
Rapid evaluation of the spectral signal

detection threshold and Stieltjes transform

William Leeb∗

Abstract

Accurate detection of signal components is a frequently-encountered challenge in statistical applications with low signal-
to-noise ratio. This problem is particularly challenging in settings with heteroscedastic noise. In certain signal-plus-noise
models of data, such as the classical spiked covariance model and its variants, there are closed formulas for the spectral
signal detection threshold (the largest sample eigenvalue attributable solely to noise) in the isotropic noise setting. However,
existing methods for numerically evaluating the threshold for more general noise models remain unsatisfactory.

In this work, we introduce a rapid algorithm for evaluating the spectral signal detection threshold. We consider noise
matrices with a separable variance profile, as these arise often in applications. The solution is based on nested applications
of Newton’s method. We also devise a new algorithm for evaluating the Stieltjes transform of the spectral distribution at
real values exceeding the threshold. The Stieltjes transform on this domain is known to be a key quantity in parameter
estimation for spectral denoising methods. The correctness of both algorithms is proven from a detailed analysis of the
master equations characterizing the Stieltjes transform, and their performance is demonstrated in numerical experiments.

1 Introduction

This paper presents fast, scalable, and numerically stable algorithms for the solution of two related problems arising in
statistical signal processing applications. The first problem is to evaluate the spectral signal detection threshold (SSDT)
for certain signal-plus-noise random matrix models. In mathematical terms, the SSDT is the operator norm of a random
matrix representing the noise component in a signal-plus-noise observation model. While the SSDT has a simple formula
in the case of isotropic noise, its characterization in the heteroscedastic setting is not straightforward and is the primary
subject of the present paper.

The second problem we address is evaluating the Stieltjes transform (also known as the Cauchy-Stieltjes transform)
of a certain probability measure associated with the noise matrix. More precisely, the measure in question is the limiting
spectral distribution (LSD) of the sample covariance matrix. It is well-known that the Stieltjes transform, evaluated at
certain real values exceeding the SSDT, may be used to estimate certain model parameters and perform signal denoising.
Like the SSDT itself, in isotropic noise the Stieltjes transform has a closed form, while more general noise models pose
greater difficulties which we address in the current paper.

The family of noise matrices we consider are those with a separable variance profile. This means that the matrix of
variances form a rank one matrix. This type of random matrix arises naturally in a number of applications, such as
with variable-strength heteroscedastic noise and the Kronecker model of multiple-input-multiple-output transmission. We
explain our model in detail in Section 2.1.

The algorithms we present scale linearly with the problem size, and are provably accurate to machine precision. The
solution and analysis of each problem makes use of the master equations characterizing the Stieltjes transform, which
will be reviewed in Section 2.2. Through a detailed analysis, presented in Section 3, we prove that the desired values
may be computed by the use of Newton’s root-finding algorithm. For the SSDT, several intermediate quantities used
in each iteration of Newton’s method are themselves computable by Newton’s method, as we will show. Consequently,
all parameters we compute are either available analytically, or can be provably computed to full precision by a rapidly
converging iterative scheme. For matrices of size p-by-n, the asymptotic cost of the algorithms scale like O(p+ n).

1.1 Relation to prior work

The signal-plus-noise matrix models of the kind we consider have been previously studied in the statistical literature, in
works such as [19, 2, 27, 11, 25, 14, 30, 24, 13, 17, 15, 39, 16]. Estimating the number of signal terms in such principal
components analysis and factor models is a well-studied problem in statistics and statistical signal processing applications

∗School of Mathematics, University of Minnesota, Twin Cities. Minneapolis, MN, USA.

1

[12, 10, 4, 18, 20, 29, 21]. Detection in the low SNR regime constitute a distinct though conceptually relevant class of
problems in signal processing [34, 36, 37, 38]. We note too that noise matrices with separable variance profiles have also
been studied in the context of the Kronecker product model for MIMO wireless communication [6, 3].

The solution to both of the problems we study rests on a known characterization of the Stieltjes transform of the LSD
as the solution to a set of certain non-linear equations [31, 7]. We present a new, detailed analysis of these equations. As a
consequence of our analysis, we show that evaluating the Stieltjes transform may be done by a straightforward application
of Newton’s root-finding algorithm, whereas the SSDT is computable by several nested applications of Newton’s agorithm,
appropriately initialized.

Previous works have considered the problem of evaluating the LSD, its Stieltjes transform, and the boundary of its
support, for different classes of random noise matrices. The paper [9] proposes a scheme for evaluating the Stieltjes
transform at complex values outside the support of the LSD; this method is based on a non-linear equation satisfied by
the Stieltjes transform [32, 33, 26]. The method in [5] is devoted to extending the approach to mixture models. The
papers [22, 23] are concerned with solving the inverse problem of recovering the population distribution from the observed
spectrum. The paper [12] contains a method for finding the boundary of a certain family of LSDs based on root-finding,
although the use of Newton’s method is not employed or analyzed.

1.2 Outline

The remainder of the paper is outlined as follows. In Section 2, we precisely state the problems we solve in this paper, and
review the mathematical and numerical material that we will be using. In Section 3, we derive the core mathematical theory
on which our algorithms rest, namely a detailed analysis of the master equations characterizing the Stieltjes transform of
the LSD. In Section 4, we provide explicit descriptions of the numerical algorithms for finding the SSDT and evaluating
the Stieltjes transform. In Section 5, we present the results of several illustrative numerical experiments demonstrating
the performance of our algorithms.

2 Preliminaries

2.1 Setting and problem formulation

We suppose we have a k-by-l random matrix of the form N = A1/2GB1/2, where G is a random matrix with iid entries of
mean zero and variance l−1, and A and B are positive-definite matrices of sizes k-by-k and l-by-l, respectively. We define
the empirical spectral distribution (ESD) µk to be the distribution of eigenvalues λ1, . . . , λk of the matrix NNT :

dµk(t) =
1

k

k∑
i=1

δλi(t). (1)

As is typical in high-dimensional problems, we work in the asymptotic regime where k and l both grow to infinity. More
precisely, we suppose that l = l(k) grows with k, and that the limit

γ = lim
k→∞

k

l(k)
(2)

is well-defined, positive, and finite. Furthermore, as k and l grow, we suppose that the eigenvalue spectra of A and B have
well-defined asymptotic distributions ν and ν, respectively (in terms of weak convergence), with compact support. Under
suitable conditions on A and B, the sequence of measures µk will almost surely converge weakly to a compactly supported
measure µ, called the limiting spectral distribution (LSD). We also denote by µ the limiting spectral distribution of the

eigenvalues of NTN.
We define the spectral signal detection threshold (SSDT) as follows:

λ∗ = arg max{λ > 0 : µ([λ,∞)) > 0}. (3)

This is the right endpoint of the LSD µ’s support, or equivalently the asymptotic operator norm of the matrix NNT . As
we will explain in Section 2.3, in a signal-plus-noise model Y = X + N where X is a low-rank signal matrix, eigenvalues
exceeding λ∗ are attributable to the signal X, whereas eigenvalues below λ∗ are explainable by the noise alone.

