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Absolute versus convective instability of spiral waves
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Absolute and convective instabilities of spirals are investigated using the continuous and the so-called
absolute spectrum. It is shown that the nature of transport, induced by an absolute instability, is determined by
spectral data of the asymptotic wave trains. The results are applied to core and far-field breakup of spiral waves
in excitable and oscillatory media.

PACS numbd(s): 82.40.Ck, 47.54tr, 05.45-a

[. INTRODUCTION ciated with the continuous spectrum, at least as long as the
localized perturbation stays away from the boundary; indeed,
Spiral waves have been observed in various biologicalthe localized perturbation is then not affected by the bound-
chemical, and physical systenj4], for instance, in the ary conditions, and it therefore behaves in the same way as
Belousov-Zhabotinsky reaction, during fibrillations in car- On the entire plane. Alternatively, the temporal behavior of
diac tissue, and in the oxidation of carbon-monoxide onlocalized perturbations can be described in terms of the ab-
platinum surfaces. They have also been found in numericajolute spectrum, introduced in R¢12], which is related to
simulations of reaction-diffusion systems and complexthe spectrum of the spiral wave on large disks. This latter
Ginzburg-Landau equations on planar domains. Spiral wavedescription is also valid if the Iocgllzed p'erturbatlon ap-
can destabilize in many different ways. For instance, theyProaches the boundary of the domain. The rightmost point of
may begin to meander or to drift, a scenario that has beefpe absolute spectrum is typically given by a double root of
attributed to a Hopf instability2]. Alternatively, transverse the linear dispersion relation. We characterize the entire ab-
instabilities may occuf3] that are characterized by a degen-SOlute spectrum, and not only its rightmost point, and inves-
erate dispersion relation between asymptotic wavelength arfégate the spatial shape of eigenfunctions in the absolute
wave speed. Another common instability is the breakup ofP€ctrum using exponential weights that break the Fran;latlon
spiral waves, which comes in two “flavors”: either the core Symmetry of the plane. As a consequence, the direction of
[4] or the far field[5,6] of the spiral breaks up into a turbu- transport, induced by absolute msta_lbllmes, can be predicted
lent region with complex spatiotemporal behavior. Far-fieldfom spectral data of the asymptotic wave trains. Our ana-
breakup of spiral waves was observed in experimgits lytical results also prowdc_e means of computing continuous
In this paper, we concentrate on a linear stability analysi@nd absolute spectra easily from the asymptotic wave trains
of spiral waves to link spectral properties of spirals to theusing boundary-value problem solvers suchaasoo7 [7].
direction of transport that they induce: Suppose that we ad¥Ve emphasize that our approach is based on a linear stability
a small localized humplike perturbation to the spiral wave analysis; a sensitive nonlinearity may result in a quite differ-
and monitor the time evolution of the corresponding solu-€nt behavior. o _
tion. If the spiral wave is unstable, the localized perturbation Part of our motivation comes from attempting to under-
will certainly grow: We say that the spiral transports towardStand the nature of spiral-wave breakup in excitable and os-
the core if the center of mass of the perturbation, i.e., théillatory media. It appears from our numerical simulations
position of its peak, moves toward the core. If the center ofhat the difference between core and far-field breakup cannot
mass of the perturbation moves away from the core towar®€ explained solely by the direction of transport induced by
the boundary of the domain, we say that the spiral transport@;bsomte instabilities. Instead the group velocities of the con-
toward the boundary. This notion of transport is made mordinUous spectrum seem to play an important role. _
precise below by using exponential weights. To relate spec- A second consequence of the approach adopted here is
tral properties of the spiral waves and the direction of transthat it allows us to predict the superstructures of meandering
port, we investigate the spectra of spiral waves on the plan@nd drifting spiral waves. The shape of the superstructures is
and on large bounded disks. First, for spiral waves on thé‘,lo.selly related to elgenmodes in the continuous spectrum.
plane, we demonstrate that the continuous spectrum of thEhis issue was explored in R¢B].
spiral can be computed from the spectrum of the asymptotic Consider a reaction-diffusion model
wave trains, but that the two spectra differ by translations
along thg imaginary axi;. The group velocities of spirals and u=DAu+f(u), ueR™ xeR? 1)
wave trains, computed in the laboratory frame, are the same.
Next we consider spiral waves on large but bounded disks.
On a linear level, the temporal evolution of localized pertur-on the plane. Archimedean spiral waves are solutions to Eq.
bations is then determined by the eigenmodes that are assd:) that rotate rigidly with a constant angular velocityand
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that are asymptotically periodic along rays in the plane. In gort toward —o. We shall compute the spectrum using the
corotating coordinate frame, E@) is given by exponential weight exp{ay). It follows that X is in the
spectrum of the wave train, computed with weight exp
(—ay), if there is a solutiorv(#) to Eg. (3) such that exp
where ¢,¢) denote polar coordinates. A spiral wave is then(~2#)v(¥) is bounded, but does not decay. Hence we see
a stationary solution given by, (r,¢) with u,(r,¢) that N is in the continuous spectrum, computed with the
—u.(kr+¢) as r—w= for some 2rperiodic function Wweight exp(-ay), if and only if

