Finite Element Exterior Calculus and Applications

Part V

Douglas N. Arnold, University of Minnesota
Peking University / BICMR
August 15-18, 2015

De Rham complex

$$
0 \rightarrow H^{1}(\Omega) \xrightarrow{\text { grad }} H(\operatorname{curl}, \Omega) \xrightarrow{\text { curl }} H(\operatorname{div}, \Omega) \xrightarrow{\text { div }} L^{2}(\Omega) \rightarrow 0
$$

- $0 \rightarrow H^{1}(\Omega) \xrightarrow{\text { grad }} L^{2}\left(\Omega ; \mathbb{R}^{3}\right)$:
standard formulation of scalar Laplacian
- $H^{1}(\Omega) \xrightarrow{\text { grad }} H($ curl,$\Omega) \xrightarrow{\text { curl }} L^{2}\left(\Omega ; \mathbb{R}^{3}\right)$:

1-form Laplacian, Maxwell's equation based on E and $\sigma=\operatorname{div} \epsilon E=0$

- $H(\operatorname{curl}, \Omega) \xrightarrow{\text { curl }} H(\operatorname{div}, \Omega) \xrightarrow{\text { div }} L^{2}(\Omega)$:

2-form Laplacian, Maxwell's equation based on B and E

- $H(\operatorname{div}, \Omega) \xrightarrow{\text { div }} L^{2}(\Omega) \rightarrow 0$:
mixed formulation of scalar Laplacian

De Rham complex in 2D

$$
0 \rightarrow H^{1}(\Omega) \xrightarrow{\text { grad }} H(\operatorname{rot}, \Omega) \xrightarrow{\text { rot }} L^{2}(\Omega) \rightarrow 0
$$

or

$$
0 \rightarrow H^{1}(\Omega) \xrightarrow{\text { curl }} H(\operatorname{div}, \Omega) \xrightarrow{\text { div }} L^{2}(\Omega) \rightarrow 0
$$

- $0 \rightarrow H^{1}(\Omega) \xrightarrow{\text { curl }} L^{2}\left(\Omega ; \mathbb{R}^{2}\right)$:
standard formulation of scalar Laplacian
- $H^{1}(\Omega) \xrightarrow{\text { curl }} H(\operatorname{div}, \Omega) \xrightarrow{\text { div }} L^{2}(\Omega)$:

1-form Laplacian

- $H(\operatorname{div}, \Omega) \xrightarrow{\text { div }} L^{2}(\Omega) \rightarrow 0$: mixed formulation of scalar Laplacian (Darcy flow)

Stokes complex in 2D and 3D

$$
0 \rightarrow H^{2}(\Omega) \xrightarrow{\text { curl }} H^{1}\left(\Omega ; \mathbb{R}^{2}\right) \xrightarrow{\text { div }} L^{2}(\Omega) \rightarrow 0
$$

Falk-Neilan shape fns: $\mathcal{P}_{5} \Lambda^{0} / \mathcal{P}_{4} \Lambda^{1} / \mathcal{P}_{3} \Lambda^{2}$

$$
0 \rightarrow H^{1}(\Omega) \xrightarrow{\text { div }} H^{1}\left(\Omega, \operatorname{curl} ; \mathbb{R}^{3}\right) \xrightarrow{\text { curl }} H^{1}\left(\Omega ; \mathbb{R}^{3}\right) \xrightarrow{\text { div }} L^{2}(\Omega) \rightarrow 0
$$