Next, we define the Stieltjes transform of µ:

s(λ) =

∫
R

1

t− λdµ(t), (4)

2

which has derivative equal to

s′(λ) =

∫
R

1

(t− λ)2
dµ(t). (5)

Similarly, the Stieltjes transform of µ is given by

s(λ) =

∫
R

1

t− λdµ(t), (6)

with derivative equal to

s′(λ) =

∫
R

1

(t− λ)2
dµ(t). (7)

We call s(λ) the associated Stieltjes transform of µ. As we will explain in Section 2.3, we are particularly interested in
evaluating s(λ), s(λ), and their derivatives at real λ > λ∗.

In this paper, we consider the setting where ν and ν are discrete distributions of the form

dν =

p∑
i=1

ωiδai (8)

and

dν =

n∑
j=1

πjδbj . (9)

Here, a1, . . . , ap and b1, . . . , bn are positive numbers, and the weights ωi and πj satisfy
∑p
i=1 ωi =

∑n
j=1 πj = 1, ωi > 0,

and πj > 0. For example, if k/2 eigenvalues of A are 1, and the remaining k/2 are equal to 2, then p = 2, a1 = 1, a2 = 2,
and ω1 = ω2 = 1/2.

With this background and notation, we can concisely state the two problems we solve in this paper:

Problem 1. Given a1, . . . , ap with corresponding weights ω1, . . . , ωp; and b1, . . . , bn with corresponding weights π1, . . . , πn;
evaluate the SSDT λ∗.

Problem 2. Given a1, . . . , ap with corresponding weights ω1, . . . , ωp; and b1, . . . , bn with corresponding weights π1, . . . , πn;
and a value λ > λ∗; evaluate s(λ), s′(λ), s(λ), and s′(λ).

Algorithms solving Problems 1 and 2 to machine precision, with asymptotic cost O(p+ n), are presented in Section 4.

2.2 Properties of the Stieltjes transform

The Stieltjes and associated Stieltjes transforms of the LSD µ are defined by equations (4) and (6), respectively. We
refer the reader to the standard references [1, 35] for a detailed treatment of Stieltjes transforms of probability measures,
particularly random spectral measures.

Lemma 2.1. The Stieltjes transforms s(λ) and s(λ) satisfy the following relations:

s(λ) = γs(λ) +
γ − 1

λ
(10)

and

s(λ) =
1

γ
s(λ) +

(
1

γ
− 1

)
1

λ
. (11)

Lemma 2.2. The derivatives s′(λ) and s′(λ) satisfy the following relations:

s′(λ) = γs′(λ) +
1− γ
λ2

(12)

and

s′(λ) =
1

γ
s′(λ) +

(
1− 1

γ

)
1

λ2
. (13)

3

Lemma 2.2 follows from Lemma 2.1, which in turn follows immediately from the relation:

dµ(t) = γdµ(t) + (1− γ)δ0(t). (14)

Remark 1. Lemmas 2.1 and 2.2 show that s(λ) and s′(λ) may be easily evaluated once s(λ) and s′(λ) are computed.

The next result is central to our subsequent analysis.

Theorem 2.3. The Stieltjes transform s(λ) for the LSD satisfies the following master equations:

s(λ) =

∫
R

1

aG(e(λ))− λdν(a), (15)

where

G(e) =

∫
R

b

1 + γbe
dν(b) (16)

and e(λ) is a function that satisfies the equation

e(λ) =

∫
R

a

aG(e(λ))− λdν(a). (17)

For a proof of Theorem 2.3, see, for instance, the paper [31]. The paper [7] presents a slightly modified form of these
equations, with a detailed analysis showing that e(λ) is smooth for real λ outside the support of µ.

We assume that ν and ν are discrete measures of the form

dν =

p∑
i=1

ωiδai , (18)

and

dν =

n∑
j=1

πjδbj , (19)

where
∑p
i=1 ωi =

∑n
j=1 πj = 1, ωi > 0, and πj > 0. The master equations therefore become:

s(λ) =

p∑
i=1

ωi
aiG(e(λ))− λ (20)

where e(λ) is a function satisfying

e(λ) =

p∑
i=1

aiωi
aiG(e(λ))− λ (21)

and the function G is defined by:

G(e) =

n∑
j=1

bjπj
1 + γbje

. (22)

We note that in the case where B = In (the singly-weighted case), the master equations take on a simpler form; see,
for instance, [33, 32].

2.3 Spiked models and the D-transform

In a spiked matrix model, we observe a signal-plus-noise matrix Y of the form

Y = X + N, (23)

where X =
∑r
m=1 θmumvTm is a rank r � min{k, l} signal matrix, and N is a noise matrix. The D-transform is defined as

follows:

D(λ) = λs(λ)s(λ), (24)

4

where s(λ) and s(λ) are, respectively, the Stieltjes transform and associated Stieltjes transform of the LSD of NNT . The
D-transform was introduced in [2], though as a function of

√
λ rather than λ.

Denoting by λ1, . . . , λr the top r eigenvalues of YYT , and û1, . . . , ûr, v̂1, . . . , v̂r the corresponding left and right
singular vectors of Y, respectively, it is shown in [2] that the D-transform defines a mapping between λ1, . . . , λr and the
eigenvalues θ21, . . . , θ

2
r of the signal matrix XXT , which holds almost surely in the limit k, l→∞:

θ2m = lim
k,l→∞

1

D(λm)
. (25)

This is satisfied for sufficiently large eigenvalues θ2m of XXT , namely those for which θ2m > 1/D(λ∗). Phrased differently,
an observed eigenvalue λm of YYT satisfying λm > λ∗ is attributable to the presence of signal, whereas if λm ≤ λ∗ the
eigenvalue is consistent with pure noise.

Furthermore, the asymptotic cosines 〈um, ûm〉 and 〈vm, v̂m〉, 1 ≤ m ≤ r, can also be evaluated using the Stieltjes
transform. It is shown that, almost surely,

lim
k,l→∞

|〈um, ûm〉|2 =
s(λm)D(λm)

D′(λm)
(26)

and

lim
k,l→∞

|〈vm, v̂m〉|2 =
s(λm)D(λm)

D′(λm)
(27)

Consequently, evaluating s(λm) and s′(λm) provides a method for estimating the angles between the population singular
vectors um, vm and the observed singular vectors ûm, v̂m. These relationships have been employed to derive optimal
methods of singular value shrinkage [27].

