BERNSTEIN’S THEOREM OVER FIELDS WITH DISCRETE
VALUATION

VICTOR REINER AND STEVEN SPERBER

ABSTRACT. For fields complete with respect to a discrete valuation, we prove
a refinement of Bernstein’s theorem counting the generic number of solutions
to a system of n polynomial equations in n unknowns. The refinement predicts
the number of solutions whose coordinates have given valuations, generalizing
to several variables the classical use of Newton polygons for determining the
valuations of the roots of a polynomial in one variable.

with an appendix by William Messing

1. INTRODUCTION

This paper is about a common generalization of two well-known results related to
root-counting of polynomial systems and Newton polytopes. One of these results is
Bernstein’s theorem and the other is the classical theorem on the Newton polygon
of a polynomial (or Laurent polynomial) in one variable over a completely valued
field. The generalization has the same spirit as (and also generalizes) Khovanskii’s
“Curve Theorem” [8, Theorem 27.7.11].

We first recall Bernstein’s Theorem [2]. Let A, ..., A, be finite subsets of Z4.
Consider a collection f of Laurent polynomials fi, ..., f, such that for each ¢, the
exponent vectors of monomials occurring in f; lie in 4;. Let P; denote the polytope
which is the convex hull of A4;. Bernstein’s Theorem states that, for suitably general
collections f, the number of common zeros (counting multiplicities) of fi,..., f, in
the complex torus (C*)™ is the Minkowski mized volume M(Px,...,P,). Recall [5,
§5.4] that the mixed volume may be defined as follows: when one dilates each F;
by an independent positive scalar A\; and forms the Minkowski sum E?:l i P;, the
n-dimensional volume of Y7 ; A; P; turns out to grow as a homogeneous polynomial
function of degree n in the \;’s, and M(Py,..., P,) is defined to be the coefficient
of the monomial \; - - - A, in this polynomial.

For our purposes, the most convenient version of Bernstein’s Theorem is the
following special case of a result of Rojas [11] (see also [9]), which is valid over arbi-

trary algebraically closed fields. Let x = (1, ...,z,) denote a vector of variables.
We use the exponential notation x* := z{* ---z% with a € Z" for monomials in
the Laurent polynomial ring k[x,x '] := k[zy,z; %, ..., 20,2, ']
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Theorem 1. Let k be an algebraically closed field, A = {A;}™, a collection of
finite subsets in Z"™, with P; the convex hull of A;. Fori=1,...,n, let

fz' = Z Ci,aXa € k‘[X,Xil].
acA;
Then on a non-empty Zariski-open subset U of the moduli space of such polynomials
(that is, the affine space A‘,CA” X +oe X AlkA"l of coefficients (ci,a)), the system

f160) =+ = falx) =0

has only isolated solutions x* in the torus (k*)™, and there are M(Py,. .., P,) such
solutions, counted with multiplicity.

The set U is defined by the following genericity conditions: for every choice of
v € Q" — {0}, there are no solutions in (k*)™ for the initial system

in, (f1) = ... = iny(fa) =0,
where

in, (f;(x)) := Z ciax®. O

acA;:
y-a is minimal

See [2] for a discussion of why the genericity conditions stated in the theorem
actually are generic, that is, why they define a subset U which is non-empty and
Zariski-open. For convenience, we will abbreviate by f = 0 and in,(f) = 0 the
polynomial systems which appear in the above theorem.

The second result to be generalized is the classical theorem on valuations of roots
of a (Laurent) polynomial in one variable over a field complete with respect to an
ultrametric valuation. Let K be the fraction field of a discrete valuation ring o,
having unique maximal ideal mg. It will be convenient for us to use the additive
form of this valuation

ord: K — Z U {00}

defined on o by

min{N| z € (mg)™} for z € o — {0}
oo forz =0

ord(z) = {

then extended to K by ord(%) = ord(z) — ord(y). This valuation satisfies the
ultrametric (or non-Archimedean) inequality
(1) ord(z + y) > min(ord(z), ord(y)).