U..(¢). The functionu..(¢) is a stationary wave-train solu- -
tion to DK20¢,¢+CU,,,+f’(um(tlx))v=)\v, 0<y<2m,

u=DAu+cu,+f(u), xeR?

- ®)
u=Dx?u,,+cu,+f(u), yek. () (v,0,)(2m) =" V(y,v,)(0),

The asymptotic wave number and the wave speedare  pas a solutiow for somey e R. The curves\ (a+i%), com-
related via a nonlinear dispersion relation. puted for fixedd, are typically shifted with respect to the
spectrumi (i3) that we computed without weights. If the
weighted spectrum is shifted to the left in the complex plane,

We begin by analyzing the spectrum of the asymptoticthen the sign of the corresponding value @fdetermines
wave trainsu..(¢) to Eqg. (2). The eigenvalue problem is whether transport occurs to the rigld>0) or to the left

Il. SPECTRA OF ASYMPTOTIC WAVE TRAINS

given by (a<0). We emphasize that the criteric[9,1~0] that~uses
5 double roots of the linear dispersion relatiafa+ivy) is
DK20W+ cv,+ ' (U()v=Nv, ¢eR. ©)] different from our criterion that employs exponential

B weights; for instance, if counterpropagating eigenmodes are
It follows from Floquet theory thak e C is an eigenvalue of present, so that transport occurs simultaneously towerd

the wave train if, and only if, the system and —oo, then exponential weights destabiliZE2], while the
criterion[9,10] still stabilizes.
D% gyt CU T (U (¥) =\v, 0<y<2m, Both systemg4) and(5) can be solved numerically using
~ (4) a continuation code for boundary-value problems such as
(v,vy)(2m)= e’ (v ) (0) AUTO97 (see Ref[7] for this package A starting solution is

] _ ) ) given byX=0, =0 andv(#)=u.(¢); afterward, this so-
has a solutiow for somey e . Eigenvalues come in CUrVes |iion is continued in the wave numb@r The advantage of
A=\(i%); note that one of these curves containsO, with  this approach is that it gives the continuous spectrum in
=0 andv(¢) =u.(4). terms of curves\(iy) that are parameterized by the wave

Upon varying parameters, the wave train might destabinympery.
lize in an Eckhaus instability. Eckhaus instabilities are either
of convective nature or are gbsolute_ instat_)ilitita_s. The differ- Ill. CONTINUOUS SPECTRA
ence between these two kinds of instability is that, for a OF PLANAR SPIRAL WAVES
convective instability, perturbations grow but are also con-
vected away; in other words, the perturbation actually decays In the next step, we consider the spectrum of the spiral
locally, at least eventually for large values of time, at everywave u, (r,¢). The eigenvalue problem for planar spiral
fixed point in the domain, while the position of the growing waves reads
maxima of the perturbation travels toward infinity. In con-
trast, for absolute instabilities, perturbations grow every- DA, gv+cv,+f (U (r,e))v=»nv. (6)
where, i.e., at every given point in the domain. Previously
absolute instabilities have been located by seeking certa

double roots of the linear dispe~rsion relatio() of Eq. (3) meandering or drifting waves in excitable mef4, or to an

that relates spatial wavenumbére C to temporal decay O unstable tip motion in oscillatory medid3]. Instead, we
growth rates\ e (; see Refs[9,10]. Here we propose a dif- focus on the continuous spectrum that is responsible for
ferent way of computing absolute instabilities that, in addi-spjral-wave breakup. Using the results in Rdf4], it turns
tion, gives more information about their nature. The ideaouyt that the boundary of the continuous spectrum depends
which goes back to Ref11], is to use exponential weights only on the limiting equation for —. Using A o=dy
exp(—ay) to measure transport. Thus we solve the IinearizedH*l(;rH*Z(;W, we have thah is in the boundary of the
equation continuous spectrum if, and only fif,

iWe shall ignore isolated eigenvalues that belong to the point
spectrum; instabilities caused by point eigenvalues lead to