Remark 2. Separable variance profiles arise naturally when the columns of Y are independent random vectors in Rp of
the form

Yj = Xj + b
1/2
j A1/2Gj , 1 ≤ j ≤ n, (28)

where the Xj are signal vectors constrained to an r-dimensional subspace of Rp; A is a positive definite matrix; and
b1, . . . , bn are specified weights. In this model, each signal vector Xj is observed in the presence of heteroscedastic noise
(with covariance A) of variable strength bj . The noise matrix alone is distributed like N = A1/2GB1/2, where B =
diag(b1, . . . , bn). When A = Ip, this model is considered in [17, 15, 16]; when B = In, this model is considered in [25, 39].

Proposition 2.4. For λ > λ∗, D(λ) is decreasing and convex.

Proof. Write D(λ) = ϕ(λ)ϕ(λ), where ϕ(λ) =
√
λs(λ) and ϕ(λ) =

√
λs(λ). Using D′(λ) = ϕ(λ)ϕ′(λ) + ϕ′(λ)ϕ(λ) and

D′′(λ) = ϕ(λ)ϕ′′(λ) + ϕ′′(λ)ϕ(λ) + 2ϕ′(λ)ϕ′(λ), and ϕ(λ) < 0 and ϕ(λ) < 0 for λ > λ∗, it is enough to show that ϕ(λ)
ϕ(λ) are increasing and concave. But this follows immediately from the identities

d

dλ

√
λ

t− λ =
1

2

λ+ t√
λ(t− λ)2

> 0 (29)

and

d2

dλ2

√
λ

t− λ =
1

4

6λt+ 3λ2 − t2

λ3/2(t− λ)3
< 0, (30)

and the definitions (4) and (6) of s(λ) and s(λ).

2.4 Newton’s root-finding algorithm

Newton’s method is a classical technique for finding the roots of a function of one real variable. We briefly review the
method here; the reader may consult any standard reference on optimization or numerical analysis, such as [28, 8], for
additional details. We are given a smooth function f(x), where x ∈ [a, b], and we suppose f(a) < 0 and f(b) > 0. We
also suppose that f ′(x) > 0 and f ′′(x) < 0 for all x ∈ (a, b); that is, f is a strictly increasing and concave. Our goal is to
compute x∗, the unique root of f in (a, b).

To find x∗, Newton’s method initializes a < x0 < x∗, and defines a sequence of updates recursively as follows: given an
estimate xk, the next value xk+1 is defined by

xk+1 = xk −
f(xk)

f ′(xk)
. (31)

5

Geometrically, xk+1 is the root of the line tangent to the graph of f at the point (xk, f(xk)). Because f is concave, it is
easy to see that xk < xk+1 ≤ x∗.

Because each xk is obtained from a linear approximation to f , the errors decay quadratically in the vicinity of x∗; that
is

|xk+1 − x∗| ≤ C|xk − x∗|2 (32)

when |xk − x∗| is sufficiently small.

Remark 3. Quadratic convergence is what makes Newton’s method an especially attractive algorithm when it is applicable.
In practical terms, it means that the number of accurately computed digits of x∗ approximately doubles after each iteration
of the algorithm, until machine precision is reached.

3 Mathematical apparatus

In this section, we analyze the master equations (20) – (22). Our results will provide the necessary tools to devise algorithms
for computing the SSDT λ∗ and evaluating s(λ) and s′(λ) for λ > λ∗. We let a∗ = max1≤i≤p ai, and b∗ = max1≤j≤n bj .

We define the function F (λ, e) by:

F (λ, e) = e−
p∑
i=1

aiωi
aiG(e)− λ . (33)

Then for each λ > λ∗, e(λ) satisfies F (λ, e(λ)) = 0. When we treat λ as a fixed parameter and e as a variable, we will use
the notation Fλ(e) = F (λ, e).

3.1 Range and monotonicity of e(λ) when λ > λ∗

We first state a result on the range of e(λ) for λ > λ∗. The function G(e) approaches 0 as e → ∞, and grows to +∞ as
e→ (−1/γb∗)+, and is strictly decreasing on the interval

J ≡
{
e : e >

−1

γb∗

}
. (34)

For any λ > 0, we define the interval Iλ by

Iλ ≡
{
e ∈ J : G(e) <

λ

a∗

}
. (35)

Proposition 3.1. When λ > λ∗, e(λ) is contained in the interval Iλ ∩ (−∞, 0).

We will develop the proof in several steps.

Lemma 3.2. Let ε > 0. Then the function G(e(λ)) is bounded for all λ > λ∗ + ε.

Proof. We show that the range of e(λ) cannot approach any of the singularities of G, which lie at the values −1/(γbj).
Define

H(λ) =
G(e(λ))

λ
. (36)

Then from (20)

λs(λ) =

p∑
i=1

ωi
aiH(λ)− 1

, (37)

and consequently

1 + λs(λ) =

p∑
i=1

ωi
aiH(λ)− 1

+

p∑
i=1

ωi
aiH(λ)− 1

aiH(λ)− 1
=

p∑
i=1

aiH(λ)ωi
aiH(λ)− 1

= G(e(λ))e(λ). (38)

Since λs(λ) is bounded for λ > λ∗ + ε, this tells us that G(e(λ)) must stay bounded so long as e(λ) is bounded away from
0; in particular, e(λ) cannot be made arbitrarily close to any of the singularities −1/(γbj).

Corollary 3.3. e(λ)→ 0− as λ→∞.

6

Proof. Because G(e(λ)) is bounded for large λ, the result follows from (21).

Corollary 3.4. For any λ > λ∗, e(λ) ∈ J ; that is,

e(λ) >
−1

γb∗
. (39)

Proof. This follows from the continuity of e(λ) for λ > λ∗, and the facts that it never passes through −1/(γbj) and
approaches 0 at large λ.

Corollary 3.5. For all λ > λ∗, G(e(λ)) > 0 and e(λ) < 0.

Proof. The positivity of G(e(λ)) follows immediately from Corollary 3.4. The negativity of e(λ) then follows from (38),
and the fact that 1 + λs(λ) < 0.

Lemma 3.6. For all λ > λ∗,

G(e(λ))

λ
<

1

a∗
. (40)

Proof. We have G(e(λ)) 6= λ/ai, from (20). Suppose for some λ > λ∗, we had

G(e(λ))

λ
>

1

ai
. (41)

The inequality must then remain true for all sufficiently large λ, since G(e(λ))/λ is continuous and does not pass through
1/ai. However, the left side converges to 0 as λ→∞, since G(e(λ)) is bounded for large λ; a contradiction. This completes
the proof.

We have shown that for all λ > λ∗, e(λ) lies in the interval defined by the inequalities

G(e) ≤ λ

a∗
, e >

−1

γb∗
, e < 0. (42)

This completes the proof of Proposition 3.1.
Next we prove that e(λ) is increasing:

Proposition 3.7. The function e(λ) is increasing for λ > λ∗.