The logarithm of ord defines an absolute value and a metric on K making it a
topological field, and we assume that K is complete with respect to this metric. A
standard result [1] asserts that ord has a unique extension to the algebraic closure
of K (taking values in QU{oo}) and hence also to the completion L of this algebraic
closure.

For our purposes, we state the classical theorem on Newton polygons for Laurent
polynomials, and in terms most amenable to multivariate generalization.

Theorem 2. [1] Given a Laurent polynomial f(z) =Y. _,cox® € K[z, Y], define

A = {(a,0rd(ca)) }e.0

a finite collection of points in Z x 7.

a€EZ
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Then for any v € Q, the number of solutions x* € L* to f(x) = 0 having
ord(z*) = v, counted with multiplicity, is the length of the projection to the first
coordinate azxis of the face in the (lower) conver hull of/i on which the dot product
with (v,1) is minimized. O

Theorem 4 below is a generalization of Theorem 1 (when we view a field K as
endowed with the trivial valuation ord(z) = 0 for all x € K*) and Theorem 2
(when n = 1). Its statement and proof bear a close resemblance to certain proofs
of Bernstein’s Theorem (e.g. [2, 6]) and in particular to Khovanskii’s “Curve The-
orem” [8, Theorem 27.7.11], which it also generalizes. Roughly speaking, these
proofs deform the system f(x) = 0 by introducing a new parameter ¢, and then
work with Puiseux expansions for the solutions x(¢) of f(x,t) = 0, considered as
algebraic functions in the new variable ¢. In Theorem 4, the roles played by K and
its ord function are similar to the roles in these proofs played by the field of formal
Laurent series C((t)) and the function ord : C((t)) — R which measures the order
of vanishing at ¢ = 0 (see also Remark 13 below).

Although our proof has the disadvantage that it relies on Theorem 1 and hence
does not give an independent proof of Bernstein’s Theorem, it has other advantages.
It holds for discretely valued fields in all characteristics, not just for Laurent series
over C, and it uses a weaker genericity hypothesis than that of [8, Theorem 27.7.11].

We are indebted to W. Messing and J. Roberts for many helpful discussions
regarding the proof of a crucial lemma from commutative algebra (Lemma 17). In
particular, the Appendix contains a proof of this due to Messing.

2. THE THEOREM

We begin with some notation and preliminaries. As in the introduction, K is
a complete field under the metric induced by its valuation ord. Denote by L the
completion of its algebraic closure. We denote the residue class field K = ox /MK
and the reduction map og — K by = — Z. Because mg = my N og, the inclusion
ox < oz, induces an inclusion K < L. We recall [1] that this identifies L with the
algebraic closure of K.

Extend the ord function to a map on vectors as follows: for x = (z1,...,2z,) €
(L*)™, define ord(x) := (ord(zy), .. .,ord(z,)) € Q*. For vectors x = (x1,...,%y)
in 07, define X := (Z1,...,%y).

We fix once and for all a uniformizing parameter for K, that is, a generator 7
for the maximal ideal mg of ox. None of our assertions will depend in an essential
way on the particular choice of .

Fix a collection A = {A;}? , of finite subsets of Z™, and a sequence of integers
w={wia:i=1,...,n,a€ A;}. Foreachi=1,...,n define A; = {(a,w;,a) tacA;

a finite subset of points in Z™+! and denote the whole collection A = {4;}7,.

We define an A-system of Laurent polynomials to be a collection f = {fi}, €
K[x,x7]" of the form

fi= Z ciamiex® € K[x,x™ '],
acA;

where ¢; a € 0. In other words, it is assumed that the Newton polytope of f; is
contained in A;, and that each of its coefficients has a fixed lower bound on its ord.
We will make frequent reference to the reduced coeflicients ¢; . € K.