V=DK%t v+ (Us(¥), Dvy+ v+ (Un(kT + ¢))v =NV

and monitor lexp(~ayu(t.y)| instead of [v(t,4)| ast  has a solutionv(r,p) for (r,p)eR*x[0,2] that is
—. Fora>0o, this allows solutions to grow exponentially hounded but does not decay ms>%. Transforming ¢, ¢)

with rate up toa as p—o; in other words, it stabilizes H(r'lﬂ):(r’,{r-}—@)’ we seek bounded solutions to
eigenmodes that correspond to transport toward Simi-

larly, a<0 stabilizes eigenmodes that correspond to trans- D(ar+;«9¢)zv+00 gt Ue())v=Nv.
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Using Fourier transform, we see that any bounded solution iBas a solutio’/( ) for someye R, where 0<¢<2. The
of the formu(r,¢)=expliy)w(y) for some ye R, where associated eigenmode of E®) is then of the form

w(y) is 2w periodic in . Writing w(y)=exp(—iyyl Ctativel

x)V(1), we conclude thak is in the boundary of the continu- e~ ATV (kr + @)

ous spectrum if, and only ily(y) satisfies asr—o; note that this eigenmode grows, or decays, expo-

iyc nentially with ratea asr—oo.
DK2V¢¢,+ cvw+f’(um(¢))v=()\+ —)V, It remains to show that the spectrum of the spiral wave,
K computed with weight exp{ar), can also be calculated us-
() ing the asymptotic wave trains. Upon inspecting E§sand

(9), it follows that the boundary of the weighted spectrum of
the spiral wave is given by

(V,V,)(2m)=e?""*(V,V,)(0)

for someye R, where 6<<27. We are now in a position
to compare the boundary of the continuous spectrum of the _la
planar spiral wavel, (r,¢) with the continuous spectrum of 7\2?\(; +iy
the associated asymptotic wave traip (). Comparing
Egs.(4) and(7), we see that the boundary of the continuous
spectrum of the spiral wave is parametrized by

ac | 54
- ——i
p c(y+1),

where | eZ is arbitrary, andX(a/x+i%) denotes the
weighted spectrum of the wave train computed according to
e - Eq. (5) witha=a/ k. The factorc/  is positive whenever the

A=A(Iy)—ic(y+D),  y=«(¥+D), ®  \wave is spiraling outwardly; thus, for outwardly spiraling

) ) - waves, the termac/« stabilizes the wave foa>0 which
wherel e 7 is arbitrary, and\ (i) denotes the spectrum of cqrresponds to transport away from the core. This additional
the wave train computed according to &4). Note that the  {rangport is created by compensating for the moving frame in
spectra of the spiral wave and the asymptotic wave train arghich we computed the weighted spectrum of the asymptotic
no_t q_uite the same, even though their mgximal real partgayve train; indeed, in Eq(5), we imposed the weight
coincide, so that the _splral wave de_stab|llzes at the SaMgyn(—ay) on perturbations in a frame that moves with speed
moment as thg_ assouateq wave train. We shall see below 1, compensate for the moving frame, we should compute
where the additional term in E¢8) comes from. the weighted spectrum of the wave trains using the time-

