Finite Element Exterior Calculus and Applications

Part V

Douglas N. Arnold, University of Minnesota Peking University/BICMR August 15–18, 2015 $0 \to H^{1}(\Omega) \xrightarrow{\text{grad}} H(\text{curl}, \Omega) \xrightarrow{\text{curl}} H(\text{div}, \Omega) \xrightarrow{\text{div}} L^{2}(\Omega) \to 0$

• $0 \to H^1(\Omega) \xrightarrow{\operatorname{grad}} L^2(\Omega; \mathbb{R}^3)$:

standard formulation of scalar Laplacian

• $H^1(\Omega) \xrightarrow{\text{grad}} H(\text{curl}, \Omega) \xrightarrow{\text{curl}} L^2(\Omega; \mathbb{R}^3)$: 1-form Laplacian, Maxwell's equation based on *E* and $\sigma = \text{div } \epsilon E = 0$

• $H(\operatorname{curl}, \Omega) \xrightarrow{\operatorname{curl}} H(\operatorname{div}, \Omega) \xrightarrow{\operatorname{div}} L^2(\Omega)$: 2-form Laplacian, Maxwell's equation based on *B* and *E*

• $H(\operatorname{div}, \Omega) \xrightarrow{\operatorname{div}} L^2(\Omega) \to 0$: mixed formulation of scalar Laplacian

De Rham complex in 2D

$$0 \to H^1(\Omega) \xrightarrow{\text{grad}} H(\text{rot}, \Omega) \xrightarrow{\text{rot}} L^2(\Omega) \to 0$$

or

$$0 \to H^1(\Omega) \xrightarrow{\text{curl}} H(\text{div}, \Omega) \xrightarrow{\text{div}} L^2(\Omega) \to 0$$

• $0 \to H^1(\Omega) \xrightarrow{\operatorname{curl}} L^2(\Omega; \mathbb{R}^2)$:

standard formulation of scalar Laplacian

- $H^1(\Omega) \xrightarrow{\text{curl}} H(\text{div}, \Omega) \xrightarrow{\text{div}} L^2(\Omega)$: 1-form Laplacian
- $H(\operatorname{div}, \Omega) \xrightarrow{\operatorname{div}} L^2(\Omega) \to 0$:

mixed formulation of scalar Laplacian (Darcy flow)

$$0 \to H^{2}(\Omega) \xrightarrow{\operatorname{curl}} H^{1}(\Omega; \mathbb{R}^{2}) \xrightarrow{\operatorname{div}} L^{2}(\Omega) \to 0$$

Falk-Neilan shape fns: $\mathcal{P}_5\Lambda^0$ / $\mathcal{P}_4\Lambda^1$ / $\mathcal{P}_3\Lambda^2$

 $0 \to H^1(\Omega) \xrightarrow{\operatorname{div}} H^1(\Omega,\operatorname{curl};\mathbb{R}^3) \xrightarrow{\operatorname{curl}} H^1(\Omega;\mathbb{R}^3) \xrightarrow{\operatorname{div}} L^2(\Omega) \to 0$