Proof. We have:

(∂λF)(λ, e) = −
p∑
i=1

aiωi
(aiG(e)− λ)2

< 0. (43)

Since F (λ, e(λ)) = 0, we have:

0 =
∂

∂λ
{F (λ, e(λ))} = (∂λF)(λ, e(λ)) + e′(λ)(∂eF)(λ, e(λ)), (44)

and so

e′(λ)(∂eF)(λ, e(λ)) =

p∑
i=1

aiωi
(aiG(e)− λ)2

> 0. (45)

Consequently, e′(λ) can never be 0. Furthermore,

(∂eF)(λ, e) = 1 +G′(e(λ))

p∑
i=1

(
ai

aiG(e(λ))− λ

)2

ωi (46)

which converges to 1 as λ→∞ (note that e(λ) stays bounded away from singularities of G(e) and also G′(e), which have
the same singularities). So e′(λ) > 0 for sufficiently large λ, and hence, since it is continuous and cannot pass through 0,
e′(λ) > 0 for all λ > λ∗.

7

3.2 Behavior of Fλ(e)

In this section we characterize the behavior of Fλ(e) = F (λ, e) (viewed as a function of e) on the interval Iλ. Specifically,
we show the following. For any λ > 0, Fλ(e) is a strictly convex function that approaches +∞ as e approaches either end
of Iλ. Furthermore, when λ > λ∗, the minimum value of Fλ(e) is less than zero, and Fλ(0) > 0; consequently, there are
exactly two roots of Fλ(e), both contained in the interval Iλ ∩ (−∞, 0). We show that e(λ) is always equal to the largest
root, namely the one at which F ′λ(e) > 0.

Lemma 3.8. For λ > 0, the function Fλ(e) is strictly convex on Iλ; that is, (∂2
eeF)(λ, e) > 0.

Proof. We have:

(∂eF)(λ, e) = 1 +G′(e(λ))

p∑
i=1

(
ai

aiG(e(λ))− λ

)2

ωi (47)

and

(∂2
eeF)(λ, e) = G′′(e)

p∑
i=1

(
ai

aiG(e)− λ

)2

ωi − 2G′(e)2
p∑
i=1

(
ai

aiG(e)− λ

)3

ωi. (48)

Now whenever e ∈ Iλ, we have e > −1/γb∗ ≥ −1/γbj for all 1 ≤ j ≤ n, and G(e) < λ/a∗ ≤ λ/ai for all 1 ≤ i ≤ p;
consequently,

G′′(e) = 2γ2
n∑
j=1

(
bj

1 + γbje

)3

πj > 0 (49)

and

p∑
i=1

(
ai

aiG(e)− λ

)3

ωi < 0. (50)

Consequently, (∂2
eeF)(λ, e) > 0 for all e ∈ Iλ, i.e. the function Fλ(e) is convex.

Lemma 3.9. The function Fλ(e) diverges to +∞ as e→ +∞ and as e approaches the left endpoint of Iλ from the right.

Proof. This is immediate from the definition of F (λ, e).

Lemma 3.10. For each λ > λ∗, F (λ, 0) > 0.

Proof. We have:

F (λ, 0) = −
p∑
i=1

aiωi
aiG(0)− λ . (51)

Since G(e(λ)) < λ/ai and G(e) is decreasing on Iλ, and e(λ) < 0, we also have G(0) < G(e(λ)) < λ/ai; consequently,
F (λ, 0) > 0.

Proposition 3.11. For λ > λ∗, (∂eF)(λ, e(λ)) > 0.

Proof. This follows from (45) and e′(λ) > 0.

We have shown that Fλ(e) has two roots in the interval Iλ ∩ (−∞, 0) whenever λ > λ∗. Proposition 3.11 identifies e(λ)
as the root that is closest to zero, or equivalently, the root where the derivative of Fλ is positive. This characterization
will be used in Section 4.2 to devise the algorithm for computing e(λ), and consequently s(λ).

8

3.3 The minimum of Fλ(e)

We will let t(λ) denote the minimum of Fλ(e) on Jλ; that is, t(λ) is the unique value on Jλ that satisfies

(∂eF)(λ, t(λ)) = 0. (52)

We define the function Q(λ) for λ > 0 by:

Q(λ) = F (λ, t(λ)). (53)

For any λ > 0, we define the function Rλ(e) for e ∈ Iλ by:

Rλ(e) = (∂eF)(λ, e) = F ′λ(e). (54)

Note that by definition, Rλ(t(λ)) = 0 for all λ = 0.
We will show that Q is decreasing and convex and Rλ is increasing and concave.

Lemma 3.12. Q(λ) is a decreasing function of λ > 0.

Proof. The derivative of Q may be computed as follows:

Q′(λ) = ∂λ{F (λ, t(λ))}
= (∂λF)(λ, t(λ)) + (∂eF)(λ, t(λ))t′(λ)

= (∂λF)(λ, t(λ))

= −
p∑
i=1

aiωi
(aiG(t(λ))− λ)2

, (55)

which is negative.

Proposition 3.13. Q(λ) is a convex function of λ > 0.

Proof. We first compute the derivative of t(λ). We have

0 = (∂eF)(λ, t(λ)). (56)

Differentiating with respect to λ, we find

0 = (∂2
λeF)(λ, t(λ)) + (∂2

eeF)(λ, t(λ))t′(λ), (57)

and so

t′(λ) =
−(∂2

λeF)(λ, t(λ))

(∂2
eeF)(λ, t(λ))

=
−2G′(t(λ))

∑p
i=1

a2iωi

(aiG(t(λ))−λ)3

G′′(t(λ))
∑p
i=1

a2iωi

(aiG(t(λ))−λ)2 − 2G′(e)2
∑p
i=1

a3iωi

(aiG(t(λ))−λ)3

. (58)

Now the second derivative of Q is given by

Q′′(λ) = 2

p∑
i=1

ai(aiG
′(t(λ))t′(λ)− 1)ωi

(aiG(t(λ))− λ)3
. (59)

We will show that Q′′(λ) > 0 for all λ. In fact, we will show the stronger result that each summand is positive, or
equivalently, recalling that a∗ = max1≤i≤p ai,

a∗G′(t(λ))t′(λ) ≤ 1. (60)

9

To prove this, we observe that

a∗G′(t(λ))t′(λ) =
−2G′(t(λ))2

∑p
i=1

a3iωi

(aiG(t(λ))−λ)3
a∗

ai

G′′(t(λ))
∑p
i=1

a2iωi

(aiG(t(λ))−λ)2 − 2G′(t(λ))2
∑p
i=1

a3iωi

(aiG(t(λ))−λ)3

=
−2G′(t(λ))2

∑p
i=1

a3iωi

(aiG(t(λ))−λ)3
a∗

ai

G′′(t(λ))
∑p
i=1

a3iωi

(aiG(t(λ))−λ)3
aiG(t(λ))−λ

ai
− 2G′(t(λ))2

∑p
i=1

a3iωi

(aiG(t(λ))−λ)3

=
−2G′(t(λ))2

∑p
i=1

a3iωi

(aiG(t(λ))−λ)3
a∗

ai∑p
i=1

a3iωi

(aiG(t(λ))−λ)3

(
G′′(t(λ))aiG(t(λ))−λ

ai
− 2G′(t(λ))2

)
=

∑p
i=1

a3iωi

(λ−aiG(t(λ)))3
a∗

ai∑p
i=1

a3iωi

(λ−aiG(t(λ)))3

(
1− G′′(t(λ))

2G′(t(λ))2
aiG(t(λ))−λ

ai

)
.

