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De Rham complex

0→ H1(Ω)
grad−−→ H(curl, Ω)

curl−−→ H(div, Ω)
div−−→ L2(Ω)→ 0

0→ H1(Ω)
grad−−→ L2(Ω; R3):

standard formulation of scalar Laplacian

H1(Ω)
grad−−→ H(curl, Ω)

curl−−→ L2(Ω; R3):
1-form Laplacian, Maxwell’s equation based on E and σ = div εE = 0

H(curl, Ω)
curl−−→ H(div, Ω)

div−−→ L2(Ω):
2-form Laplacian, Maxwell’s equation based on B and E

H(div, Ω)
div−−→ L2(Ω)→ 0:

mixed formulation of scalar Laplacian

1 / 20



De Rham complex in 2D

0→ H1(Ω)
grad−−→ H(rot, Ω)

rot−→ L2(Ω)→ 0

or

0→ H1(Ω)
curl−−→ H(div, Ω)

div−−→ L2(Ω)→ 0

0→ H1(Ω)
curl−−→ L2(Ω; R2):

standard formulation of scalar Laplacian

H1(Ω)
curl−−→ H(div, Ω)

div−−→ L2(Ω):
1-form Laplacian

H(div, Ω)
div−−→ L2(Ω)→ 0:

mixed formulation of scalar Laplacian (Darcy flow)
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Stokes complex in 2D and 3D

0→ H2(Ω)
curl−−→ H1(Ω; R2)

div−−→ L2(Ω)→ 0

Falk-Neilan shape fns: P5Λ0 / P4Λ1 / P3Λ2

0→ H1(Ω)
div−−→ H1(Ω, curl; R3)

curl−−→ H1(Ω; R3)
div−−→ L2(Ω)→ 0

J. Evans ’11
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Elasticity complex

0→ H1(Ω; R3)
sym grad−−−−−→ H(curl T curl, Ω)

curl T curl−−−−−→ H(div, Ω;S3×3)
div−−→ L2(Ω; R3)→ 0

0→ H2(Ω)
curl curl−−−−→ H(div, Ω;S2×2)

div−−→ L2(Ω; R2)→ 0

0→ H1(Ω; R2)
sym grad−−−−−→ H(rot rot, Ω;S2×2)

rot rot−−−→ L2(Ω)→ 0

0→ H1(Ω; R2)
sym grad−−−−−→ H(rot rot, Ω;S2×2):

displacement formulation of elasticity

H((div, Ω;S2×2)
div−−→ L2(Ω; R2)→ 0:

mixed formulation of elasticity (strong symmetry)
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Mixed elasticity elements (2D strong symmetry)

0→ H2(Ω)
curl curl−−−−→ H(div, Ω;S2×2)

div−−→ L2(Ω; R2)→ 0

AW 2002

+9

Hu Jun-Shangyou Zhang 2015
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New complexes from old: a simple case

Suppose 0→ W̄1 d̄,V̄1
−−→ W̄2 and 0→ W̃1 d̃,Ṽ1

−−→ W̃2 are closed Hilbert
complexes, and that there is a bounded linear isomorphism S : W̃1 → W̄2.

0 W̄1 W̄2

0 W̃1 W̃2

d̄, V̄1

d̃, Ṽ1

S

We define a new short Hilbert complex:

V1 = {(u, φ) ∈ V̄1 × Ṽ1 | du = Sφ}
W1 is the competion of V1 wrt the norm ‖u, φ‖W := ‖u‖W̃ (S is injective)

W2 = W̃2

d : V1 ⊂ W1 → W2 is given by d(u, φ) = d̃φ.

THEOREM

Suppose that the initial two H-complexes are closed and exact. Then

0 −→ W1 d,V1
−−→ W2 is also a closed, exact H-complex.
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The Hodge Laplacian for the derived complex

0 W̄1 W̄2

0 W̃1 W̃2

d̄, V̄1

d̃, Ṽ1

S 0 −−−→ W1 d,V1
−−→ W2

Hodge Lap: Find (u, φ) ∈ V1 st 〈d̃φ, d̃ψ〉 = 〈f , v〉, (v, ψ) ∈ V1

V1 = {(u, φ) ∈ V̄1 × Ṽ1 | du = Sφ}
= {(u, φ) ∈ V̄1 × Ṽ1 | 〈du− Sφ, µ〉 = 0 ∀µ ∈ W̄2}

Implement via Lagrange multiplier: Find u ∈ V̄1, φ ∈ Ṽ1, λ ∈ W̄2 s.t.