J. Evans '11

 $0 \to H^{1}(\Omega; \mathbb{R}^{3}) \xrightarrow{\text{sym grad}} H(\text{curl } T \text{ curl}, \Omega) \xrightarrow{\text{curl } T \text{ curl}} H(\text{div}, \Omega; \mathcal{S}^{3 \times 3}) \xrightarrow{\text{div}} L^{2}(\Omega; \mathbb{R}^{3}) \xrightarrow{\text{curl } T \text{ curl}} H(\text{div}, \Omega; \mathcal{S}^{3 \times 3}) \xrightarrow{\text{div}} L^{2}(\Omega; \mathbb{R}^{3}) \xrightarrow{\text{curl } T \text{ curl}} H(\text{div}, \Omega; \mathcal{S}^{3 \times 3}) \xrightarrow{\text{div}} L^{2}(\Omega; \mathbb{R}^{3}) \xrightarrow{\text{curl } T \text{ curl}} H(\text{div}, \Omega; \mathcal{S}^{3 \times 3}) \xrightarrow{\text{div}} L^{2}(\Omega; \mathbb{R}^{3}) \xrightarrow{\text{curl } T \text{ curl}} H(\text{div}, \Omega; \mathcal{S}^{3 \times 3}) \xrightarrow{\text{div}} L^{2}(\Omega; \mathbb{R}^{3}) \xrightarrow{\text{curl } T \text{ curl}} H(\text{div}, \Omega; \mathcal{S}^{3 \times 3}) \xrightarrow{\text{div}} L^{2}(\Omega; \mathbb{R}^{3}) \xrightarrow{\text{curl } T \text{ curl}} H(\text{div}, \Omega; \mathcal{S}^{3 \times 3}) \xrightarrow{\text{div}} L^{2}(\Omega; \mathbb{R}^{3}) \xrightarrow{\text{curl } T \text{ curl}} H(\text{div}, \Omega; \mathcal{S}^{3 \times 3}) \xrightarrow{\text{div}} L^{2}(\Omega; \mathbb{R}^{3}) \xrightarrow{\text{curl } T \text{ curl}} H(\text{div}, \Omega; \mathcal{S}^{3 \times 3}) \xrightarrow{\text{div}} L^{2}(\Omega; \mathbb{R}^{3}) \xrightarrow{\text{curl } T \text{ curl}} H(\text{div}, \Omega; \mathcal{S}^{3 \times 3}) \xrightarrow{\text{div}} L^{2}(\Omega; \mathbb{R}^{3}) \xrightarrow{\text{curl } T \text{ curl}} H(\text{div}, \Omega; \mathcal{S}^{3 \times 3}) \xrightarrow{\text{div}} L^{2}(\Omega; \mathbb{R}^{3})$

$$0 \to H^{2}(\Omega) \xrightarrow{\operatorname{curl curl}} H(\operatorname{div}, \Omega; \mathcal{S}^{2 \times 2}) \xrightarrow{\operatorname{div}} L^{2}(\Omega; \mathbb{R}^{2}) \to 0$$

 $0 \to H^1(\Omega; \mathbb{R}^2) \xrightarrow{\text{sym grad}} H(\text{rot rot}, \Omega; \mathcal{S}^{2 \times 2}) \xrightarrow{\text{rot rot}} L^2(\Omega) \to 0$

• $0 \to H^1(\Omega; \mathbb{R}^2) \xrightarrow{\text{sym grad}} H(\text{rot rot}, \Omega; S^{2 \times 2}):$ displacement formulation of elasticity

• $H((\operatorname{div}, \Omega; \mathcal{S}^{2 \times 2}) \xrightarrow{\operatorname{div}} L^2(\Omega; \mathbb{R}^2) \to 0:$

mixed formulation of elasticity (strong symmetry)

Mixed elasticity elements (2D strong symmetry)

$$0 \to H^{2}(\Omega) \xrightarrow{\operatorname{curl curl}} H(\operatorname{div}, \Omega; \mathcal{S}^{2 \times 2}) \xrightarrow{\operatorname{div}} L^{2}(\Omega; \mathbb{R}^{2}) \to 0$$

Hu Jun-Shangyou Zhang 2015

New complexes from old: a simple case

Suppose $0 \to \overline{W}^1 \xrightarrow{\overline{d}, \overline{V}^1} \overline{W}^2$ and $0 \to \widetilde{W}^1 \xrightarrow{\overline{d}, \overline{V}^1} \widetilde{W}^2$ are closed Hilbert complexes, and that there is a bounded linear isomorphism $S : \widetilde{W}^1 \to \overline{W}^2$.

We define a new short Hilbert complex:

- $V^1 = \{(u,\phi) \in \overline{V}^1 \times \widetilde{V}^1 \,|\, du = S\phi\}$
- W^1 is the competion of V^1 wrt the norm $||u, \phi||_W := ||u||_{\tilde{W}}$ (*S* is injective)

•
$$W^2 = \tilde{W}^2$$

• $d: V^1 \subset W^1 \to W^2$ is given by $d(u, \phi) = \tilde{d}\phi$.

THEOREM

Suppose that the initial two H-complexes are closed and exact. Then $0 \longrightarrow W^1 \xrightarrow{d,V^1} W^2$ is also a closed, exact H-complex.