dependent weight exp-a(y+ct)) that corresponds to the

IV. CONVECTIVE SPECTRA OF PLANAR SPIRAL WAVES exponential weight expfa¢) in the laboratory frameg

The continuous spectrum computed above gives informa= ¥+ Ct. The effect on the weighted spectrum is thais
tion about the stability versus instability of the spiral wavereplaced byx —@c, i.e., byA —ac/«. In addition, this analy-
considered on the unbounded plane. In the next step, was establishes that the behavior of one-dimensional wave
explore whether small perturbations that are added to thtrains that are generated by Dirichlet sources precisely cap-
spiral wave are convected toward or away from the coretures the convective behavior of spiral wavgsovided the
This information cannot be gleaned from the location of thewavelength selected by the Dirichlet source is the same as
spectrum in Eq(8) alone, since convection is not related to that selected by the spiral wave—this, however, is typically
overall decay or growth as measured by the continuous spegot the case Hence, our analysis corroborates the conclu-
trum but to local decay or growth. As before, we computesions in Ref][6], where direct numerical simulations of such
the spectrum using exponential weights that penalize pertuwave trains were used.
bations that are convected in the radial direction. Hence we In summary, localized perturbations added to the spiral in
shall solve its far field can be transported toward the core or toward the
boundary of the domain. These two cases can be distin-
vi=DA, jv+cv,+ ' (u,(r,e)v, guished, at least on a linear level, by computing the spectrum
of the asymptotic wave trains using appropriate exponential
and monitor||exp(—anu(tr,¢)| ast—o. Fora>0, this al-  weights: If certain unstable modes stabilize for positive rates
lows solutions to grow exponentially as—c; in other  a>0, then the spiral transports toward the boundary. If the
words, eigenmodes that correspond to transport away fromfhodes stabilize with a negative weight< 0, localized per-
the core are stabilized. Similarlg<0 stabilizes eigenmodes turbations added to spiral waves are transported toward the
that correspond to transport toward the core. Our result statepre. At the onset of instability, stability properties depend
that\ is in the spectrum of the planar spiral wave, computecon the derivative—d Rex/da=—dIm\/dy, which is the
with weight exp¢-ar), if there is a solution (r,¢) to Eq.(6)  group velocity of the asymptotic wave trains, computed in
such that exptar)u(r,¢) is bounded. Arguing as above, we the laboratory frame.
see thai\ is in the boundary of the continuous spectrum of  Before we address the relevance of our results for spirals
the spiral wave, computed with weight exgdr) if, and only  on large but bounded disks, we report on transpofnar-
if, ginally) stable spiral waves on the entire plane. Suppose that
the asymptotic wave trains are marginally stable, so that the

)\+E(a+iy))v curve X(i%) that containsA=0 is of the form X(i¥)

K ' =id,y—d,¥* for somed,>0, and so that all remaining

. 9 spectral curves are strictly to the left of the imaginary axis.
(V,V¢)(2w)=e2”(a*'7>’K(V,V¢,)(O) Assume, furthermore, that the nonlinear dispersion relation

D2V, +cVy+ 1/ (U (4)V=
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(b) ImA

FIG. 1. The spatial spectra of E(.0), linearized about the core FIG. 2. The spatial spectrum of E(L1) about the core state is
state(a) and the wave trairtb), are plotted. The dimensions of the plotted in(a). In (b) and(c), the spatial spectrum of E¢L1) about
unstable manifold of the core state and the center-stable manifold dhe asymptotic wave train is plotted far>0; the eigenvalue
the wave train have to add up to the phase-space dimension. =0 of Eq.(11) atA =0 could move either to the lefb) or the right

(c). The coordinates are as in Fig. 1.

which relates the asymptotic wavelengthto the angular

velocity ¢ of the spiral is nondegenerate. It is then true thatasymptotic wave train moves either to the lefée Fig. 2o)]

the spiral wave automatically transports away from the core9r the right[see Fig. )] of the imaginary axis. Since we
i.e., the spiral is stable in the weight exdr) for anya  assumed that Re>0 does not contain any points in the
>0 sufficiently small, so that the weighted continuous specspectrum of the wave train, and therefore no points in the
trum is strictly to the left of the imaginary axis. We argue asspectrum of the spiral wave, the aforementioned dimensions
follows. We seek spiral waves as stationary patterns tstill add up to the dimension of the phase spgd. Hence,
DAu+cu,+f(u)=0, and cast this equation as a first-orderonly the case shown in Fig.( can occur, so thak(a)

initial-value problem in the radial variable >0 for a<0, wherev=a is the perturbed spatial eigenvalue
nearv=0; in particular, we havel\/dv<<0 at v=0 which
ur=v, means that the group velocity,= —d Im Mdy>0 is always

(100  positive at v=0. As a consequence\(a)<0 for a>0,
which proves that the spiral-wave spectrum moves into the
left half-plane when we compute it with a weight ex&r)
for sufficiently smalla>0. As a consequence, marginally

Spiral wavesu, (r,¢) can then be thought of as fronts in the stable spiral waves always transport away from the core: the

radial variabler that connect the core state (0,p) atr group velocity of the emitted wave trains is always positive.