(61)

To show that this is less than 1, it is enough to show that

a∗

ai
≤ 1− G′′(t(λ))

2G′(t(λ))2
aiG(t(λ))− λ

ai
= 1− G′′(t(λ))

2G′(t(λ))2

(
G(t(λ))− λ

ai

)
, (62)

or equivalently

1 ≤ ai
a∗

+
G′′(t(λ))

2G′(t(λ))2

(
λ

a∗
− ai
a∗
G(t(λ))

)
, (63)

We will show that this inequality holds for any value of ai between 0 and a∗. If ai = a∗, then the right side becomes

1 +
G′′(t(λ))

2G′(t(λ))2

(
λ

a∗
−G(t(λ))

)
, (64)

and since the term

G′′(t(λ))

2G′(t(λ))2

(
λ

a∗
−G(t(λ))

)
(65)

is positive (because G is convex, t(λ) ∈ Jλ, and a∗G(e) < λ on Jλ), the desired inequality is satisfied.
On the other hand, if ai = 0, the right hand side becomes

G′′(t(λ))

2G′(t(λ))2
λ

a∗
>
G′′(t(λ))G(λ)

2G′(t(λ))2
(66)

where the inequality holds since t(λ) ∈ Jλ, and a∗G(e) < λ for all e ∈ Jλ. By the Cauchy-Schwarz inequality,

|G′(λ)| = γ

n∑
j=1

(
bj

1 + γbje

)2

πj = γ

n∑
j=1

(
bj

1 + γbje

)3/2(
bj

1 + γbje

)1/2

πj

≤

[
γ2

n∑
j=1

(
bj

1 + γbje

)3

πj

]1/2 [n∑
j=1

bj
1 + γbje

πj

]1/2

=

√
G′′(e)G(e)

2
, (67)

or in other words,

G′′(e)G(e)

2G′(e)2
≥ 1. (68)

This gives the desired result.

Proposition 3.14. For all λ > 0, Rλ(e) is an increasing and concave function of e ∈ Iλ.

10

Proof. The first derivative of Rλ is:

R′λ(e) = (∂2
eeF)(λ, e), (69)

which as we’ve seen is positive. The second derivative of Rλ is

R′′λ(e) =(∂3
eeeF)(λ, e)

=G(3)(e)

p∑
i=1

(
ai

aiG(e)− λ

)2

ωi − 6G′′(e)G′(e)

p∑
i=1

(
ai

aiG(e)− λ

)3

ωi

+ 6G′(e)3
p∑
i=1

(
ai

aiG(e)− λ

)4

ωi, (70)

which is always negative, since G(3)(e) < 0, G′′(e) > 0, G′(e) < 0, and aiG(e) < λ for all e ∈ Iλ and 1 ≤ i ≤ p.

4 Algorithms

In this section, we describe the algorithms for computing the SSDT λ∗ and for evaluating the Stieltjes transform s(λ) and
its derivative s′(λ) at values λ > λ∗. By Lemmas 2.1 and 2.2, s(λ) and s′(λ) may be easily found from s(λ) and s′(λ).

4.1 Computation of the boundary λ∗

In this section, we derive an algorithm for the computation of λ∗. First, we observe that when λ > λ∗, then as we have
shown there are real roots of Fλ(e) to the left and to the right of t(λ); in particular, F (λ, t(λ)) < 0. On the other hand, if
λ < λ∗, the function Fλ(e) cannot have a real root, since that would imply that the Stieltjes transform is real inside the
support of µ. Consequently, F (λ, t(λ)) > 0. It follows that the SSDT λ∗ is the value at which F (λ, t(λ)) = 0; that is, λ∗,
is the unique root of Q on (0,∞).

From Lemma 3.12 and Proposition 3.13, Q(λ) is decreasing and convex. With an efficient procedure for evaluating
Q(λ) and Q′(λ), we can therefore use Newton’s algorithm to find its root if we initialize the algorithm to the left of the
root. In Section 4.1.2, we detail how to evaluate Q(λ) and Q′(λ). As a preliminary step, we will need to compute the left
endpoint of Iλ; we do this in 4.1.1. The resulting algorithm for evaluating λ∗ is summarized in Algorithm 3.

Algorithm 1 Computation of the left endpoint of Iλ

1: Input: Precision ε > 0; parameter λ > 0
2: Initialize: e > −1/(γb∗)
3: Bisection: e← (e− 1/(γb∗))/2, until Tλ(e) > 0
4: Newton: e← e− Tλ(e)/T ′λ(e), until |Tλ(e)| < ε
5: Output: e∗λ = e

Algorithm 2 Evaluation of t(λ), Q(λ) and Q′(λ)

1: Input: Precision ε > 0; parameter λ > 0
2: Endpoint: Compute e∗λ using Algorithm 1
3: Initialize: e > e∗λ
4: Bisection: e← (e+ e∗λ)/2, until Rλ(e) < 0
5: Newton: e← e−Rλ(e)/R′λ(e), until |Rλ(e)| < ε
6: Output: t(λ) = e, Q(λ) = F (λ, e), Q′(λ) = (∂λF)(λ, e)

4.1.1 Computation of the left endpoint of Iλ, λ > 0

We recall the definition of the interval Iλ:

Iλ =

{
e ∈ J : G(e) <

λ

a∗

}
, (71)

11

Algorithm 3 Evaluation of λ∗

1: Input: Precision ε > 0
2: Initialize: λ > 0
3: Bisection: λ← λ/2, until Q(λ) < 0
4: Newton: λ← λ−Q(λ)/Q′(λ), until |Q(λ)| < ε
5: Output: λ∗ = λ

where J is the interval J = {e : e > −1/(γb∗)}. Let us denote by e∗λ the left endpoint of Iλ. Since G(e) is a decreasing
function of e on J , e∗λ is the unique root of

Tλ(e) = G(e)− λ

a∗
(72)

on J . Since Tλ is a decreasing, convex function of e on J , we may find its root using Newton’s algorithm, initialized to
the left of the root. Such an initial value e0 can be found by starting with any value e in J , and performing bisection with
−1/(γb∗), the left endpoint of J , until we arrive at a value where Tλ(e0) > 0. Newton’s algorithm is then performed with
initial value e0. We summarize the procedure in Algorithm 1.