4 VICTOR REINER AND STEVEN SPERBER

We also need to define for each v in Q" — {0} a certain reduced initial system of
f=0. Let

B‘Y(fz(x)) = Z Ci,aX™* € I_{[x7 xil]_
acA;:
(7,1)-(a,wi,a) is minimal

Let in, (f) = 0 denote the system in,(f1) = --- = in,(f.) = 0. Note that in,(f;)
depends implicitly on the choice of A, although we have chosen to omit this depen-
dence from the notation.

Proposition 3. Let f be an A-system of Laurent polynomials. If x* € (LX)" is a
solution to £ = 0 having ord(x) = v € Q, then there ezists a solution in (L*)" to
the system in, (f) = 0.

Proof. Let d be a least common denominator for v, i.e. v € %Z”. Fix a d-th root
7@ of min L, so that one can define 7* for any « in 17. Since ord(x) = v, this

allows us to write x = (7"yy,...,7""y,) for some y; € 0. One can then check
that § := (41, - - -, ¥n) gives the desired solution to in, (f) = 0 as follows:
0= f,’ (X*)
= Z Ciamie(x*)?
acA;
= Z W(Vvl)'(avwi,a)ci,aya
acA;

Let p; be the minimal value of (v,1) - (a,w;a) for a € A;. Then dividing the
previous equation by 7#¢ gives an equation in ox which reduces in K to

0= E Ei,aya
acA;:
(v,1)-(a,w;,a) is minimal

= in, ()(¥)
O

As before, let P; denote the convex hull of A; for i =1,...,n, so that Theorem 1
tells us that (generically) the system f = 0 will have exactly M(Py,..., P,) isolated
solutions (counted with multiplicity) in (L*)™. Let p : R**! — R" be the projection
onto the first n coordinates. For v € Q* and i = 1,...,n, let 15;’ be the face of
the convex hull of A; on which the dot product in R**! with (v,1) is minimized,
and let P) = p(P)). Note that P) need not be a face of P;, and in particular,
P} should not be confused with the face of P; on which the dot product with ~ is
maximized. We also note that, by definition of in., (f) and by Theorem 1, generically
the system in, (f) = 0 will have exactly M(P/,..., PJ) isolated solutions (counted
with multiplicity) in (L*)™.

We can now state our main result.

Theorem 4. Let f be an A—system of Laurent polynomials over K. On a non-
empty Zariski-open subset U in the moduli space A‘Iéll X oo X A‘Ié"‘ of reduced
coefficients in K, the system £ = 0 has only isolated solutions in the torus (L*)™.
Furthermore, for each v € Q", the number of such solutions x* having ord(x*) =
is, counted with multiplicity, the mized volume M(P],...,PJ).

n
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The set U may be defined by the following genericity conditions: for every v €
Q", the system iny (f) = 0 has no solutions in (L*)™ whenever M(P],...,PY) =0.

Before proving the theorem, a few remarks are in order about the genericity
conditions assumed in the theorem.

Remark 5. (The case of trivial valuation — Bernstein’s Theorem,)

In the case that the valuation on K is trivial, the genericity conditions above reduce
to those of Theorem 1, as we now explain. For each v # 0, we have that P] is
the face of P; on which the dot product with v is minimized and consequently
in, (f) = in, (f). Because each of the faces P’ lies in a hyperplane perpendicular to
7, the mixed volume M(P/,..., PJ) vanishes by an argument similar to the one
given in the proof of Proposition 9 below.

Remark 6. (Dependence upon uniformizing parameter m)

Assume we had made a different choice of uniformizing parameter =, say 7' = umw
for u € o). This has the effect of scaling each reduced coefficient ¢; » by the
unit factor @“%=, and hence alters the Zariski open set U by an invertible diagonal
transformation.

