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Absolute versus convective instability of spiral waves
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Absolute and convective instabilities of spirals are investigated using the continuous and the so-called
absolute spectrum. It is shown that the nature of transport, induced by an absolute instability, is determined by
spectral data of the asymptotic wave trains. The results are applied to core and far-field breakup of spiral waves
in excitable and oscillatory media.

PACS number~s!: 82.40.Ck, 47.54.1r, 05.45.2a
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I. INTRODUCTION

Spiral waves have been observed in various biologi
chemical, and physical systems@1#, for instance, in the
Belousov-Zhabotinsky reaction, during fibrillations in ca
diac tissue, and in the oxidation of carbon-monoxide
platinum surfaces. They have also been found in numer
simulations of reaction-diffusion systems and comp
Ginzburg-Landau equations on planar domains. Spiral wa
can destabilize in many different ways. For instance, th
may begin to meander or to drift, a scenario that has b
attributed to a Hopf instability@2#. Alternatively, transverse
instabilities may occur@3# that are characterized by a dege
erate dispersion relation between asymptotic wavelength
wave speed. Another common instability is the breakup
spiral waves, which comes in two ‘‘flavors’’: either the co
@4# or the far field@5,6# of the spiral breaks up into a turbu
lent region with complex spatiotemporal behavior. Far-fie
breakup of spiral waves was observed in experiments@5#.

In this paper, we concentrate on a linear stability analy
of spiral waves to link spectral properties of spirals to t
direction of transport that they induce: Suppose that we
a small localized humplike perturbation to the spiral wa
and monitor the time evolution of the corresponding so
tion. If the spiral wave is unstable, the localized perturbat
will certainly grow: We say that the spiral transports towa
the core if the center of mass of the perturbation, i.e.,
position of its peak, moves toward the core. If the center
mass of the perturbation moves away from the core tow
the boundary of the domain, we say that the spiral transp
toward the boundary. This notion of transport is made m
precise below by using exponential weights. To relate sp
tral properties of the spiral waves and the direction of tra
port, we investigate the spectra of spiral waves on the pl
and on large bounded disks. First, for spiral waves on
plane, we demonstrate that the continuous spectrum of
spiral can be computed from the spectrum of the asympt
wave trains, but that the two spectra differ by translatio
along the imaginary axis. The group velocities of spirals a
wave trains, computed in the laboratory frame, are the sa
Next we consider spiral waves on large but bounded dis
On a linear level, the temporal evolution of localized pert
bations is then determined by the eigenmodes that are a
PRE 621063-651X/2000/62~6!/7708~7!/$15.00
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ciated with the continuous spectrum, at least as long as
localized perturbation stays away from the boundary; inde
the localized perturbation is then not affected by the bou
ary conditions, and it therefore behaves in the same wa
on the entire plane. Alternatively, the temporal behavior
localized perturbations can be described in terms of the
solute spectrum, introduced in Ref.@12#, which is related to
the spectrum of the spiral wave on large disks. This la
description is also valid if the localized perturbation a
proaches the boundary of the domain. The rightmost poin
the absolute spectrum is typically given by a double root
the linear dispersion relation. We characterize the entire
solute spectrum, and not only its rightmost point, and inv
tigate the spatial shape of eigenfunctions in the abso
spectrum using exponential weights that break the transla
symmetry of the plane. As a consequence, the direction
transport, induced by absolute instabilities, can be predic
from spectral data of the asymptotic wave trains. Our a
lytical results also provide means of computing continuo
and absolute spectra easily from the asymptotic wave tr
using boundary-value problem solvers such asAUTO97 @7#.
We emphasize that our approach is based on a linear stab
analysis; a sensitive nonlinearity may result in a quite diff
ent behavior.

Part of our motivation comes from attempting to unde
stand the nature of spiral-wave breakup in excitable and
cillatory media. It appears from our numerical simulatio
that the difference between core and far-field breakup can
be explained solely by the direction of transport induced
absolute instabilities. Instead the group velocities of the c
tinuous spectrum seem to play an important role.