=0 with ther-periodic wave trairnu,(«r+¢) asr—o. In

ot_her vyords, ;pirals are solutions to EGO) thgt are con- V. ABSOLUTE SPECTRA OF SPIRAL WAVES

tained in the intersection of the unstable manifold, with re- ON LARGE BUT BOUNDED DISKS

spect to Eq(10) with r as the evolution variable, of the core

stateu, (0,¢) and the center-stable manifold of the wave Finally, we discuss the spectra of spiral waves when the

trainu..(kr + ¢); note that the linearization of E¢L0) about ~domain is not the plane but a large bounded disk. This issue

the wave train has a bounded solution, namaly(«xr  Was addressed previously in R€f8,15-17 for the complex

+¢). It turns out that both invariant manifolds are infinite Ginzburg-Landau equation. In these references, it was ob-
dimensional, and we cannot easily count dimensions, O§erveq .t_hat only absolute mstabllltle.s on the plane persist as
codimensions, and apply transversality arguments. For thi@stabilities on large bounded domains, independently of the

sake of clarity, we pretend that these dimensions are botpize of the domain. Note that the spectrum of the spiral on a

finite, and refer to Ref{14] for the more correct argument disk of radiusR consists entirely of point spectrum. Intro-

where dimensions are counted by means of a comparison f#/ced in Ref.[12], the absolute spectrum of the spiral is

a reference equation. Since we assumed that the nonlineélgfined as the limit, as the radifs— tends to infinity, of

dispersion relation is nondegenerate, the spiral wave is lohe spectra on disks of radils Each point in the absolute

cally unique; therefore, the dimensions of the unstable maniSPectrum is approached, Bs-, by infinitely many differ-

fold of the core state and the center-stable manifold of thént eigenvalues of the spiral on the disk of radughus the

wave train have to add up to the dimension of the phas@bsolute spectrum gives the asymptotic position of the eigen-

space, so that the spectra of the linearization of @)  Vvalues on large disks. We showed in Rif2] how the ab-
about the core state and the wave train are as shown in Fi§olute spectrum can be computed analytically for any

v u
v =— F+T‘°§+D‘1[cu¢+f(u)] :

1. reaction-diffusion system: Consider the eigenvalue problem
Next, we apply the same arguments to the linearizatiorfor the asymptotic wave train,
[Eq. (6)]
u=v,
ur=vu, (12)
11

_ U, Uge D-1 £ -
vr=—| -+~ +D Heu I Tu(ar + )] -Nu)

=Y Bee pgey r ot -\
v=-|rtTz {eug+ [ (U, (r,@))—N]u}

written as a first-order system in the radial variablé-or a
about the spiral wave, again written as a first-order system igiven A e C, we compute the spatial eigenvalues-iy
r. Fora=0, Eq.(11) and the linearization of Eq10) about wherea corresponds to the spatial decay or growth rate of
the spiral coincide; furthermore, as discussed above, the dsolutions to Eq(12), andy to their spatial wave number. For
mensions of the unstable eigenspace of @4) at the core each\, there are infinitely many stable and unstable spatial
state and those of the center-stable eigenspace dflEgat  eigenvalues. We plat in the complex plane, and attach to
the asymptotic wave train add up to the dimension of thesach\ the associated spatial spectrum; see Fig. 3. Thiss
phase space. Fon>0, the eigenvaluer=0 of the in the continuous spectrum of the planar spiral wave if the
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parameter space; instead, spiral waves typically destabilize
somewhere in between the convective and the absolute Eck-
haus instability. Indeed, in the region between these two in-
stabilities, we can always stabilize spiral waves on bounded
domains by using exponential weights exa{), with a>0
for a core anda<O0 for a far-field convective instability.
Thus the fate of an initial condition that is close to the spiral
wave depends upon the time evolution computed with the
exponential weight. In particular, for stability, the initial con-
dition has to be sufficiently close to the spiral wave, again
with respect to the exponential weight, due to the nonlinear
terms[12]. As a consequence, if the Eckhaus instability cor-
FIG. 3. The spectr& ., and 3 4, of the spiral wave on the responds to transport toward the boundary, and if the radius
entire plane and large bounded disks are plotted; the insets show tiié the bounded domain iR, then only those initial condi-
spatial eigenvalues=a+iy of Eq. (12 computed for fixed\ in  tions that are expfaR) close to the spiral wave near the core
the aforementioned spectra, and in the regions between these speeil ultimately converge toward the spiral—any other initial
tra. condition is amplified well before the perturbation disappears
through the boundary; this will lead to spiral-wave breakup
associated spatial spectrum has points on the imaginary axigear the boundary. Analogously, if the Eckhaus instability
The absolute spectrum is determined as follows. For larggorresponds to transport toward the core, then only those
A>0, we consider the stable and unstable eigenspaces of Eijitial conditions that are exp) close, witha<0, to the
(12); both spaces are infinite dimensioiisée abovg but we  spiral wave near the boundary will ultimately converge to-
pretend as before that they both have finite dimension. Wavard the spiral; any other initial condition is amplified so
vary A e C, and plot the spatial eigenvalues. We showed inmuch that the spiral breaks up near the core.
Ref.[12] that \ is in the absolute spectrum if there are for-
merly stable and formerly unstable spatial eigenvalues that VIl. CORE VERSUS FAR-FIELD BREAKUP
now have the same real part; see Fig. 3. If this real part is
positive, then the associated eigenmodes grow exponentially
toward the boundary, i.e., they correspond to a far-field in-
L ; X : 1 b+v
stability; if the real part is negative, then the eigenmodes u=Au— —u(u—l)(u— )
grow toward the core, and the instability occurs near the € a
core. Often, the edge of the absolute spectrum corresponds to