J. Evans '11

Elasticity complex

$$
\begin{gathered}
0 \rightarrow H^{1}\left(\Omega ; R^{3}\right) \xrightarrow{\text { sym grad }} H(\operatorname{curl} T \operatorname{curl}, \Omega) \xrightarrow{\text { curl } T \operatorname{curl}} H\left(\operatorname{div}, \Omega ; \mathcal{S}^{3 \times 3}\right) \xrightarrow{\text { div }} L^{2}\left(\Omega ; \mathbb{R}^{3}\right) \\
0 \rightarrow H^{2}(\Omega) \xrightarrow{\text { curl curl }} H\left(\operatorname{div}, \Omega ; \mathcal{S}^{2 \times 2}\right) \xrightarrow{\text { div }} L^{2}\left(\Omega ; \mathbb{R}^{2}\right) \rightarrow 0 \\
0 \rightarrow H^{1}\left(\Omega ; \mathbb{R}^{2}\right) \xrightarrow{\text { sym grad }} H\left(\operatorname{rot} \operatorname{rot}, \Omega ; \mathcal{S}^{2 \times 2}\right) \xrightarrow{\text { rotrot }} L^{2}(\Omega) \rightarrow 0
\end{gathered}
$$

■ $0 \rightarrow H^{1}\left(\Omega ; \mathbb{R}^{2}\right) \xrightarrow{\text { sym grad }} H\left(\operatorname{rot} \operatorname{rot}, \Omega ; \mathcal{S}^{2 \times 2}\right)$: displacement formulation of elasticity

- $H\left(\left(\operatorname{div}, \Omega ; \mathcal{S}^{2 \times 2}\right) \xrightarrow{\text { div }} L^{2}\left(\Omega ; \mathbb{R}^{2}\right) \rightarrow 0\right.$:
mixed formulation of elasticity (strong symmetry)

$$
0 \rightarrow H^{2}(\Omega) \xrightarrow{\text { curl curl }} H\left(\operatorname{div}, \Omega ; \mathcal{S}^{2 \times 2}\right) \xrightarrow{\text { div }} L^{2}\left(\Omega ; \mathbb{R}^{2}\right) \rightarrow 0
$$

AW 2002

Hu Jun-Shangyou Zhang 2015

New complexes from old: a simple case

Suppose $0 \rightarrow \bar{W}^{1} \xrightarrow{\bar{d}, \bar{V}^{1}} \bar{W}^{2}$ and $0 \rightarrow \tilde{W}^{1} \xrightarrow{\tilde{d}, \tilde{V}^{1}} \tilde{W}^{2}$ are closed Hilbert complexes, and that there is a bounded linear isomorphism $S: \tilde{W}^{1} \rightarrow \bar{W}^{2}$.

We define a new short Hilbert complex:

- $V^{1}=\left\{(u, \phi) \in \bar{V}^{1} \times \tilde{V}^{1} \mid d u=S \phi\right\}$
- W^{1} is the competion of V^{1} wrt the norm $\|u, \phi\|_{W}:=\|u\|_{\tilde{W}}$
- $W^{2}=\tilde{W}^{2}$
- $d: V^{1} \subset W^{1} \rightarrow W^{2}$ is given by $d(u, \phi)=\tilde{d} \phi$.

THEOREM

Suppose that the initial two H-complexes are closed and exact. Then $0 \longrightarrow W^{1} \xrightarrow{d, V^{1}} W^{2} \quad$ is also a closed, exact H-complex.

The Hodge Laplacian for the derived complex

$$
\begin{aligned}
& 0 \longrightarrow \bar{W}^{1} \xrightarrow{\frac{\bar{d}, \bar{V}^{1}}{s} \bar{W}^{2}} \begin{array}{c}
\text { a } \\
0 \longrightarrow \tilde{W}^{1} \xrightarrow{d}, \tilde{V}^{1} \\
\tilde{W}^{2}
\end{array} \quad 0 \longrightarrow W^{1} \xrightarrow{d, V^{1}} W^{2}
\end{aligned}
$$

Hodge Lap: Find $(u, \phi) \in V^{1}$ st $\quad\langle\tilde{d} \phi, \tilde{d} \psi\rangle=\langle f, v\rangle, \quad(v, \psi) \in V^{1}$

$$
\begin{aligned}
V^{1} & =\left\{(u, \phi) \in \bar{V}^{1} \times \tilde{V}^{1} \mid d u=S \phi\right\} \\
& =\left\{(u, \phi) \in \bar{V}^{1} \times \tilde{V}^{1} \mid\langle d u-S \phi, \mu\rangle=0 \forall \mu \in \bar{W}^{2}\right\}
\end{aligned}
$$