A second consequence of the approach adopted he
that it allows us to predict the superstructures of meande
and drifting spiral waves. The shape of the superstructure
closely related to eigenmodes in the continuous spectr
This issue was explored in Ref.@8#.

Consider a reaction-diffusion model

ut5DDu1 f ~u!, uPRm, xPR2 ~1!

on the plane. Archimedean spiral waves are solutions to
~1! that rotate rigidly with a constant angular velocityc, and
7708 ©2000 The American Physical Society
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PRE 62 7709ABSOLUTE VERSUS CONVECTIVE INSTABILITY OF . . .
that are asymptotically periodic along rays in the plane. I
corotating coordinate frame, Eq.~1! is given by

ut5DDu1cuw1 f ~u!, xPR2,

where (r ,w) denote polar coordinates. A spiral wave is th
a stationary solution given byu* (r ,w) with u* (r ,w)
→u`(kr 1w) as r→` for some 2p-periodic function
u`(c). The functionu`(c) is a stationary wave-train solu
tion to

ut5Dk2ucc1cuc1 f ~u!, cPR. ~2!

The asymptotic wave numberk and the wave speedc are
related via a nonlinear dispersion relation.

II. SPECTRA OF ASYMPTOTIC WAVE TRAINS

We begin by analyzing the spectrum of the asympto
wave trainsu`(c) to Eq. ~2!. The eigenvalue problem i
given by

Dk2vcc1cvc1 f 8„u`~c!…v5l̃v, cPR. ~3!

It follows from Floquet theory thatl̃PC is an eigenvalue of
the wave train if, and only if, the system

Dk2vcc1cvc1 f 8„u`~c!…v5l̃v, 0,c,2p,
~4!

~v,vc!~2p!5e2p i g̃~v,vc!~0!

has a solutionv for someg̃PR. Eigenvalues come in curve
l̃5l̃( i g̃); note that one of these curves containsl̃50, with
g̃50 andv(c)5u8̀ (c).

Upon varying parameters, the wave train might desta
lize in an Eckhaus instability. Eckhaus instabilities are eit
of convective nature or are absolute instabilities. The diff
ence between these two kinds of instability is that, fo
convective instability, perturbations grow but are also co
vected away; in other words, the perturbation actually dec
locally, at least eventually for large values of time, at eve
fixed point in the domain, while the position of the growin
maxima of the perturbation travels toward infinity. In co
trast, for absolute instabilities, perturbations grow eve
where, i.e., at every given point in the domain. Previous
absolute instabilities have been located by seeking cer
double roots of the linear dispersion relationl̃( ñ) of Eq. ~3!
that relates spatial wavenumbersñPC to temporal decay or
growth ratesl̃PC; see Refs.@9,10#. Here we propose a dif
ferent way of computing absolute instabilities that, in ad
tion, gives more information about their nature. The id
which goes back to Ref.@11#, is to use exponential weight
exp(2ãc) to measure transport. Thus we solve the lineariz
equation

v t5Dk2vcc1cvc1 f 8„u`~c!…v,

and monitor iexp(2ãc)v(t,c)i instead of iv(t,c)i as t
→`. For ã.0, this allows solutions to grow exponential
with rate up to ã as c→`; in other words, it stabilizes
eigenmodes that correspond to transport toward1`. Simi-
larly, ã,0 stabilizes eigenmodes that correspond to tra
a
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port toward2`. We shall compute the spectrum using t
exponential weight exp(2ãc). It follows that l̃ is in the
spectrum of the wave train, computed with weight e
(2ãc), if there is a solutionv(c) to Eq. ~3! such that exp
(2ãc)v(c) is bounded, but does not decay. Hence we
that l̃ is in the continuous spectrum, computed with t
weight exp(2ãc), if and only if

Dk2vcc1cvc1 f 8„u`~c!…v5l̃v, 0,c,2p,
~5!