4.1.2 Evaluation of t(λ), Q(λ), and Q′(λ)

Next, we show how to evaluate the functions t(λ), Q(λ), and Q′(λ). t(λ) is defined as the root of Rλ(e) on Iλ. Since
Rλ(e) is an increasing, concave function, we may find its root using the Newton algorithm initialized to the left of the root,
i.e. the region where Rλ(e) < 0. Such an initial value may be found by taking a starting point e to the right of e∗λ, and
performing bisection on e and e∗λ until we arrive at a value e0 with Rλ(e0) < 0. We can then perform Newton’s algorithm
on Rλ, initialized at e0. The procedure is summarized in Algorithm 2.

4.2 Evaluation of s(λ) and s′(λ), λ > λ∗

In this section, we present an algorithm for evaluating the Stieltjes transform s(λ) of µ, and its derivative s′(λ), when
λ > λ∗. This immediately provides a method for evaluating s(λ) and s′(λ), and the D-transform D(λ) defined in Section
2.3.

As we showed in Section 3.2, the function Fλ(e) is convex on Iλ and has two roots, both of which are negative. The
root closest to 0, i.e. the rightmost root, is e(λ). Since Fλ(0) > 0 and Fλ(e) is convex, this tells us that Newton’s method,
initialized at e0 = 0, will converge to e(λ). For brevity, we introduce the function W (λ, e) defined by:

W (λ, e) =

p∑
i=1

ωi
aiG(e)− λ . (73)

With this notation, we have:

s(λ) = W (λ, e(λ)) (74)

and

s′(λ) = (∂λW)(λ, e(λ)) + (∂eW)(λ, e(λ))e′(λ). (75)

Note that from (44), we can evaluate e′(λ):

e′(λ) =
−(∂λF)(λ, e(λ))

(∂eF)(λ, e(λ))
. (76)

The method for evaluating s(λ) and s′(λ) is summarized in Algorithm 4.

Algorithm 4 Evaluation of s(λ) and s′(λ)

1: Input: Precision ε > 0; parameter λ > λ∗

2: Initialize: e = 0
3: Newton: e← e− Fλ(e)/F ′λ(e), until |Fλ(e)| < ε
4: Output: s(λ) =W (λ, e), s′(λ) = (∂λW)(λ, e)− (∂eW)(λ, e)(∂λF)(λ, e)/(∂eF)(λ, e)

12

5 Numerical results

We have implemented the algorithms described in Section 4 in MATLAB. In this section, we report on several experiments
illustrating the algorithms’ behavior.

5.1 Convergence

Algorithms 1 – 4 are all versions of the Newton root-finding method. In this section, we illustrate the quadratic convergence
of these methods, as predicted from the theory reviewed in Section 2.4. In each experiment, we used parameters p = 512,
n = 1024, and γ = 1/2. We generated the values a1, . . . , ap and b1, . . . , bn randomly from a Unif(0, 1) distribution, and
assigned random probabilities ωi and πj by drawing values from Unif(0, 1) and normalizing to sum to 1. For experiments
in which a value λ is specified, we also choose it at random.

In Tables 1 – 4, the first column displays the iteration number m, starting from the initial value and going until the root
has been reached. The second column displays the function value at the mth iterate; the algorithm terminates when the
function reaches machine precision ε. We work in double precision, so ε ≈ 10−16. The third column displays the relative
error in the root itself, defined by:

err(xm, x) =
xm − x
x

. (77)

Table 1 shows the results for Algorithm 1, which computes the left endpoint e∗λ of Iλ. Table 2 shows the results for
Algorithm 2, which evaluates t(λ). Table 3 shows the results for Algorithm 3, which computes the boundary λ∗. Table 4
shows the results for Algorithm 4, which evaluates e(λ).

Remark 4. For each algorithm, we observe quadratic convergence close to the root, as expected. That is, on each
iteration close to termination the number of correct digits roughly doubles, and the size of the objective roughly squares,
until machine precision is reached.

5.2 Scalability

In the next experiment, we compute timings for the computation of λ∗ and the evaluation of s(λ). These experiments were
run on a Dell Precision 5540 with 62.5 GB of RAM and an Intel Core i9 CPU.

For increasing values of n, we set p = n/2 (γ = 1/2). We generated the values a1, . . . , ap and b1, . . . , bn randomly
from a Unif(1, 2) distribution, and assigned them random probabilities ωi and πj by drawing values from Unif(0, 1) and
normalizing to sum to 1.

For each n, we then record the time in seconds required to compute λ∗, and the time in seconds required to compute
s(λ) on a grid of 100 equispaced values of λ between λ∗ + 1 and λ∗ + 10. The reported timings are averaged over five runs
of the experiment, and are displayed in Table 5. It is apparent that the running times scale approximately linearly with
n, as we would expect. In addition to linearly scaling with n, the magnitudes of the timings are quite encouraging; for
example, it takes only about 4 seconds to compute λ∗ when n is over two million and p is over one million.

5.3 Finite sample accuracy for λ∗

The master equations (20) – (22) from which we compute λ∗ are asymptotic and deterministic, holding almost surely
in the limit as k, l → ∞. In this experiment, we assess the finite sample accuracy of estimating the SSDT λ∗ from the
operator norm of the random matrix NNT . We consider how the estimate improves as k and l grow. We use a model
where p = n = 2, and both ν and ν have point masses at 2 and 3, each with weight 1/2; and set γ = 1/2. We generate
matrices of size k-by-l, where k grows and l = k/γ = 2k.

For each value of k, we draw such a k-by-l random matrix N and compute the operator norm of NNT . We compare this
to the value of λ∗ computed using Algorithm 3. In Table 6, we show the mean absolute error, averaged over M = 40000
runs for each value of k. More precisely, if λ̂∗j is the operator norm of NNT from trial j = 1, . . . ,M , we record

mean absolute error =
1

M

M∑
j=1

|λ∗ − λ̂∗j |
λ∗

. (78)

We also record the average bias, defined as

mean bias =
1

M

M∑
j=1

λ∗ − λ̂∗j
λ∗

. (79)

In Figure 1, we plot the log error against log2(k). The plot demonstrates a linear dependence. The slope of the line is
estimated to be approximately −0.68.