Implement via Lagrange multiplier: Find $u \in \bar{V}^{1}, \phi \in \tilde{V}^{1}, \lambda \in \bar{W}^{2}$ s.t.

$$
\begin{aligned}
\langle\tilde{d} \phi, \tilde{d} \psi\rangle+\langle\lambda, d v-S \psi\rangle & =\langle f, v\rangle, & & v \in \bar{V}^{1}, \psi \in \tilde{V}^{1}, \\
\langle d u-S \phi, \mu\rangle & =0, & & \mu \in \bar{W}^{2}
\end{aligned}
$$

New norm on $\bar{W}^{2}: \quad\|\mu \mu\|=\sup _{v \in \bar{V}^{1}, \psi \in \tilde{V}^{1}} \frac{\langle\mu, d v-S \psi\rangle}{\|v\|_{V}+\|\psi\|_{\tilde{V}}} \quad\left(S \tilde{V}^{1}\right.$ is dense)
This mixed method satisfies the Brezzi conditions and so is well-posed.

Discretization

The idea is to mimic the construction on the discrete level. Choose two discrete subcomplexes which admit commuting projections:

$$
0 \longrightarrow \bar{V}_{h}^{1} \xrightarrow{d} \bar{V}_{h}^{2} \quad 0 \longrightarrow \tilde{V}_{h}^{1} \xrightarrow{\tilde{d}} \tilde{V}_{h}^{2}
$$

Create a discrete connection map as $S_{h}=\bar{\Pi}_{h}^{2} S: \tilde{V}_{h}^{1} \rightarrow \bar{V}_{h}^{2}$ where $\bar{\Pi}_{h}^{2}$ is the canonical projection. This gives the mixed method:
Find $u_{h} \in \bar{V}_{h^{\prime}}^{1}, \phi_{h} \in \tilde{V}_{h}^{1}, \lambda_{h} \in \bar{V}_{h}^{2}$ s.t.

$$
\begin{aligned}
\left\langle\tilde{d} \phi_{h}, \tilde{d} \psi\right\rangle+\left\langle\lambda_{h}, d v-\bar{\Pi}_{h}^{2} S \psi\right\rangle & =\langle f, v\rangle, & & v \in \bar{V}_{h}^{1}, \psi \in \tilde{V}_{h}^{1} \\
\left\langle d u_{h}-\bar{\Pi}_{h}^{2} S \phi_{h}, \mu\right\rangle & =0, & & \mu \in \bar{V}_{h}^{2}
\end{aligned}
$$

We make the surjectivity assumption $\bar{\Pi}_{h}^{2} S \tilde{\Pi}_{h}^{1}=\bar{\Pi}_{h}^{2}$. We can then prove that the mixed method is convergent.

Example: the biharmonic

$$
\begin{aligned}
& 0 \longrightarrow L^{2} \xrightarrow{\text { grad, } \dot{H}^{1}} L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \\
& 0 \longrightarrow L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \xrightarrow{\text { grad, } \dot{H}^{1}} \\
& V^{1}\left(\Omega ; \mathbb{R}^{n \times n}\right) \\
&=\left\{(u, \phi) \in \stackrel{\circ}{H}^{1}(\Omega) \times \stackrel{\circ}{H}^{1}\left(\Omega ; \mathbb{R}^{n}\right) \mid \phi=\operatorname{grad} u\right\} \\
&=\left\{(u, \operatorname{grad} u) \mid u \in \stackrel{\circ}{H}^{2}(\Omega)\right\} \\
& \cong \dot{H}^{2} \\
& 0 \longrightarrow W^{1} \xrightarrow{d, V^{1}} W^{2} \\
& 0 \longrightarrow L^{2} \xrightarrow{\text { grad grad, } \dot{H}^{2}} L^{2}\left(\Omega ; \mathbb{R}^{n \times n}\right)
\end{aligned}
$$

FEEC discretization of the biharmonic

This gives a family of mixed methods for the biharmonic based on a different formulation than the classical methods (Ciarlet-Raviart, Hellan-Herman-Johnson, ...). It is related (in 2D) to the approach of Durán-Liberman for the Reissner-Mindlin plate.