~v,vc!~2p!5e2p~ ã1 i g̃ !~v,vc!~0!,

has a solutionv for someg̃PR. The curvesl̃(ã1 i g̃), com-
puted for fixedã, are typically shifted with respect to th
spectruml̃( i g̃) that we computed without weights. If th
weighted spectrum is shifted to the left in the complex pla
then the sign of the corresponding value ofã determines
whether transport occurs to the right (ã.0) or to the left
(ã,0). We emphasize that the criterion@9,10# that uses
double roots of the linear dispersion relationl̃(ã1 i g̃) is
different from our criterion that employs exponenti
weights; for instance, if counterpropagating eigenmodes
present, so that transport occurs simultaneously toward1`
and2`, then exponential weights destabilize@12#, while the
criterion @9,10# still stabilizes.

Both systems~4! and~5! can be solved numerically usin
a continuation code for boundary-value problems such
AUTO97 ~see Ref.@7# for this package!. A starting solution is
given by l̃50, g̃50 andv(c)5u8̀ (c); afterward, this so-
lution is continued in the wave numberg̃. The advantage of
this approach is that it gives the continuous spectrum
terms of curvesl̃( i g̃) that are parameterized by the wav
numberg̃.

III. CONTINUOUS SPECTRA
OF PLANAR SPIRAL WAVES

In the next step, we consider the spectrum of the sp
wave u* (r ,w). The eigenvalue problem for planar spir
waves reads

DD r ,wv1cvw1 f 8„u* ~r ,w!…v5lv. ~6!

We shall ignore isolated eigenvalues that belong to the p
spectrum; instabilities caused by point eigenvalues lead
meandering or drifting waves in excitable media@2#, or to an
unstable tip motion in oscillatory media@13#. Instead, we
focus on the continuous spectrum that is responsible
spiral-wave breakup. Using the results in Ref.@14#, it turns
out that the boundary of the continuous spectrum depe
only on the limiting equation forr→`. Using D r ,w5] rr
1r 21] r1r 22]ww , we have thatl is in the boundary of the
continuous spectrum if, and only if,

Dv rr 1cvw1 f 8„u`~kr 1w!…v5lv

has a solutionv(r ,w) for (r ,w)PR13@0,2p# that is
bounded but does not decay asr→`. Transforming (r ,w)
→(r ,c)5(r ,kr 1w), we seek bounded solutions to

D~] r1k]c!2v1cvc1 f 8„u`~c!…v5lv.
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7710 PRE 62BJÖRN SANDSTEDE AND ARND SCHEEL
Using Fourier transform, we see that any bounded solutio
of the form v(r ,c)5exp(igr)w(c) for somegPR, where
w(c) is 2p periodic in c. Writing w(c)5exp(2igc/
k)V(c), we conclude thatl is in the boundary of the continu
ous spectrum if, and only if,V(c) satisfies

Dk2Vcc1cVc1 f 8„u`~c!…V5S l1
igc

k DV,

~7!
~V,Vc!~2p!5e2p ig/k~V,Vc!~0!

for somegPR, where 0,c,2p. We are now in a position
to compare the boundary of the continuous spectrum of
planar spiral waveu* (r ,w) with the continuous spectrum o
the associated asymptotic wave trainu`(c). Comparing
Eqs.~4! and~7!, we see that the boundary of the continuo
spectrum of the spiral wave is parametrized by

l5l̃~ i g̃ !2 ic~ g̃1 l !, g5k~g̃1 l !, ~8!

where l PZ is arbitrary, andl̃( i g̃) denotes the spectrum o
the wave train computed according to Eq.~4!. Note that the
spectra of the spiral wave and the asymptotic wave train
not quite the same, even though their maximal real p
coincide, so that the spiral wave destabilizes at the sa
moment as the associated wave train. We shall see be
where the additional term in Eq.~8! comes from.