13

Table 1: Error after each iterate in evaluation of e∗λ.

m Tλ(em) err(em, e
∗
λ)

1 2.08e-01 4.26e-02
2 4.34e-02 1.11e-02
3 2.55e-03 6.90e-04
4 9.66e-06 2.63e-06
5 1.40e-10 3.80e-11
6 -2.75e-16 -1.23e-16

Table 2: Error after each iterate in evaluation of t(λ).

m Rλ(em) err(em, t(λ))
1 -3.77e-01 3.71e-02
2 -6.89e-02 8.34e-03
3 -3.40e-03 4.34e-04
4 -9.24e-06 1.18e-06
5 -6.84e-11 8.73e-12
6 -5.55e-15 7.85e-16

Remark 5. In [19], it is shown that for white noise the expected fluctations of the top eigenvalue of NNT are of the order
k−2/3, which implies the log-log plot would have a slope of −2/3. The observed slope of approximately −0.68 is a close
match to this value.

Remark 6. For all values of k, the bias is positive. In other words, the estimated values λ̂∗k tend to underestimate λ∗.

5.4 Finite sample accuracy of spiked model parameters

In this experiment, we test the finite sample accuracy of parameter estimation in the spiked random matrix model. We
consider k-by-l random matrices of the form Y = X + N, where X = θuvT is a rank 1 “signal” matrix with uniformly
random singular vectors u and v, and N = A1/2GB1/2 is a random Gaussian noise matrix with separable variance profile.
We will denote by λ̂

As we reviewed in Section 2.3, the top eigenvalue of YYT converges almost surely to a value λ satisfying θ2 = 1/D(λ),
in the limit k/l → γ. Furthermore, if û and v̂ are the top singular vectors of Y, then the absolute inner products |〈u, û〉|
and |〈v, v̂〉| converge almost surely to c ≡ s(λm)D(λm)/D′(λm) and c ≡ s(λm)D(λm)/D′(λm), respectively. We remind
the reader that we define the D-transform by D(λ) = λs(λ)s(λ).

We test the accuracy of these formulas for finite and increasing values of k and l. Using Algorithm 4 for evaluating
s(λ) and s′(λ), we can easily evaluate D(λ). Proposition 2.4 shows that for a specified parameter θ, Newton’s root-finding
algorithm may be used to solve for the asymptotic λ = 1/D−1(θ2). The asymptotic values c and c are then evaluated from
their respective formulas.

We compare these asymptotic values to the top eigenvalue of NNT and the cosines between the singular vectors of X
and Y, for randomly generated data. We again use a model where p = n = 2, and both ν and ν have point masses at
2 and 3, each with weight 1/2; and set γ = 1/2. We generate matrices of size k-by-l, where k grows and l = k/γ = 2k.
We generate a signal matrix X = θuvT where u and v are uniformly random unit vectors in Rk and Rl, respectively; and
θ =

√
1/D(λ∗) + 20, ensuring a detectable signal.

Table 3: Error after each iterate in evaluation of λ∗.

m Q(λm) err(λm, λ
∗)

1 1.25e+00 -3.10e-01
2 3.10e-01 -1.03e-01
3 3.12e-02 -1.15e-02
4 3.92e-04 -1.46e-04
5 6.34e-08 -2.37e-08
6 2.00e-15 -2.11e-16

14

Table 4: Error after each iterate in evaluation of e(λ).

m Fλ(em) err(em, e(λ))
1 4.71e-01 -1.00e+00
2 8.86e-03 -1.93e-02
3 6.42e-06 -1.40e-05
4 3.43e-12 -7.50e-12
5 4.44e-16 -1.10e-15

Table 5: Timings in seconds for evaluating λ∗ and s(λ) at 100 values of λ

log2(n) Timing, λ∗ Timing, s(λ)
18 4.30e-01 1.93e-01
19 8.67e-01 4.27e-01
20 1.89e+00 1.66e+00
21 3.95e+00 4.20e+00
22 8.41e+00 1.02e+01
23 1.70e+01 2.09e+01
24 3.43e+01 4.19e+01

Table 6: Errors and bias in estimating λ∗

log2(k) Error Bias
5 8.73e-02 7.72e-02
6 5.41e-02 4.75e-02
7 3.39e-02 2.93e-02
8 2.12e-02 1.82e-02
9 1.32e-02 1.13e-02
10 8.20e-03 6.97e-03
11 5.12e-03 4.32e-03

Table 7: Errors in estimating λ, c, and c

log2(k) sing. val. left cos. right cos.
5 7.68e-02 1.80e-02 2.26e-02
6 5.43e-02 1.27e-02 1.59e-02
7 3.85e-02 9.10e-03 1.13e-02
8 2.74e-02 6.38e-03 7.98e-03
9 1.92e-02 4.53e-03 5.61e-03
10 1.36e-02 3.20e-03 3.99e-03
11 9.58e-03 2.25e-03 2.81e-03

15

5 6 7 8 9 10 11

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

Figure 1: Log errors for estimating λ∗

5 6 7 8 9 10 11

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

-4

Figure 2: Log errors for estimating λ, c, and c

For each value of k, we draw such a k-by-l random matrix Y = X + N and compute the operator norm of YYT . We
compare this to the asymptotic value of λ. We also compare the values |〈u, û〉| and |〈v, v̂〉| to c and c, respectively. In Table
7, we show the mean absolute errors of these estimates, averaged over M = 40000 runs for each value of k. More precisely,
if λ̂j is the operator norm of YYT from trial j = 1, . . . ,M , and ĉj and ĉj are the left and right cosines, respectively, we
record the mean absolute errors:

1

M

M∑
j=1

|λ− λ̂j |
λ

,
1

M

M∑
j=1

|c− ĉj |
c

,
1

M

M∑
j=1

|c− ĉj |
c

. (80)

In Figure 2, we plot the log errors against log2(k). The plots all demonstrate a linear dependence. The slope of each
line is estimated to be approximately −0.50.

Remark 7. In [2], it is shown that the expected fluctations of the top eigenvalue of YYT are of the order k−1/2, which
implies the log-log plot would have a slope of −1/2. Our observed slope closely matches this value.

6 Conclusion

We have introduced an algorithm for rapidly computing the spectral signal detection threshold λ∗ in signal-plus-noise
random matrix models. We have considered a class of random noise matrices with separable variance structure, which
arise often in applications. Our algorithm is based on an implicit characterization of λ∗ derived from the master equations
for the Stieltjes transform s(λ). Several nested applications of Newton’s method are applied to evaluate λ∗ and auxiliary

16

parameters. Fast algorithms are also introduced to evaluate s(λ) and s′(λ), the Stieltjes transform and its derivative, at
real values λ > λ∗. We have demonstrated the rapid convergence of these methods and their linear scaling in numerical
tests. We have also shown the effects of random fluctations for increasing values of p and n.

Acknowledgements

This work was supported by the NSF BIGDATA award IIS 1837992, and BSF award 2018230. I thank Edgar Dobriban
for a helpful discussion and for pointing out the method from [12].