〈d̃φ, d̃ψ〉+ 〈λ, dv− Sψ〉 = 〈f , v〉, v ∈ V̄1, ψ ∈ Ṽ1,

〈du− Sφ, µ〉 = 0, µ ∈ W̄2

New norm on W̄2: |||µ||| = sup
v∈V̄1,ψ∈Ṽ1

〈µ, dv− Sψ〉
‖v‖V + ‖ψ‖Ṽ

(SṼ1 is dense)

This mixed method satisfies the Brezzi conditions and so is well-posed.
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Discretization

The idea is to mimic the construction on the discrete level. Choose
two discrete subcomplexes which admit commuting projections:

0 −→ V̄1
h

d−→ V̄2
h 0 −→ Ṽ1

h
d̃−→ Ṽ2

h

Create a discrete connection map as Sh = Π̄2
hS : Ṽ1

h → V̄2
h where Π̄2

h is
the canonical projection. This gives the mixed method:

Find uh ∈ V̄1
h , φh ∈ Ṽ1

h , λh ∈ V̄2
h s.t.

〈d̃φh, d̃ψ〉+ 〈λh, dv− Π̄2
hSψ〉 = 〈f , v〉, v ∈ V̄1

h , ψ ∈ Ṽ1
h ,

〈duh − Π̄2
hSφh, µ〉 = 0, µ ∈ V̄2

h

We make the surjectivity assumption Π̄2
hSΠ̃1

h = Π̄2
h. We can then prove

that the mixed method is convergent.
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Example: the biharmonic

0 L2 L2(Ω; Rn)

0 L2(Ω; Rn) L2(Ω; Rn×n)

grad, H̊1

grad, H̊1

I

V1 = {(u, φ) ∈ H̊1(Ω)× H̊1(Ω; Rn) | φ = grad u}
= {(u, grad u) | u ∈ H̊2(Ω)}
∼= H̊2

0 W1 W2

0 L2 L2(Ω; Rn×n)

d, V1

grad grad, H̊2
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FEEC discretization of the biharmonic

0 L2 L2(Ω; Rn)

0 L2(Ω; Rn) L2(Ω; Rn×n)

grad, H̊1

grad, H̊1

I

0

0 ⊗Rn ⊗Rn

grad, H̊1

grad, H̊1

I

This gives a family of mixed methods for the biharmonic based on a
different formulation than the classical methods (Ciarlet–Raviart,
Hellan–Herman–Johnson, . . . ). It is related (in 2D) to the approach of
Durán–Liberman for the Reissner–Mindlin plate.
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Elasticity with weak symmetry

The mixed formulation of elasticity with weak symmetry is more
amenable to discretization than the standard mixed formulation.

Fraeijs de Veubeke ’75

p = skw grad u, Aσ = grad u− p

Find σ ∈ L2(Ω; Rn×n), u ∈ L2(Ω; Rn), p ∈ L2(Ω; Rn×n
skw ) s.t.

〈Aσ, τ〉+ 〈u, div τ〉+ 〈p, τ〉 = 0, τ ∈ L2(Ω; Rn×n)

−〈div σ, v〉 = 〈f , v〉, v ∈ L2(Ω; Rn)

−〈σ, q〉 = 0, q ∈ L2(Ω; Rn×n
skw )

This is exactly the mixed Hodge Laplacian for the complex

L2
A(Ω; Rn×n)

(−div,− skw)−−−−−−−−→ L2(Ω; Rn)⊕ L2(Ω; Rn×n
skw ) −−−→ 0

supposing that it is exact.
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Well-posedness

L2
A(Ω; Rn×n)

(−div,− skw)−−−−−−−−→ L2(Ω; Rn)⊕ L2(Ω; Rn×n
skw ) −−−→ 0

To show the complex is exactness, and so the system is well-posed,
we relate it to two de Rham complexes with commuting connecting
maps:

L2(Ω; Rn ⊗Rn×n
skw ) L2(Ω; Rn×n

skw ) 0

L2(Ω; Rn×n) L2(Ω; Rn×n) L2(Ω; Rn) 0

v

q

ρ

− skw ρψ

φ curl φ+

div

curl −div

S − skw

Sτ = τT − tr(τ)I (invertible)
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Discretization