IV. CONVECTIVE SPECTRA OF PLANAR SPIRAL WAVES

The continuous spectrum computed above gives infor
tion about the stability versus instability of the spiral wa
considered on the unbounded plane. In the next step,
explore whether small perturbations that are added to
spiral wave are convected toward or away from the co
This information cannot be gleaned from the location of
spectrum in Eq.~8! alone, since convection is not related
overall decay or growth as measured by the continuous s
trum but to local decay or growth. As before, we compu
the spectrum using exponential weights that penalize pe
bations that are convected in the radial direction. Hence
shall solve

v t5DD r ,wv1cvw1 f 8„u* ~r ,w!…v,

and monitoriexp(2ar)v(t,r,w)i as t→`. For a.0, this al-
lows solutions to grow exponentially asr→`; in other
words, eigenmodes that correspond to transport away f
the core are stabilized. Similarly,a,0 stabilizes eigenmode
that correspond to transport toward the core. Our result st
thatl is in the spectrum of the planar spiral wave, compu
with weight exp(2ar), if there is a solutionv(r ,w) to Eq.~6!
such that exp(2ar)v(r,w) is bounded. Arguing as above, w
see thatl is in the boundary of the continuous spectrum
the spiral wave, computed with weight exp(2ar) if, and only
if,

Dk2Vcc1cVc1 f 8„u`~c!…V5S l1
c

k
~a1 ig! DV,

~9!
~V,Vc!~2p!5e2p~a1 ig!/k~V,Vc!~0!
is

e

s

re
ts
e
w

a-

e
e
.

e

c-

r-
e

m

es
d

f

has a solutionV(c) for somegPR, where 0,c,2p. The
associated eigenmode of Eq.~6! is then of the form

e2~a1 ig!w/kV~kr 1w!

as r→`; note that this eigenmode grows, or decays, ex
nentially with ratea as r→`.

It remains to show that the spectrum of the spiral wa
computed with weight exp(2ar), can also be calculated us
ing the asymptotic wave trains. Upon inspecting Eqs.~5! and
~9!, it follows that the boundary of the weighted spectrum
the spiral wave is given by

l5l̃S a

k
1 i g̃ D2

ac

k
2 ic~ g̃1 l !,

where l PZ is arbitrary, and l̃(a/k1 i g̃) denotes the
weighted spectrum of the wave train computed according
Eq. ~5! with ã5a/k. The factorc/k is positive whenever the
wave is spiraling outwardly; thus, for outwardly spiralin
waves, the termac/k stabilizes the wave fora.0 which
corresponds to transport away from the core. This additio
transport is created by compensating for the moving fram
which we computed the weighted spectrum of the asympt
wave train; indeed, in Eq.~5!, we imposed the weigh
exp(2ãc) on perturbations in a frame that moves with spe
c. To compensate for the moving frame, we should comp
the weighted spectrum of the wave trains using the tim
dependent weight exp„2ã(c1ct)… that corresponds to the
exponential weight exp(2ãf) in the laboratory framef
5c1ct. The effect on the weighted spectrum is thatl̃ is
replaced byl̃2ãc, i.e., byl̃2ac/k. In addition, this analy-
sis establishes that the behavior of one-dimensional w
trains that are generated by Dirichlet sources precisely c
tures the convective behavior of spiral waves~provided the
wavelength selected by the Dirichlet source is the same
that selected by the spiral wave—this, however, is typica
not the case!. Hence, our analysis corroborates the conc
sions in Ref.@6#, where direct numerical simulations of suc
wave trains were used.

In summary, localized perturbations added to the spira
its far field can be transported toward the core or toward
boundary of the domain. These two cases can be dis
guished, at least on a linear level, by computing the spect
of the asymptotic wave trains using appropriate exponen
weights: If certain unstable modes stabilize for positive ra
a.0, then the spiral transports toward the boundary. If
modes stabilize with a negative weighta,0, localized per-
turbations added to spiral waves are transported toward
core. At the onset of instability, stability properties depe
on the derivative2d Rel/da52d Im l/dg, which is the
group velocity of the asymptotic wave trains, computed
the laboratory frame.