References

[1] Zhidong Bai and Jack W. Silverstein. Spectral Analysis of Large Dimensional Random Matrices. Springer Series in
Statistics. Springer, 2009.

[2] Florent Benaych-Georges and Raj Rao Nadakuditi. The singular values and vectors of low rank perturbations of large
rectangular random matrices. Journal of Multivariate Analysis, 111:120–135, 2012.

[3] Ezio Biglieri, Robert Calderbank, Anthony Constantinides, Andrea Goldsmith, Arogyaswami Paulraj, and H. Vincent
Poor. MIMO Wireless Communications. Cambridge University Press, 2007.

[4] Andreas Buja and Nermin Eyuboglu. Remarks on parallel analysis. Multivariate Behavioral Research, 27(4):509–540,
1992.

[5] Lucilio Cordero-Grande. MIXANDMIX: numerical techniques for the computation of empirical spectral distributions
of population mixtures. Computational Statistics & Data Analysis, 141:1–11, 2020.

[6] Romain Couillet and Merouane Debbah. Random Matrix Methods for Wireless Communications. Cambridge Univer-
sity Press, 2011.

[7] Romain Couillet and Walid Hachem. Analysis of the limiting spectral measure of large random matrices of the
separable covariance type. Random Matrices: Theory and Applications, 3(4), 2014.

[8] Germund Dahlquist and Åke Björck. Numerical Methods. Prentice Hall, Inc., 1974.

[9] Edgar Dobriban. Efficient computation of limit spectra of sample covariance matrices. Random Matrices: Theory and
Applications, 4(4), 2015.

[10] Edgar Dobriban. Permutation methods for factor analysis and PCA. arXiv preprint arXiv:1710.00479, 2017.

[11] Edgar Dobriban, William Leeb, and Amit Singer. Optimal prediction in the linearly transformed spiked model. Annals
of Statistics, 48(1):491–513, 2020.

[12] Edgar Dobriban and Art B. Owen. Deterministic parallel analysis: an improved method for selecting factors and
principal components. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2018.

[13] David L. Donoho, Matan Gavish, and Iain M Johnstone. Optimal shrinkage of eigenvalues in the spiked covariance
model. Annals of Statistics, 46(6), 2018.

[14] Matan Gavish and David L. Donoho. Optimal shrinkage of singular values. IEEE Transactions on Information Theory,
63(4):2137–2152, 2017.

[15] David Hong, Laura Balzano, and Jeffrey A. Fessler. Towards a theoretical analysis of PCA for heteroscedastic data.
In 54th Annual Allerton Conference on Communication, Control, and Computing, pages 496–503. IEEE, 2016.

[16] David Hong, Laura Balzano, and Jeffrey A. Fessler. Asymptotic performance of PCA for high-dimensional het-
eroscedastic data. Journal of Multivariate Analysis, 2018.

[17] David Hong, Laura Balzano, and Jeffrey A. Fessler. Optimally Weighted PCA for High-Dimensional Heteroscedastic
Data. arXiv preprint arXiv:1810.12862, 2018.

[18] John L. Horn. A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2):179–185, 1965.

[19] Iain M Johnstone. On the distribution of the largest eigenvalue in principal components analysis. Annals of Statistics,
29(2):295–327, 2001.

[20] Shira Kritchman and Boaz Nadler. Determining the number of components in a factor model from limited noisy data.
Chemometrics and Intelligent Laboratory Systems, 94(1):19–32, 2008.

[21] Shira Kritchman and Boaz Nadler. Non-parametric detection of the number of signals: Hypothesis testing and random
matrix theory. IEEE Transactions on Signal Processing, 57(10):3930–3941, 2009.

17

[22] Olivier Ledoit and Michael Wolf. Spectrum estimation: A unified framework for covariance matrix estimation and
PCA in large dimensions. Journal of Multivariate Analysis, 139:360–384, 2015.

[23] Olivier Ledoit and Michael Wolf. Numerical implementation of the QuEST function. Computational Statistics & Data
Analysis, 115:199–223, 2017.

[24] William Leeb. Matrix denoising for weighted loss functions and heterogeneous signals. arXiv preprint
arXiv:1902.09474, 2019.

[25] William Leeb and Elad Romanov. Optimal spectral shrinkage and PCA with heteroscedastic noise. arXiv preprint
arXiv:1811.02201v2, 2019.

[26] Vladimir A Marchenko and Leonid A Pastur. Distribution of eigenvalues for some sets of random matrices. Mat. Sb.,
114(4):507–536, 1967.

[27] Raj Rao Nadakuditi. OptShrink: An algorithm for improved low-rank signal matrix denoising by optimal, data-driven
singular value shrinkage. IEEE Transactions on Information Theory, 60(5):3002–3018, 2014.

[28] Yurii Nesterov. Lectures on Convex Optimization, volume 137 of Springer Optimization and Its Applications. Springer,
2nd edition, 2018.

[29] Damien Passemier and Jian-Feng Yao. On determining the number of spikes in a high-dimensional spiked population
model. Random Matrices: Theory and Applications, 1(01):1150002, 2012.

[30] Debashis Paul. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Statistica
Sinica, 17(4):1617–1642, 2007.

[31] Debashis Paul and Jack W. Silverstein. No eigenvalues outside the support of the limiting empirical spectral distri-
bution of a separable covariance matrix. Journal of Multivariate Analysis, 100:37–57, 2009.

[32] Jack W. Silverstein. Strong convergence of the empirical distribution of eigenvalues of large dimensional random
matrices. Journal of Multivariate Analysis, 55:331–339, 1995.

[33] Jack W. Silverstein and Zhidong Bai. On the empirical distribution of eigenvalues of a class of large dimensional
random matrices. Journal of Multivariate Analysis, 54:175–192, 1995.

[34] Rahul Tandra and Anant Sahai. SNR walls for signal detection. IEEE Journal of Selected Topics in Signal Processing,
2(1):4–17, 2008.

[35] Terence Tao. Topics in Random Matrix Theory. American Mathematical Society, 2012.

[36] Tevfik Yücek and Hüseyin Arslan. A survey of spectrum sensing algorithms for cognitive radio applications. IEEE
Communications Surveys & Tutorials, 11(1):116–130, 2009.

[37] Yonghong Zeng and Ying-Chang Liang. Covariance based signal detections for cognitive radio. In 2nd IEEE Interna-
tional Symposium on New Frontiers in Dynamic Spectrum Access Networks, pages 202–207. IEEE, 2007.

[38] Yonghong Zeng and Ying-Chang Liang. Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE
Transactions on Communications, 57(6):1784–1793, 2009.

[39] Anru Zhang, T. Tony Cai, and Yihong Wu. Heteroskedastic PCA: Algorithm, optimality, and applications. arXiv
preprint arXiv:1810.08316, 2018.

18