To discretize we select discrete de Rham subcomplexes with
commuting projs

V̄1
h

div−−→ V̄2
h → 0, Ṽ0

h
curl−−−→ Ṽ1

h
−div−−−−→ Ṽ2

h → 0

to get the discrete complex

Ṽ1
h ⊗Rn (−div,−π̄2

h skw)
−−−−−−−−−→ (Ṽ2

h ⊗Rn)× (V̄2
h ⊗Rn×n

skw )→ 0

We get stability if we can carry out the diagram chase on:

V̄1
h ⊗Rn×n

skw V̄2
h ⊗Rn×n

skw 0

Ṽ0
h ⊗Rn Ṽ1

h ⊗Rn Ṽ2
h ⊗Rn 0

div

curl −div

π̄1
hS −π̄2

h skw

This requires that π̄1
hS : Ṽ0

h ⊗Rn → V̄1
h ⊗Rn×n

skw is surjective.
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Stable elements

The requirement that π̄1
hS : Ṽ0

h ⊗Rn → V̄1
h ⊗Rn×n

skw is surjective
can be checked by looking at DOFs.

The simplest choice is

P−r Λn−1 div−→ P−r Λn → 0, P−r+1Λn−2 curl−−→ PrΛn−1 −div−−−→ Pr−1Λn → 0

This gives the elements of DNA–Falk–Winther ’07

σ u p

Other elements:
Cockburn–Gopalakrishnan–Guzmán,
Gopalakrishnan–Guzmán, Stenberg, . . .
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Nearly incompressible material

displacement mixed
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Einstein–Bianchi equations

Riem = Ricci + Weyl

Weyl = (Cabcd) =

(
E B
B −E

)
E, B 3× 3 symmetric, traceless

Einstein equations + Bianchi identity =⇒ Einstein–Bianchi eqs:

Find: E, B : [0, T]→ S3×3 such that

Ė = − curl B, Ḃ = curl E,
div E = 0, div B = 0,

tr E = 0, tr B = 0.
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Einstein–Bianchi as an abstract Hodge wave equation

L2(Ω)
grad grad,H2

−−−−−−−→ L2(Ω;S) curl,H(curl)−−−−−−→ L2(Ω; T)

Find (σ, E, B) : [0, T]→ H2 ×H(curl;S)× L2(Ω; T) s.t.

〈σ̇, τ〉 − 〈u, grad grad τ〉 = 0, τ ∈ H2,

〈Ė, F〉 + 〈grad grad σ, F〉 + 〈B, curl F〉 = 0, F ∈ H(curl;S),
〈Ḃ, C〉 − 〈curl E, C〉 = 0, C ∈ L2(Ω; T).

σ̇ = div div E, Ė = − grad grad σ− sym curl B, Ḃ = curl E

THEOREM

Suppose σ(0) = 0 and E(0) and B(0) are TSD. Then σ = 0 and E and B
are TSD for all time, and E and B satisfy the linearized EB equations.
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Obstacles to discretization

To proceed we need finite element subspaces which form a
subcomplex with bounded cochain projections. There are two serious
obstacles.

1. It is difficult to create a finite element subspace of H2 because of
the second derivatives.

2. It is difficult to create a finite element subspace of H(curl;S)
because of the symmetry.

For each of these obstacles we are guided by their solution in simpler
context (biharmonic, elasticity).
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The FEEC formulation of the EB system

Combining these ideas leads to a first order formulation of EB using
six variables.

L2(Ω) L2(Ω; R3) L2(Ω; R3)

L2(Ω; R3) L2(Ω; R3×3) L2(Ω; R3×3)

grad

grad

curl

curl

I skw

E B
FEEC guides us to an appropriate choice of elements.

⊗R3 ⊗R3 ⊗R3

grad

grad

curl

curl

Π1 Π2 skw
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Which complexes can we construct from the de Rham complex?

0 L2 L2 ⊗R3 L2 ⊗R3 L2 0

0 L2 ⊗R3 L2 ⊗R3×3 L2 ⊗R3×3 L2 ⊗R3 0

0 L2 ⊗R3 L2 ⊗R3×3 L2 ⊗R3×3 L2 ⊗R3 0f

0 L2 L2 ⊗R3 L2 ⊗R3 L2 0

grad curl div

grad

id

curl

− skw

div

tr

grad

inc

curl

S

div

− skw

grad

I

curl

inc

div

id

Diagram commutes. Diagonal maps are isomorphisms, subdiagonal
injections, superdiagonal surjections.
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