Elasticity with weak symmetry

The mixed formulation of elasticity with weak symmetry is more amenable to discretization than the standard mixed formulation.

Fraeijs de Veubeke '75
$p=\operatorname{skw} \operatorname{grad} u, \quad A \sigma=\operatorname{grad} u-p$
Find $\quad \sigma \in L^{2}\left(\Omega ; \mathbb{R}^{n \times n}\right), u \in L^{2}\left(\Omega ; \mathbb{R}^{n}\right), p \in L^{2}\left(\Omega ; \mathbb{R}_{\mathrm{skw}}^{n \times n}\right) \quad$ s.t.

$$
\begin{aligned}
\langle A \sigma, \tau\rangle+\langle u, \operatorname{div} \tau\rangle+\langle p, \tau\rangle & =0, & & \tau \in L^{2}\left(\Omega ; \mathbb{R}^{n \times n}\right) \\
-\langle\operatorname{div} \sigma, v\rangle & =\langle f, v\rangle, & & v \in L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \\
-\langle\sigma, q\rangle & =0, & & q \in L^{2}\left(\Omega ; \mathbb{R}_{\text {skw }}^{n \times n}\right)
\end{aligned}
$$

This is exactly the mixed Hodge Laplacian for the complex

$$
L_{A}^{2}\left(\Omega ; \mathbb{R}^{n \times n}\right) \xrightarrow{(- \text { div },- \text { skw })} L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \oplus L^{2}\left(\Omega ; \mathbb{R}_{\text {skw }}^{n \times n}\right) \longrightarrow 0
$$

supposing that it is exact.

Well-posedness

$$
L_{A}^{2}\left(\Omega ; \mathbb{R}^{n \times n}\right) \xrightarrow{(- \text { div,-skw })} L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \oplus L^{2}\left(\Omega ; \mathbb{R}_{\mathrm{skw}}^{n \times n}\right) \longrightarrow 0
$$

To show the complex is exactness, and so the system is well-posed, we relate it to two de Rham complexes with commuting connecting maps:

$S \tau=\tau^{T}-\operatorname{tr}(\tau) I \quad$ (invertible)

Well-posedness

$$
L_{A}^{2}\left(\Omega ; \mathbb{R}^{n \times n}\right) \xrightarrow{(-\operatorname{div},- \text { skw })} L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \oplus L^{2}\left(\Omega ; \mathbb{R}_{\mathrm{skw}}^{n \times n}\right) \longrightarrow 0
$$

To show the complex is exactness, and so the system is well-posed, we relate it to two de Rham complexes with commuting connecting maps:

$S \tau=\tau^{T}-\operatorname{tr}(\tau) I \quad$ (invertible)

Well-posedness

$$
L_{A}^{2}\left(\Omega ; \mathbb{R}^{n \times n}\right) \xrightarrow{(-\operatorname{div},- \text { skw })} L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \oplus L^{2}\left(\Omega ; \mathbb{R}_{\mathrm{skw}}^{n \times n}\right) \longrightarrow 0
$$

To show the complex is exactness, and so the system is well-posed, we relate it to two de Rham complexes with commuting connecting maps:

$$
\rho \longleftarrow v
$$

$S \tau=\tau^{T}-\operatorname{tr}(\tau) I \quad$ (invertible)

Well-posedness

$$
L_{A}^{2}\left(\Omega ; \mathbb{R}^{n \times n}\right) \xrightarrow{(-\operatorname{div},- \text { skw })} L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \oplus L^{2}\left(\Omega ; \mathbb{R}_{\mathrm{skw}}^{n \times n}\right) \longrightarrow 0
$$