We apply the results obtained above to the system

a point where formerly stable and formerly unstable spatial vi=f(u)—v, (13
eigenvalues coalesce—this occurs at double roots of the lin-

ear dispersion relation, as predicted in R6{. The resulting 0, O<u<1/3

linear eigenmode has zero group velocity, while the eigen- f(uy=4{ 1-6.75(u—1)?, 1/3<u<1

modes obtained for spatial eigenvalues with the same real
part but a different imaginary part have nonzero group ve-
locity. The condition that one of the two colliding spatial
eigenvalues is stable while the other one is unstable for larg
positive\ is often referred to as the pinching conditick8].

We emphasize that the aforementioned characterization

1, 1<u

that has been used to model patterns in catalytic surface re-
5ctions[4,6]. We are interested in the following two param-
cg;fter regimes:

the rightmost point of the absolute spectrum as a double root excitable: a=0.75, b=6x10*%, (14)
of the linear dispersion relation is only true if the most un-
stable eigenmode has a zero group velocity. If the linearized oscillatory: a=0.84, b=—0.045. (15)

equation sustains counterpropagating waves, the most un-

stable mode can have a nonzero group velocity; we refer tdhe second parameter reginigq. (15)] was investigated

Ref.[12] for examples. As a consequence, it might be necearlier [6]. Direct numerical simulations using Barkley's

essary to compute the entire absolute spectrum as outlineghde ezspiraL show that the spiral wave exhibits a core

above to determine the onset to instability. breakup for parameters as in H44) with e=0.072, while

we observed a far-field breakup for parameter valEs.

(15)] with e=0.075; see Fig. 4. To investigate the nature of

transport and the difference between core and far-field
In summary, we have demonstrated that it is possible tdreakup, we first computed the onset to absolute and convec-

predict the location and nature of an absolute instability, i.e.tive (Eckhau$ instability of the spiral waves usinguT097,

whether it causes breakup near the core or in the far field, oand compared these predictions with direct simulations. The

the entire plane as well as on any large bounded domain, byesults are shown in Fig. 5. They confirm that it is indeed the

investigating only the eigenvalue problem of the asymptoticabsolute spectrum, and not the continuous spectrum, that is

wave train upon using appropriate exponential weights. Weelevant for instabilities on bounded domains.

shall argue, however, that the transition to instability on Next, we computed the absolute and the continuous spec-

bounded domains does not occur at a well defined point itrum of the spiral waves at the point in parameter space

VI. ONSET TO INSTABILITY ON BOUNDED DOMAINS
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FIG. 6. The absolute spectfdotted line$ and continuous spec-
tra (solid lines of spiral waves near the core breakigft plot) and
far-field breakugBU) (right plot). We used asymptotic wave trains

FIG. 4. Spiral waves to Eq13) that exhibit a core breakup in with a spatial period 7.1 and=0.0741 for core BU, and with a
the left plot[for parameter values of Eq14) with ¢e=0.0724 and spatial period 8.6 and=0.075 for far-field BU: see Fig. 5.

a far-field breakup in the right pl¢for parameter values of E¢L5)
with €=0.074§. negative(and therefore directed toward the cpiglonger at
core breakup.