Before we address the relevance of our results for spi
on large but bounded disks, we report on transport of~mar-
ginally! stable spiral waves on the entire plane. Suppose
the asymptotic wave trains are marginally stable, so that
curve l̃( i g̃) that containsl50 is of the form l̃( i g̃)
5 id1g̃2d2g̃2 for some d2.0, and so that all remaining
spectral curves are strictly to the left of the imaginary ax
Assume, furthermore, that the nonlinear dispersion rela
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PRE 62 7711ABSOLUTE VERSUS CONVECTIVE INSTABILITY OF . . .
which relates the asymptotic wavelengthk to the angular
velocity c of the spiral is nondegenerate. It is then true th
the spiral wave automatically transports away from the co
i.e., the spiral is stable in the weight exp(2ar) for any a
.0 sufficiently small, so that the weighted continuous sp
trum is strictly to the left of the imaginary axis. We argue
follows. We seek spiral waves as stationary patterns
DDu1cuw1 f (u)50, and cast this equation as a first-ord
initial-value problem in the radial variabler:

ur5v,
~10!

v r52Fv
r

1
uww

r 2 1D21@cuw1 f ~u!#G .
Spiral wavesu* (r ,w) can then be thought of as fronts in th
radial variabler that connect the core stateu* (0,w) at r
50 with the r-periodic wave trainu`(kr 1w) as r→`. In
other words, spirals are solutions to Eq.~10! that are con-
tained in the intersection of the unstable manifold, with
spect to Eq.~10! with r as the evolution variable, of the cor
stateu* (0,w) and the center-stable manifold of the wa
trainu`(kr 1w); note that the linearization of Eq.~10! about
the wave train has a bounded solution, namely,u8̀ (kr
1w). It turns out that both invariant manifolds are infini
dimensional, and we cannot easily count dimensions,
codimensions, and apply transversality arguments. For
sake of clarity, we pretend that these dimensions are b
finite, and refer to Ref.@14# for the more correct argumen
where dimensions are counted by means of a compariso
a reference equation. Since we assumed that the nonli
dispersion relation is nondegenerate, the spiral wave is
cally unique; therefore, the dimensions of the unstable m
fold of the core state and the center-stable manifold of
wave train have to add up to the dimension of the ph
space, so that the spectra of the linearization of Eq.~10!
about the core state and the wave train are as shown in
1.

Next, we apply the same arguments to the linearizat
@Eq. ~6!#

ur5v,
~11!

v r52Fv
r

1
uww

r 2 1D21$cuw1@ f 8„u* ~r ,w!…2l#u%G
about the spiral wave, again written as a first-order system
r. For l50, Eq.~11! and the linearization of Eq.~10! about
the spiral coincide; furthermore, as discussed above, the
mensions of the unstable eigenspace of Eq.~11! at the core
state and those of the center-stable eigenspace of Eq.~11! at
the asymptotic wave train add up to the dimension of
phase space. Forl.0, the eigenvaluen50 of the

FIG. 1. The spatial spectra of Eq.~10!, linearized about the core
state~a! and the wave train~b!, are plotted. The dimensions of th
unstable manifold of the core state and the center-stable manifo
the wave train have to add up to the phase-space dimension.
t
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asymptotic wave train moves either to the left@see Fig. 2~b!#
or the right@see Fig. 2~c!# of the imaginary axis. Since we
assumed that Rel.0 does not contain any points in th
spectrum of the wave train, and therefore no points in
spectrum of the spiral wave, the aforementioned dimensi
still add up to the dimension of the phase space@12#. Hence,
only the case shown in Fig. 2~b! can occur, so thatl(a)
.0 for a,0, wheren5a is the perturbed spatial eigenvalu
nearn50; in particular, we havedl/dn,0 at n50 which
means that the group velocitycgr52d Im l/dg.0 is always
positive at n50. As a consequence,l(a),0 for a.0,
which proves that the spiral-wave spectrum moves into
left half-plane when we compute it with a weight exp(2ar)
for sufficiently smalla.0. As a consequence, marginal
stable spiral waves always transport away from the core:
group velocity of the emitted wave trains is always positiv

