in the original coordinate x =& + ct. The resulting spatially—periodic
wave train /1, (x — ct) is periodic in time with period T, say. The spectrum of the
linearization of the time-7 map can again be computed from the spectrum of
the linearization in the moving frame & = x — ct; we refer to [ 38, 377, and in the
particular to [ 37, Prop. 1 and Section 5.1 ], for more details.

7.3. Exponential Weights

Suppose that . is the linearization about a wave train with spatial
period 2L. In addition to computing the spectrum of . in the space of
bounded continuous functions, we may also compute its spectrum in the
exponentially weighted space %, with norm

lullg, = sup e u(&).
EeR
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It follows from Floquet theory that 4 is in the spectrum of . posed on the
space %, if, and only if, the boundary-value problem (9) has a non-trivial
solution for some y with Im y =#/2L. By analyticity of the bifurcation func-
tion E, see Theorem 2.1, the critical eigenvalues of % can be computed by
substituting y with Im y =#/2L into the expression for £ in Theorem 2.1. In
particular, the radius of the circle of critical eigenvalues is changed to
e~ "2L if the pulse decays faster at the right than at the left tail; see (93).
Note that # positive is then necessary for spectral stability. In the reversible
case, the wave trains are always unstable in exponentially weighted norms
since |cos(y)| > 1 for Im y #0.

7.4. Homoclinic Bifurcations and N-periodic Waves

As pointed out in the introduction, our results demonstrate that periodic
waves with large period typically destabilize at homoclinic bifurcation
points. This is illustrated in Theorem 5.3: The periodic waves p,(x) that
accompany a pulse 4(x) to a saddle-focus destabilize and stabilize peri-
odically in L. It is known that these periodic solutions undergo many
saddle-node and period-doubling bifurcations as L increases. These are
induced by the horseshoes that accompany the pulse.

At certain homoclinic bifurcation points, N-pulses are created that
resemble many concatenated copies of the primary pulse /(x). Denote the
distances between consecutive copies of A(x) that appear in the multi-bump
orbit by 2L;. These multi-bump pulses are then also accompanied by peri-
odic waves. Their spectrum is much harder to calculate since every N-pulse
has N eigenvalues near zero instead of one simple eigenvalue at zero. In
[33], a method had been presented that can be used to calculate these
critical eigenvalues near an N-pulse. Augmented with the results in this
article, it is possible to compute the spectrum of the N-periodic waves that
bifurcate near a homoclinic bifurcation point by combining and adapting
the results given in [33] and here appropriately.

Note that the spectrum about a periodic pattern that accompanies, for
instance, a 2-pulse is expected to behave in a quite peculiar way. Typically,
such periodic waves can be parametrized by two distances L, and L,. As
the periodic wave approaches the 2-pulse, one of these numbers, say L,,
approaches infinity. On the other hand, as L, approaches L, the periodic
wave disappears in a period-doubling bifurcation. We observe that, in the
limit L, — oo, the critical spectrum of the periodic wave consists of two
circles that are attached to the two critical discrete eigenvalues of the
2-pulse. In the limit L, — L, however, we recover the spectrum of the long-
wavelength periodic wave that accompanies the primary pulse; see, for
instance, [11]. Thus, while L, varies between L, and oo, the aforemen-
tioned two critical circles somehow have to merge.
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7.5. Generalizations and Open Problems

It is possible to calculate the algebraic multiplicity of an eigenvalue 4
associated with a periodic wave train. In fact, the algebraic multiplicity is
equal to the multiplicity of 4 as a zero of the function E(4, y). This is a con-
sequence of the results in [ 11] and [ 33, Lemma 4.27. In Section 2, we had
assumed that the geometric and the algebraic multiplicity of the eigenvalue
A=0 of the pulse are equal. We emphasize that it is possible, and in fact
not difficult, to extend our results to the case where the algebraic multi-
plicity is larger than the geometric multiplicity.

Localized patterns of a parabolic equation

u,=Au+ f(u), xeR"

are still accompanied by a family of long-wavelength periodic patterns
[25]. Periodicity, however, can be imposed successively in any of the n
spatial directions. If the primary pattern is not rotationally symmetric, the
stability of the accompanying periodic patterns might depend on the direc-
tion of periodicity. A detailed investigation of possible phenomena would
be interesting and seems to be feasible. Note that Floquet theory is well
developed for elliptic problems on R” that are periodic on a lattice. The
relevant results make use of the so-called Bloch decomposition of L?*(R");
see [21, 26, 27].

Another aspect of the stability problem is the relation between linear and
nonlinear stability. In dissipative equations, linear stability of a pulse
implies nonlinear stability with exponential rate and asymptotic phase.
Nonlinear stability of periodic patterns, however, is a much more delicate
question. Stability with respect to localized perturbations that exclude
phase shifts has recently been established in a fairly general setting using
renormalization group theory [7, 40]. The convergence towards the peri-
odic pattern is much slower: Perturbations typically decay like ¢~/
instead of exponentially. It is an interesting issue that, in the limit of infinite
wavelength, this diffusive aspect of nonlinear stability seems to become less
important and we expect that the exponential decay associated with the
pulse takes over as the wavelength approaches infinity even though, for any
finite wavelength, the approach should be polynomial.

A related issue is the interaction of individual pulses in a spatially-
periodic wave train with long wavelength. Consider

U,:U§¢+CU5+F(U), fER
on the space X =%° (R, R"), and focus on a stable pulse solution that is
accompanied by spatially-periodic wave trains with long wavelength. As
a consequence of [ 15, Theorems 6.1.2 and 6.2.1], any such wave train



186 SANDSTEDE AND SCHEEL

possesses an infinite-dimensional, Lipschitz-continuous local center manifold
associated with the critical spectrum that we computed in this article. The
approach towards this center manifold is exponential; the linear eigen-
modes tangent to the center manifold at the periodic wave train describe
the interaction of the individual pulses in the wave train on an infinitesimal
level. The nonlinear dynamics on the center manifold is, however, quite
limited as the supremum-norm on X is extremely restrictive as far as
possible perturbations are concerned. It would be interesting to explore
whether there is a global invariant manifold that contains all periodic wave
trains of long wavelength and that could be used to describe the complete
dynamics of the pulses in these wave trains.

Finally, we remark that our results as well as those of Gardner apply
only near isolated eigenvalues with finite multiplicity in the spectrum of the
homoclinic orbit. The spectrum of the linearization about a pulse contains
also essential spectrum. The fate of the essential spectrum under truncation
to periodic (and other) boundary conditions has recently been determined
in [39].
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