where breakup occurs. The results are shown in Fig. 6. The 1hus the difference between the core and far-field
spectra at core and far-field breakup look quite similar. ToPré@kup could be related to the fact that, for core breakup,
determine the nature of transport, we plotted the real part of°Me ©f the eigenmodes belonging to the continuous spec-
\ for \ in the absolute spectrum versus the exponentiafrum transport localized perturbations toward the core over a
growth ratea per wave-train period. The results are shown inproad interval of frequencies with a relatively small temporal
the upper plot in Fig. 7. Note that the rate is positive for bothd€cay, while the absolute eigenmodes are not yet visible ow-
core and far-field breakup. We conclude that, even in thdnd to their slow exponential growth toward the boundary. At
case of a core breakup, transport eventually occurs toward far-field breakup, transport toward the boundaries is more
the boundary. In the lower plot in Fig. 7, the group velocity Prominent, since the absolute eigenmodes are growing much
of eigenmodes in the continuous spectrum is shown as faster and th_e group velocity of the continuous eigenmodes is
function of the real part ok where\ varies in the continu- 1Ot @s negative as for core breakup. In other words, the tem-
ous spectrum. Thus it appears as if the eigenmodes in tHRoral evolution of a localized perturbation which is not close
absolute spectrum still correspond to transport toward th&? the boundary can be described by both the entire set of
boundary, even near core breakup. There is, however, absolute eigenmodes and the set of continuous eigenmodes.
quantitative difference between the eigenmodes near cofé SOMe of the continuous eigenmodes transport fast enough
and far-field breakup. The results presented in Fig. 7 sho/PWard the core, then the spiral can break up near the core,
that the exponential growth rate measured per wave-train and the absolute eigenmodes that grow toward the boundary
period, is much smaller at core breakup than at far-field®'® not relevant.

breakup. Thus the transport toward the boundary is far less

pronounced. In addition, the group velocity is much smaller Vill. CONCLUSIONS

near core breakup compared with far-field breakup. In par- \we have investigated the structure of the spectrum of spi-
ticular, the interval in Rex over which the group velocity is  ra] waves by analytical means. In particular, we derived a
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FIG. 5. The curves indicate the onset to absolig@id lineg FIG. 7. The upper plot shows the exponential ratea? | per

and Eckhaus instabilitydotted line$ of spiral waves in the excit- wave-train period as a function of Refor \ in the absolute spec-
able regime Eq. (14)] in the upper plot and in the oscillatory re- trum of the spiral wave at corolid line) and far-field(dotted ling

gime [Eq. (15)] in the lower plot. The vertical axis is the spatial breakups. The lower plot shows the group velocity,
period 2rr/| k| of the asymptotic wave trains, and the horizontal axis = —d Im M/dy as a function of Ra for X in the continuous spec-

is e. The circles indicate the results of direct simulations of @8) trum of the spiral wave at cofolid line) and far-field(dotted ling
corresponding to the presence of spiral waves before breakup. breakups. The parameter values used for both plots are as in Fig. 6.
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characterization of the absolute spectrum of spirals on largeode such asuTo97. In addition, the use of exponential
disks in terms of the spatial spectra associated with theveights allowed us to predict the direction of transport at the
asymptotic wave trains. Furthermore, we related the continuenset to absolute or convective instabilities. Finally, we com-
ous spectrum of spirals on the plane to the continuous spegared our predictions with numerical simulations of spiral
trum of the asymptotic wave trains. We also confirmed that itwaves that exhibit core and far-field breakup. It appears as if
is the absolute, and not the continuous, spectrum that causts absolute eigenmodes of spirals that break up near the
instabilities on bounded disks; it should be emphasized, howeore transport towards the boundary, at least on the level of a
ever, that the size of the allowed perturbation in the basis ofinear analysis, while at least some continuous eigenmodes
attraction shrinks as the size of the disks increases. Absoluteansport toward the core. We believe that it is either this
eigenmodes, however, are visible only after a transient remechanism that causes core breakup or else the appearance
gime that is governed by the continuous spectrum. It wa®f unstable point spectrum—note that such isolated eigenval-
demonstrated that the onset to absolute or convective instales have to cross the imaginary axis to the right of the con-
bility, and in fact the absolute and continuous spectra themtinuous spectrum to cause core break8p Further analysis
selves, can be computed numerically using formulat®n appears to be required to distinguish clearly between core
as boundary-value problems together with a continuatiorand far-field breakup.
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