V. ABSOLUTE SPECTRA OF SPIRAL WAVES
ON LARGE BUT BOUNDED DISKS

Finally, we discuss the spectra of spiral waves when
domain is not the plane but a large bounded disk. This is
was addressed previously in Refs.@9,15–17# for the complex
Ginzburg-Landau equation. In these references, it was
served that only absolute instabilities on the plane persis
instabilities on large bounded domains, independently of
size of the domain. Note that the spectrum of the spiral o
disk of radiusR consists entirely of point spectrum. Intro
duced in Ref.@12#, the absolute spectrum of the spiral
defined as the limit, as the radiusR→` tends to infinity, of
the spectra on disks of radiusR. Each point in the absolute
spectrum is approached, asR→`, by infinitely many differ-
ent eigenvalues of the spiral on the disk of radiusR. Thus the
absolute spectrum gives the asymptotic position of the eig
values on large disks. We showed in Ref.@12# how the ab-
solute spectrum can be computed analytically for a
reaction-diffusion system: Consider the eigenvalue prob
for the asymptotic wave train,

ur5v,
~12!

v r52Fv
r

1
uww

r 2 1D21~cuw1$ f 8@u`~kr 1w!#2l%u!G
written as a first-order system in the radial variabler. For a
given lPC, we compute the spatial eigenvaluesa1 ig
wherea corresponds to the spatial decay or growth rate
solutions to Eq.~12!, andg to their spatial wave number. Fo
eachl, there are infinitely many stable and unstable spa
eigenvalues. We plotl in the complex plane, and attach t
eachl the associated spatial spectrum; see Fig. 3. Thusl is
in the continuous spectrum of the planar spiral wave if

of

FIG. 2. The spatial spectrum of Eq.~11! about the core state is
plotted in~a!. In ~b! and~c!, the spatial spectrum of Eq.~11! about
the asymptotic wave train is plotted forl.0; the eigenvaluev
50 of Eq.~11! at l50 could move either to the left~b! or the right
~c!. The coordinates are as in Fig. 1.
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7712 PRE 62BJÖRN SANDSTEDE AND ARND SCHEEL
associated spatial spectrum has points on the imaginary
The absolute spectrum is determined as follows. For la
l.0, we consider the stable and unstable eigenspaces o
~12!; both spaces are infinite dimensional~see above!, but we
pretend as before that they both have finite dimension.
vary lPC, and plot the spatial eigenvalues. We showed
Ref. @12# that l is in the absolute spectrum if there are fo
merly stable and formerly unstable spatial eigenvalues
now have the same real part; see Fig. 3. If this real par
positive, then the associated eigenmodes grow exponent
toward the boundary, i.e., they correspond to a far-field
stability; if the real part is negative, then the eigenmod
grow toward the core, and the instability occurs near
core. Often, the edge of the absolute spectrum correspon
a point where formerly stable and formerly unstable spa
eigenvalues coalesce—this occurs at double roots of the
ear dispersion relation, as predicted in Ref.@9#. The resulting
linear eigenmode has zero group velocity, while the eig
modes obtained for spatial eigenvalues with the same
part but a different imaginary part have nonzero group
locity. The condition that one of the two colliding spati
eigenvalues is stable while the other one is unstable for la
positivel is often referred to as the pinching condition@18#.
We emphasize that the aforementioned characterizatio
the rightmost point of the absolute spectrum as a double
of the linear dispersion relation is only true if the most u
stable eigenmode has a zero group velocity. If the lineari
equation sustains counterpropagating waves, the most
stable mode can have a nonzero group velocity; we refe
Ref. @12# for examples. As a consequence, it might be n
essary to compute the entire absolute spectrum as out
above to determine the onset to instability.