Also, the genericity hypotheses of the theorem are unchanged: if u; is the min-
imum value of the dot product (v,1) - (a,w;a) for a in A;, one can check that
the invertible transformation z; — @ ; sends in, .(f;) to @*in, . (f;) (where
in, »(—) means in,(—) defined with respect to the uniformizer ).

Remark 7. (Zariski-openness of U)
To see that U is non-empty and Zariski-open, first note that even though there are
infinitely many v € Q", there are only finitely many different systems in, (f) = 0,
depending on the convex hulls of the finite sets Aj; which occur in the system A.

Now fix one such system in, (f) = 0. Note that its coefficients are a subset of all of
the reduced coefficients {¢; »} (namely those for which (v, 1)-(a,w;, a) is maximized).
Hence a non-empty Zariski-open condition on this subset of coefficients gives rise to
a non-empty Zariski-open condition on A‘I?I‘ X e X A‘I}A‘"‘. The conditions stated
in Theorem 1 under which in. (f) = 0 will have exactly M(P/,...,P)]) solutions
are known to be non-empty and Zariski-open (see [2, 9, 11]). Hence the conditions
under which there will be no solutions to in,(f) = 0 if M(P/,...,P)) = 0 are
non-empty and Zariski-open.

The set U in the theorem is then the intersection of these finitely many non-
empty Zariski-open subsets indexed by the different systems in. (f) = 0, and hence
is non-empty and Zariski-open.

Remark 8. (Alternate genericity conditions)

One might be tempted to alter the genericity conditions in the above theorem
by adding in the extra hypothesis that the initial systems in,(f) = 0, when they
have roots, have only simple roots (cf. the Curve Theorem [8, Theorem 27.7.11]).
In particular, one might have in mind to use things like multivariate Newton’s
method/Hensel’s lemma to approximate roots of f = 0 starting with the roots of
in, (f) = 0. However, note that in characteristic p, for certain choices of A these
roots for the initial system will never be simple. As an example, when n = 1 and K
has characteristic p, the equation c¢; 2P + ¢c2 = 0 will always encounter this difficulty.
Nevertheless, our theorem as stated still applies (regardless of the choice of the
minimum ord values w1, w2 for c¢1,¢2).
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The proof of Theorem 4 occupies the remainder of this section. We begin with
some simple facts about the commutation of the operations in,, and in,:

Proposition 9. For any v,v' in Q" and for € > 0 sufficiently small,
(a) _ _
in, (in, (f)) = ing-1,4/(f)
and M(Pf_l’H"yl, .., P YY) = 0 whenever v # 0.

(b) _ _
iny (iny (f)) = inypey ()
and M(P{H'G'Y,, ..., P1ter’y = 0 whenever v # 0.
Proof. Both (a), (b) follow from a basic fact in polyhedral geometry (see e.g. [12,

Equation (2.3)]): for any finite subset A of R, if ing(.A) for § € R™ denotes the
subset of .4 on which the dot product with § is minimized, then for € > 0 sufficiently
small,

ing (ins(A)) = ingtes (A).
Using this new notation, we can rephrase the definitions of in, in:
in,(fi) = Z Ciam’hex® = Z Ci,am oo x?
acin, (A;) (a,wi,a)ein(%o)(ﬁi)
E’Y(fz) = Z éi,axa
(avwi,a)ein(‘y,l)(Ai)

We note here a basic fact which will be used below: for any Laurent polynomial
f, the initial form in, (f) only contains monomials which lie on an affine hyperplane
on which the dot product with « is constant (but the same need not be true for

i, (f) D).
To show (a), note that from the above rephrasings one has
in, (iny (f;)) = Z Ci,aX"
(a,wi,a)€in s 1y(ing,0)(A:))
and since

in(fy’,l) (in('y,O) (Az)) = in(’y,O)—i—e(fy’,l) (Al) = ine—l('y,O)+(’y’,1) (/iz) = in(e—l’y—i-’y’,l) (Al)
the first assertion in (a) follows.
To see the second assertion in (a), note that if v # 0, then for each i =1,...,n,

by the first assertion in (a), the polytope P;_IVJ”I lies in an affine hyperplane in
R™ on which the dot product with v is constant. Consequently, any Minkowski
sum Y. NP "1 s a sum of polytopes lying in a family of parallel affine
hyperplanes, and thus lies in such an affine hyperplane, implying that it will have
zero n-dimensional volume. This implies the vanishing of the the mixed volume