To show the complex is exactness, and so the system is well-posed, we relate it to two de Rham complexes with commuting connecting maps:

$S \tau=\tau^{T}-\operatorname{tr}(\tau) I \quad$ (invertible)

Well-posedness

$$
L_{A}^{2}\left(\Omega ; \mathbb{R}^{n \times n}\right) \xrightarrow{(-\operatorname{div},- \text { skw })} L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \oplus L^{2}\left(\Omega ; \mathbb{R}_{\mathrm{skw}}^{n \times n}\right) \longrightarrow 0
$$

To show the complex is exactness, and so the system is well-posed, we relate it to two de Rham complexes with commuting connecting maps:

$S \tau=\tau^{T}-\operatorname{tr}(\tau) I \quad$ (invertible)

Well-posedness

$$
L_{A}^{2}\left(\Omega ; \mathbb{R}^{n \times n}\right) \xrightarrow{(-\operatorname{div},- \text { skw })} L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \oplus L^{2}\left(\Omega ; \mathbb{R}_{\mathrm{skw}}^{n \times n}\right) \longrightarrow 0
$$

To show the complex is exactness, and so the system is well-posed, we relate it to two de Rham complexes with commuting connecting maps:

$$
S \tau=\tau^{T}-\operatorname{tr}(\tau) I \quad \text { (invertible) }
$$

Well-posedness

$$
L_{A}^{2}\left(\Omega ; \mathbb{R}^{n \times n}\right) \xrightarrow{(- \text { div,-skw })} L^{2}\left(\Omega ; \mathbb{R}^{n}\right) \oplus L^{2}\left(\Omega ; \mathbb{R}_{\text {skw }}^{n \times n}\right) \longrightarrow 0
$$

To show the complex is exactness, and so the system is well-posed, we relate it to two de Rham complexes with commuting connecting maps:

$$
S \tau=\tau^{T}-\operatorname{tr}(\tau) I \quad \text { (invertible) }
$$

Discretization

To discretize we select discrete de Rham subcomplexes with commuting projs

$$
\bar{V}_{h}^{1} \xrightarrow{\text { div }} \bar{V}_{h}^{2} \rightarrow 0, \quad \tilde{V}_{h}^{0} \xrightarrow{\text { curl }} \tilde{V}_{h}^{1} \xrightarrow{-\operatorname{div}} \tilde{V}_{h}^{2} \rightarrow 0
$$

to get the discrete complex

$$
\tilde{V}_{h}^{1} \otimes \mathbb{R}^{n} \xrightarrow{\left(- \text { div },-\bar{\pi}_{h}^{2} \text { skw }\right)}\left(\tilde{V}_{h}^{2} \otimes \mathbb{R}^{n}\right) \times\left(\bar{V}_{h}^{2} \otimes \mathbb{R}_{\mathrm{skw}}^{n \times n}\right) \rightarrow 0
$$

We get stability if we can carry out the diagram chase on:

This requires that $\quad \bar{\pi}_{h}^{1} S: \tilde{V}_{h}^{0} \otimes \mathbb{R}^{n} \rightarrow \bar{V}_{h}^{1} \otimes \mathbb{R}_{\text {skw }}^{n \times n} \quad$ is surjective.

Stable elements

The requirement that $\quad \bar{\pi}_{h}^{1} S: \tilde{V}_{h}^{0} \otimes \mathbb{R}^{n} \rightarrow \bar{V}_{h}^{1} \otimes \mathbb{R}_{\text {skw }}^{n \times n} \quad$ is surjective can be checked by looking at DOFs.