VI. ONSET TO INSTABILITY ON BOUNDED DOMAINS

In summary, we have demonstrated that it is possible
predict the location and nature of an absolute instability, i
whether it causes breakup near the core or in the far field
the entire plane as well as on any large bounded domain
investigating only the eigenvalue problem of the asympto
wave train upon using appropriate exponential weights.
shall argue, however, that the transition to instability
bounded domains does not occur at a well defined poin

FIG. 3. The spectraScont and Sabs of the spiral wave on the
entire plane and large bounded disks are plotted; the insets sho
spatial eigenvaluesn5a1 ig of Eq. ~12! computed for fixedl in
the aforementioned spectra, and in the regions between these
tra.
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parameter space; instead, spiral waves typically destab
somewhere in between the convective and the absolute
haus instability. Indeed, in the region between these two
stabilities, we can always stabilize spiral waves on boun
domains by using exponential weights exp(2ar), with a.0
for a core anda,0 for a far-field convective instability.
Thus the fate of an initial condition that is close to the spi
wave depends upon the time evolution computed with
exponential weight. In particular, for stability, the initial con
dition has to be sufficiently close to the spiral wave, ag
with respect to the exponential weight, due to the nonlin
terms@12#. As a consequence, if the Eckhaus instability c
responds to transport toward the boundary, and if the rad
of the bounded domain isR, then only those initial condi-
tions that are exp(2aR) close to the spiral wave near the co
will ultimately converge toward the spiral—any other initi
condition is amplified well before the perturbation disappe
through the boundary; this will lead to spiral-wave break
near the boundary. Analogously, if the Eckhaus instabi
corresponds to transport toward the core, then only th
initial conditions that are exp(aR) close, witha,0, to the
spiral wave near the boundary will ultimately converge
ward the spiral; any other initial condition is amplified s
much that the spiral breaks up near the core.

VII. CORE VERSUS FAR-FIELD BREAKUP

We apply the results obtained above to the system

ut5Du2
1

e
u~u21!S u2

b1v
a D ,

v t5 f ~u!2v, ~13!

f ~u!5H 0, 0<u,1/3

126.75u~u21!2, 1/3<u<1

1, 1,u

that has been used to model patterns in catalytic surface
actions@4,6#. We are interested in the following two param
eter regimes:

excitable: a50.75, b5631024, ~14!

oscillatory: a50.84, b520.045. ~15!

The second parameter regime@Eq. ~15!# was investigated
earlier @6#. Direct numerical simulations using Barkley’
code EZSPIRAL show that the spiral wave exhibits a co
breakup for parameters as in Eq.~14! with e50.072, while
we observed a far-field breakup for parameter values@Eq.
~15!# with e50.075; see Fig. 4. To investigate the nature
transport and the difference between core and far-fi
breakup, we first computed the onset to absolute and con
tive ~Eckhaus! instability of the spiral waves usingAUTO97,
and compared these predictions with direct simulations. T
results are shown in Fig. 5. They confirm that it is indeed
absolute spectrum, and not the continuous spectrum, th
relevant for instabilities on bounded domains.

Next, we computed the absolute and the continuous sp
trum of the spiral waves at the point in parameter sp
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where breakup occurs. The results are shown in Fig. 6.
spectra at core and far-field breakup look quite similar.
determine the nature of transport, we plotted the real par
l for l in the absolute spectrum versus the exponen
growth ratea per wave-train period. The results are shown
the upper plot in Fig. 7. Note that the rate is positive for bo
core and far-field breakup. We conclude that, even in
case of a core breakup, transport eventually occurs tow
the boundary. In the lower plot in Fig. 7, the group veloc
of eigenmodes in the continuous spectrum is shown a
function of the real part ofl wherel varies in the continu-
ous spectrum. Thus it appears as if the eigenmodes in
absolute spectrum still correspond to transport toward
boundary, even near core breakup. There is, howeve
quantitative difference between the eigenmodes near
and far-field breakup. The results presented in Fig. 7 sh
that the exponential growth ratea, measured per wave-trai
period, is much smaller at core breakup than at far-fi
breakup. Thus the transport toward the boundary is far
pronounced. In addition, the group velocity is much sma
near core breakup compared with far-field breakup. In p
ticular, the interval in Rel over which the group velocity is

FIG. 4. Spiral waves to Eq.~13! that exhibit a core breakup in
the left plot@for parameter values of Eq.~14! with e50.0724# and
a far-field breakup in the right plot@for parameter values of Eq.~15!
with e50.0746#.