MPTHY Py,
The proof of (b) is similar. From the above rephrasings, one has
in (in, (f:)) = ) i X"
(a,ui,,,)ein(_y/’0)(in(_y,1)(.Ai))

and since

in(y 0y (in(y,1) (A1) = iy 1)4cr,0) (Ai) = ingyeqr1)(Ai)
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the first assertion in (b) follows. The second assertion in (b) follows because when

v # 0, each P} +¢ Jies in an affine hyperplane of R* on which the dot product
with 7' is constant. O

The next lemma explains the reason behind the phrasing of the genericity con-
ditions in Theorem 4.

Lemma 10. The genericity conditions assumed in Theorem 4 imply both

(a) the genericity needed to apply Theorem 1 with k = L and conclude thatf =0
has exactly M(P,..., P,) isolated solutions, counted with multiplicities, in
(Lx)".

(b) the genericity needed to apply Theorem 1 with k = L and conclude that
in,(f) = 0 has exactly M(P], ..., P}) isolated solutions, counted with mul-
tiplicities, in (L™)™, for each v in Q* — {0}.

Proof. For (a), one argues that for any v # 0 in Q", there can be no solution in
(L*)™ to the system in, (f) = 0. If x* were such a solution, and if ' = ord(x*), then
Proposition 3 would give rise to a solution in (L*)™ for the system in,(in, (f)) =
0, which is the same as the system in.-1,,.(f) = 0 by Proposition 9(a). This
contradicts the genericity assumption of Theorem 4 by the second assertion of
Proposition 9(a).

For (b), one argues that for any ~,~' in Q* with v/ # 0, there can be no
solution in (LX)™ to the system in (in,(f)) = 0: this is the same as the system
inytey (f) = 0 by Proposition 9(b), and it should have no solutions by the second
assertion of Proposition 9(b). O

The assertion of Theorem 4 can now be rephrased as the following lemma, after
introducing some terminology. Let fi, denote the (finite) number of solutions x* to
f = 0 in (L*)™ having ord(x*) = v, counted with multiplicity. Let u, denote the
(finite) number of solutions X* to in,(f) = 0 in (L*)", counted with multiplicity.
Recall that by Lemma 10 part (b), we have u, = M(P/,...,P).

n

Lemma 11. Under the assumptions of Theorem 4,
fiy = py (= M(P],..., PY))
for all v € Q" — {0}.

Proof. We first explain why there only finitely many v € Q™ — {0} for which either
fly or p, are non-zero. Since fi, # 0 implies p, # 0 by Proposition 3, we need only
consider when p., is non-zero.

For p., this follows from the method of coherent mized subdivisons for calculating
the mixed volume M(Py, ..., P,) which is used in [6]. This method involves lifting
each point a in 4; C R" to a generic height w;, in R*"!, and then computing
the volumes of certain projected faces of the Minkowski sum of the convex hulls of
these lifted sets A;. If the heights w; o are chosen to be generic perturbations of
our given integers w; a, the following equality of mixed volumes results:

(2) M(Py,...,Py) =Y M(P,...,P),

where vy ranges over the finite subset I' C Q™ — {0} consisting of those 7 for
which (y,1) is a normal vector of some n-dimensional face of the Minkowski sum
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conv(A;) + - -- 4 conv(A,). This theory also predicts that M(P],...,P)) =0 for
any v outside of this finite set I, and hence p, = 0 for such ~.
We next claim that it suffices to show the seemingly weaker inequality

(3) fiy < py for every v € T,

To see this claim, note that assuming (3), we would have

My P =Y iy < Sy = S M, P,

v€er y€er yer

But then because of Equation (2), the inequality (3) must actually be an equality,
as desired.