The simplest choice is
$\mathcal{P}_{r}^{-} \Lambda^{n-1} \xrightarrow{\text { div }} \mathcal{P}_{r}^{-} \Lambda^{n} \rightarrow 0, \quad \mathcal{P}_{r+1}^{-} \Lambda^{n-2} \xrightarrow{\text { curl }} \mathcal{P}_{r} \Lambda^{n-1} \xrightarrow{- \text { div }} \mathcal{P}_{r-1} \Lambda^{n} \rightarrow 0$
This gives the elements of DNA-Falk-Winther '07

Nearly incompressible material

displacement

mixed

Einstein-Bianchi equations

Riem $=$ Ricci + Weyl

$$
\text { Weyl }=\left(C_{a b c d}\right)=\left(\begin{array}{cc}
E & B \\
B & -E
\end{array}\right)
$$

$E, B 3 \times 3$ symmetric, traceless
Einstein equations + Bianchi identity \Longrightarrow Einstein-Bianchi eqs:
Find: $E, B:[0, T] \rightarrow \mathcal{S}^{3 \times 3}$ such that

$$
\begin{aligned}
\dot{E}=-\operatorname{curl} B, & \dot{B}=\operatorname{curl} E, \\
\operatorname{div} E=0, & \operatorname{div} B=0, \\
\operatorname{tr} E=0, & \operatorname{tr} B=0 .
\end{aligned}
$$

Einstein-Bianchi as an abstract Hodge wave equation

$$
L^{2}(\Omega) \xrightarrow{\text { grad grad, } H^{2}} L^{2}(\Omega ; \mathcal{S}) \xrightarrow{\text { curl }, H(\text { curl })} L^{2}(\Omega ; \mathbb{T})
$$

Find $\quad(\sigma, E, B):[0, T] \rightarrow H^{2} \times H(\operatorname{curl} ; \mathcal{S}) \times L^{2}(\Omega ; \mathbb{T}) \quad$ s.t.

$$
\begin{array}{ll}
\langle\dot{\sigma}, \tau\rangle-\langle u, \operatorname{grad} \operatorname{grad} \tau\rangle=0, & \tau \in H^{2}, \\
\langle\dot{E}, F\rangle+\langle\operatorname{grad} \operatorname{grad} \sigma, F\rangle+\langle B, \operatorname{curl} F\rangle=0, & F \in H(\operatorname{curl} ; \mathcal{S}), \\
\langle\dot{B}, C\rangle-\langle\operatorname{curl} E, C\rangle=0, & C \in L^{2}(\Omega ; \mathbb{T}) .
\end{array}
$$

$\dot{\sigma}=\operatorname{div} \operatorname{div} E, \quad \dot{E}=-\operatorname{grad} \operatorname{grad} \sigma-\operatorname{sym} \operatorname{curl} B, \quad \dot{B}=\operatorname{curl} E$

THEOREM

Suppose $\sigma(0)=0$ and $E(0)$ and $B(0)$ are TSD. Then $\sigma=0$ and E and B are TSD for all time, and E and B satisfy the linearized $E B$ equations.

Obstacles to discretization

To proceed we need finite element subspaces which form a subcomplex with bounded cochain projections. There are two serious obstacles.

1. It is difficult to create a finite element subspace of H^{2} because of the second derivatives.
2. It is difficult to create a finite element subspace of $H(\operatorname{curl} ; \mathcal{S})$ because of the symmetry.

For each of these obstacles we are guided by their solution in simpler context (biharmonic, elasticity).

The FEEC formulation of the EB system

Combining these ideas leads to a first order formulation of EB using six variables.

$$
\begin{gathered}
L^{2}(\Omega) \xrightarrow{\text { grad }} L^{2}\left(\Omega ; \mathbb{R}^{3}\right) \xrightarrow{\text { curl }} L^{2}\left(\Omega ; \mathbb{R}^{3}\right) \\
L^{2}\left(\Omega ; \mathbb{R}^{3}\right) \xrightarrow{\text { grad }} L^{2}\left(\Omega ; \mathbb{R}^{3 \times 3}\right) \xrightarrow{\text { curl }} L^{2}\left(\Omega ; \mathbb{R}^{3 \times 3}\right) \\
E
\end{gathered}
$$

FEEC guides us to an appropriate choice of elements.

Π_{2} skw

Which complexes can we construct from the de Rham complex?

Diagram commutes. Diagonal maps are isomorphisms, subdiagonal injections, superdiagonal surjections.