FIG. 5. The curves indicate the onset to absolute~solid lines!
and Eckhaus instability~dotted lines! of spiral waves in the excit-
able regime@Eq. ~14!# in the upper plot and in the oscillatory re
gime @Eq. ~15!# in the lower plot. The vertical axis is the spati
period 2p/uku of the asymptotic wave trains, and the horizontal a
is e. The circles indicate the results of direct simulations of Eq.~13!
corresponding to the presence of spiral waves before breakup.
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negative~and therefore directed toward the core! is longer at
core breakup.

Thus the difference between the core and far-fi
breakup could be related to the fact that, for core break
some of the eigenmodes belonging to the continuous s
trum transport localized perturbations toward the core ove
broad interval of frequencies with a relatively small tempo
decay, while the absolute eigenmodes are not yet visible
ing to their slow exponential growth toward the boundary.
a far-field breakup, transport toward the boundaries is m
prominent, since the absolute eigenmodes are growing m
faster and the group velocity of the continuous eigenmode
not as negative as for core breakup. In other words, the t
poral evolution of a localized perturbation which is not clo
to the boundary can be described by both the entire se
absolute eigenmodes and the set of continuous eigenmo
If some of the continuous eigenmodes transport fast eno
toward the core, then the spiral can break up near the c
and the absolute eigenmodes that grow toward the boun
are not relevant.

VIII. CONCLUSIONS

We have investigated the structure of the spectrum of
ral waves by analytical means. In particular, we derived

FIG. 6. The absolute spectra~dotted lines! and continuous spec
tra ~solid lines! of spiral waves near the core breakup~left plot! and
far-field breakup~BU! ~right plot!. We used asymptotic wave train
with a spatial period 7.1 ande50.0741 for core BU, and with a
spatial period 8.6 ande50.075 for far-field BU: see Fig. 5.

FIG. 7. The upper plot shows the exponential rate 2pa/uku per
wave-train period as a function of Rel for l in the absolute spec
trum of the spiral wave at core~solid line! and far-field~dotted line!
breakups. The lower plot shows the group velocitycgr

52d Im l/dg as a function of Rel for l in the continuous spec
trum of the spiral wave at core~solid line! and far-field~dotted line!
breakups. The parameter values used for both plots are as in F
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characterization of the absolute spectrum of spirals on la
disks in terms of the spatial spectra associated with
asymptotic wave trains. Furthermore, we related the cont
ous spectrum of spirals on the plane to the continuous s
trum of the asymptotic wave trains. We also confirmed tha
is the absolute, and not the continuous, spectrum that ca
instabilities on bounded disks; it should be emphasized, h
ever, that the size of the allowed perturbation in the basi
attraction shrinks as the size of the disks increases. Abso
eigenmodes, however, are visible only after a transient
gime that is governed by the continuous spectrum. It w
demonstrated that the onset to absolute or convective in
bility, and in fact the absolute and continuous spectra the
selves, can be computed numerically using formulation~5!
as boundary-value problems together with a continua
A.
e
e

u-
c-
it
es
-

of
te

e-
s
ta-
-

n

code such asAUTO97. In addition, the use of exponentia
weights allowed us to predict the direction of transport at
onset to absolute or convective instabilities. Finally, we co
pared our predictions with numerical simulations of spi
waves that exhibit core and far-field breakup. It appears a
the absolute eigenmodes of spirals that break up near
core transport towards the boundary, at least on the level
linear analysis, while at least some continuous eigenmo
transport toward the core. We believe that it is either t
mechanism that causes core breakup or else the appea
of unstable point spectrum—note that such isolated eigen
ues have to cross the imaginary axis to the right of the c
tinuous spectrum to cause core breakup@8#. Further analysis
appears to be required to distinguish clearly between c
and far-field breakup.
s.
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