The Hodge Laplacian for the derived complex

$$\begin{array}{cccc} 0 & \longrightarrow & \bar{W}^1 & \xrightarrow{\tilde{d}, \bar{V}^1} & \bar{W}^2 \\ & & & & \\ 0 & \longrightarrow & \tilde{W}^1 & \xrightarrow{\tilde{d}, \bar{V}^1} & \tilde{W}^2 \end{array} & \begin{array}{ccccc} 0 & \longrightarrow & W^1 & \xrightarrow{d, V^1} & W^2 \end{array}$$

Hodge Lap: Find $(u, \phi) \in V^1$ st $\langle \tilde{d}\phi, \tilde{d}\psi \rangle = \langle f, v \rangle, \quad (v, \psi) \in V^1$

$$\begin{aligned} V^1 &= \{ (u,\phi) \in \bar{V}^1 \times \tilde{V}^1 \,|\, du = S\phi \} \\ &= \{ (u,\phi) \in \bar{V}^1 \times \tilde{V}^1 \,|\, \langle du - S\phi, \mu \rangle = 0 \;\forall \mu \in \bar{W}^2 \} \end{aligned}$$

Implement via Lagrange multiplier: Find $u \in \overline{V}^1$, $\phi \in \overline{V}^1$, $\lambda \in \overline{W}^2$ s.t.

$$egin{aligned} &\langle ilde{d} \phi, ilde{d} \psi
angle + \langle \lambda, dv - S \psi
angle &= \langle f, v
angle, & v \in ar{V}^1, \ \psi \in ilde{V}^1, \ &\langle du - S \phi, \mu
angle &= 0, & \mu \in ar{W}^2 \end{aligned}$$

New norm on \overline{W}^2 : $|||\mu||| = \sup_{v \in \overline{V}^1, \psi \in \overline{V}^1} \frac{\langle \mu, dv - S\psi \rangle}{\|v\|_V + \|\psi\|_{\overline{V}}}$ (S \widetilde{V}^1 is dense)

This mixed method satisfies the Brezzi conditions and so is well-posed.

The idea is to mimic the construction on the discrete level. Choose two discrete subcomplexes which admit commuting projections:

$$0 \longrightarrow \bar{V}_h^1 \xrightarrow{d} \bar{V}_h^2 \qquad 0 \longrightarrow \tilde{V}_h^1 \xrightarrow{\tilde{d}} \tilde{V}_h^2$$

Create a discrete connection map as $S_h = \overline{\Pi}_h^2 S : \tilde{V}_h^1 \to \overline{V}_h^2$ where $\overline{\Pi}_h^2$ is the canonical projection. This gives the mixed method:

Find $u_h \in \overline{V}_h^1$, $\phi_h \in \widetilde{V}_h^1$, $\lambda_h \in \overline{V}_h^2$ s.t.

$$egin{aligned} &\langle ilde{d}\phi_h, ilde{d}\psi
angle + \langle \lambda_h, dv - ar{\Pi}_h^2 S \psi
angle = \langle f, v
angle, & v \in ar{V}_h^1, \ \psi \in ilde{V}_h^1, \ &\langle du_h - ar{\Pi}_h^2 S \phi_h, \mu
angle = 0, & \mu \in ar{V}_h^2 \end{aligned}$$

We make the *surjectivity assumption* $\overline{\Pi}_{h}^{2}S\widetilde{\Pi}_{h}^{1} = \overline{\Pi}_{h}^{2}$. We can then prove that the mixed method is convergent.

Example: the biharmonic

$$0 \longrightarrow L^{2} \xrightarrow{\operatorname{grad}, \mathring{H}^{1}} L^{2}(\Omega; \mathbb{R}^{n})$$
$$0 \longrightarrow L^{2}(\Omega; \mathbb{R}^{n}) \xrightarrow{\overbrace{\operatorname{grad}, \mathring{H}^{1}}} L^{2}(\Omega; \mathbb{R}^{n \times n})$$

$$V^{1} = \{(u,\phi) \in \mathring{H}^{1}(\Omega) \times \mathring{H}^{1}(\Omega; \mathbb{R}^{n}) | \phi = \operatorname{grad} u\}$$
$$= \{(u,\operatorname{grad} u) | u \in \mathring{H}^{2}(\Omega)\}$$
$$\cong \mathring{H}^{2}$$

$$0 \longrightarrow W^{1} \xrightarrow{d, V^{1}} W^{2}$$
$$0 \longrightarrow L^{2} \xrightarrow{\operatorname{grad} \operatorname{grad}, \mathring{H}^{2}} L^{2}(\Omega; \mathbb{R}^{n \times n})$$

FEEC discretization of the biharmonic

This gives a family of mixed methods for the biharmonic based on a different formulation than the classical methods (Ciarlet–Raviart, Hellan–Herman–Johnson, ...). It is related (in 2D) to the approach of Durán–Liberman for the Reissner–Mindlin plate.

Elasticity with weak symmetry

The mixed formulation of elasticity with *weak symmetry* is more amenable to discretization than the standard mixed formulation. Fraeijs de Veubeke '75

$$p = \text{skw grad } u, \quad A\sigma = \text{grad } u - p$$

Find $\sigma \in L^2(\Omega; \mathbb{R}^{n \times n}), u \in L^2(\Omega; \mathbb{R}^n), p \in L^2(\Omega; \mathbb{R}^{n \times n})$ s.t.
 $\langle A\sigma, \tau \rangle + \langle u, \operatorname{div} \tau \rangle + \langle p, \tau \rangle = 0, \qquad \tau \in L^2(\Omega; \mathbb{R}^{n \times n})$
 $-\langle \operatorname{div} \sigma, v \rangle = \langle f, v \rangle, \qquad v \in L^2(\Omega; \mathbb{R}^n)$
 $-\langle \sigma, q \rangle = 0, \qquad q \in L^2(\Omega; \mathbb{R}^{n \times n})$

This is exactly the mixed Hodge Laplacian for the complex

$$L^2_A(\Omega; \mathbb{R}^{n \times n}) \xrightarrow{(-\operatorname{div}, -\operatorname{skw})} L^2(\Omega; \mathbb{R}^n) \oplus L^2(\Omega; \mathbb{R}^{n \times n}) \longrightarrow 0$$

supposing that it is exact.

$$L^2_A(\Omega; \mathbb{R}^{n \times n}) \xrightarrow{(-\operatorname{div}, -\operatorname{skw})} L^2(\Omega; \mathbb{R}^n) \oplus L^2(\Omega; \mathbb{R}^{n \times n}) \longrightarrow 0$$

$$L^2_A(\Omega; \mathbb{R}^{n \times n}) \xrightarrow{(-\operatorname{div}, -\operatorname{skw})} L^2(\Omega; \mathbb{R}^n) \oplus L^2(\Omega; \mathbb{R}^{n \times n}) \longrightarrow 0$$

$$L^2_A(\Omega; \mathbb{R}^{n \times n}) \xrightarrow{(-\operatorname{div}, -\operatorname{skw})} L^2(\Omega; \mathbb{R}^n) \oplus L^2(\Omega; \mathbb{R}^{n \times n}) \longrightarrow 0$$

$$L^2_A(\Omega; \mathbb{R}^{n \times n}) \xrightarrow{(-\operatorname{div}, -\operatorname{skw})} L^2(\Omega; \mathbb{R}^n) \oplus L^2(\Omega; \mathbb{R}^{n \times n}) \longrightarrow 0$$

$$L^2_A(\Omega; \mathbb{R}^{n \times n}) \xrightarrow{(-\operatorname{div}, -\operatorname{skw})} L^2(\Omega; \mathbb{R}^n) \oplus L^2(\Omega; \mathbb{R}^{n \times n}) \longrightarrow 0$$

$$L^2_A(\Omega; \mathbb{R}^{n \times n}) \xrightarrow{(-\operatorname{div}, -\operatorname{skw})} L^2(\Omega; \mathbb{R}^n) \oplus L^2(\Omega; \mathbb{R}^{n \times n}) \longrightarrow 0$$

$$L^2_A(\Omega; \mathbb{R}^{n \times n}) \xrightarrow{(-\operatorname{div}, -\operatorname{skw})} L^2(\Omega; \mathbb{R}^n) \oplus L^2(\Omega; \mathbb{R}^{n \times n}) \longrightarrow 0$$

To discretize we select discrete de Rham subcomplexes with commuting projs

$$ar{V}_h^1 \xrightarrow{\mathrm{div}} ar{V}_h^2 o 0, \qquad ar{V}_h^0 \xrightarrow{\mathrm{curl}} ar{V}_h^1 \xrightarrow{-\mathrm{div}} ar{V}_h^2 o 0$$

to get the discrete complex

$$\tilde{V}_{h}^{1}\otimes\mathbb{R}^{n}\xrightarrow{(-\operatorname{div},-\bar{\pi}_{h}^{2}\operatorname{skw})}(\tilde{V}_{h}^{2}\otimes\mathbb{R}^{n})\times(\bar{V}_{h}^{2}\otimes\mathbb{R}_{\operatorname{skw}}^{n\times n})\to0$$

We get stability if we can carry out the diagram chase on:

This requires that $\bar{\pi}_h^1 S : \tilde{V}_h^0 \otimes \mathbb{R}^n \to \bar{V}_h^1 \otimes \mathbb{R}_{skw}^{n \times n}$ is *surjective*.

The requirement that $\bar{\pi}_h^1 S : \tilde{V}_h^0 \otimes \mathbb{R}^n \to \bar{V}_h^1 \otimes \mathbb{R}_{skw}^{n \times n}$ is surjective can be checked by looking at DOFs.

The simplest choice is

 $\mathcal{P}_r^-\Lambda^{n-1}\xrightarrow{\operatorname{div}} \mathcal{P}_r^-\Lambda^n \to 0, \quad \mathcal{P}_{r+1}^-\Lambda^{n-2}\xrightarrow{\operatorname{curl}} \mathcal{P}_r\Lambda^{n-1}\xrightarrow{-\operatorname{div}} \mathcal{P}_{r-1}\Lambda^n \to 0$

This gives the elements of DNA-Falk-Winther '07

Other elements: Cockburn–Gopalakrishnan–Guzmán, Gopalakrishnan–Guzmán, Stenberg, ...

Nearly incompressible material

displacement

mixed

Riem = Ricci + Weyl

Weyl =
$$(C_{abcd}) = \begin{pmatrix} E & B \\ B & -E \end{pmatrix}$$

E, *B* 3×3 symmetric, traceless

Einstein equations + Bianchi identity \implies Einstein–Bianchi eqs:

Find: $E, B : [0, T] \rightarrow S^{3 \times 3}$ such that

$$\dot{E} = -\operatorname{curl} B, \qquad \dot{B} = \operatorname{curl} E, \\ \operatorname{div} E = 0, \qquad \operatorname{div} B = 0, \\ \operatorname{tr} E = 0, \qquad \operatorname{tr} B = 0.$$

Einstein-Bianchi as an abstract Hodge wave equation

$$L^{2}(\Omega) \xrightarrow{\operatorname{grad}\operatorname{grad},H^{2}} L^{2}(\Omega;\mathcal{S}) \xrightarrow{\operatorname{curl},H(\operatorname{curl})} L^{2}(\Omega;\mathbb{T})$$

Find $(\sigma, E, B) : [0, T] \to H^2 \times H(\operatorname{curl}; S) \times L^2(\Omega; \mathbb{T})$ s.t.

$$\begin{aligned} \langle \dot{\sigma}, \tau \rangle &- \langle u, \operatorname{grad} \operatorname{grad} \tau \rangle = 0, & \tau \in H^2, \\ \langle \dot{E}, F \rangle &+ \langle \operatorname{grad} \operatorname{grad} \sigma, F \rangle &+ \langle B, \operatorname{curl} F \rangle = 0, & F \in H(\operatorname{curl}; \mathcal{S}), \\ \langle \dot{B}, C \rangle &- \langle \operatorname{curl} E, C \rangle = 0, & C \in L^2(\Omega; \mathbb{T}). \end{aligned}$$

 $\dot{\sigma} = \operatorname{div}\operatorname{div} E, \quad \dot{E} = -\operatorname{grad}\operatorname{grad}\sigma - \operatorname{sym}\operatorname{curl} B, \quad \dot{B} = \operatorname{curl} E$

THEOREM

Suppose $\sigma(0) = 0$ and E(0) and B(0) are TSD. Then $\sigma = 0$ and E and B are TSD for all time, and E and B satisfy the linearized EB equations.

To proceed we need finite element subspaces which form a subcomplex with bounded cochain projections. There are two serious obstacles.

- 1. It is difficult to create a finite element subspace of H^2 because of the second derivatives.
- It is difficult to create a finite element subspace of H(curl; S) because of the symmetry.

For each of these obstacles we are guided by their solution in simpler context (biharmonic, elasticity).

The FEEC formulation of the EB system

Combining these ideas leads to a first order formulation of EB using six variables.

FEEC guides us to an appropriate choice of elements.

Which complexes can we construct from the de Rham complex?

Diagram commutes. Diagonal maps are isomorphisms, subdiagonal injections, superdiagonal surjections.