We now work on proving this inequality (3) for each v € Q*. We can reduce
to the case where v = 0 and each f; has coefficients in oz by making a change of
variables, as follows. As in the proof of Proposition 3, fix a choice of 7a where d is
the least common denominator of v, so that 77 is well-defined for each i. Let u;
denote the minimal value of the dot product (y,1) - (a,w; a) for a in 4;. Then one
can check that g;(y) := =i f(x"y;,..., 7" y,) has the following properties:

o It lies in oz [y,y ']
e Solutions x* to f(x) = 0 in (L*)™ having ord(x*) =  biject via the invert-
ible map z; = 77iy; with solutions y* to g(y) = 0 having ord(y*) = 0.
e T (£) = o(g).
Note that ing(—) is simply the reduction map

or[x,x7'] — L[x,x7]
f = f

induced from the reduction map on the coefficients o, — L.

As a further reduction, we can replace L with any finite algebraic extension of K
that contains the coordinates of each of the (finitely many) solutions x* in (L*)™
of the system f = 0. Having done this, the new field L will be discretely valued, so
we can also assume without loss of generality that K = L.

It only remains to show then that for a complete field K with discrete valuation,
given f € ox[x,x~1]" with the property that

e the system f = 0 has only a finite number of isolated solutions in (K*)™,
e the system f = 0 in K[x,x!] has only a finite number of isolated solutions
in (K*)",
then the number of solutions to f = 0 lying in (o)™ is at most the number of
solutions to f = 0 in (K *)", counted with multiplicities.

It turns out that a stronger statement holds for each solution in (K*)": its mul-
tiplicity as a solution to f = 0 gives an upper bound for the sum of the multiplicities
as solutions to f = 0 of all points in (05 )™ which reduce to it. This follows from
Lemma 17 in the Appendix, applied with A = o[x,x71]/(f). |

This completes the proof of Theorem 4.

3. EXAMPLES, REMARKS, QUESTIONS

Example 12.
We give an easy example involving a system of linear equations to illuminate the
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nature of the genericity conditions and the conclusion in Theorem 4. Consider the
system of equations

fi(wy, ) = Apnzy + Apxa — B =0

fa(®1,®2) = A1y + Agowy — By =0

equivalent to the matrix system

A11 A12 X1 — Bl
Az1 Asz| |72 B,|"
In our terminology, this implies that the Newton polygons P;, P, coincide, with
both being equal to the triangle in R? having vertices {(0,0), (1,0),(0,1)}. Since
the mixed volume M (P, P,) = 1, Bernstein’s Theorem predicts that this system
has exactly 1 solution in (K*)? for generic choices of the coefficients A4;;, B;.
Now assume that the coefficients A;;, B; lie in a complete discretely valued field
K, and to further specify A, assume that
Ap =m%ay
Ajg = 1% a;
Bz' = 7('61)1'
where a;;, b; lie in the valuation ring o.
The lifted Newton polygons conv(A4; ), conv(Az) again coincide, both being equal
to the triangle in R® with vertices {(0,0, ), (1,0, 1), (0,1, a2)}. Their Minkowski
sum conv(Aj) + conv(Az) is the dilation by 2 of the same triangle, having only one

2-dimensional face. This 2-dimensional face has normal vector in R® of the form
(’70;1) with Yo = (IB - al’IB - 052) in Rza and

M(P®, P)*) (= M(P, Py)) = 1.

Consequently, Theorem 4 predicts that generically the unique solution (z1,z2) to
the system will have ord(z1,z2) = v = (8 — 1,8 — asz).
Of course, we know how to solve this system explicitly via Cramer’s rule, giving

(z1,%2) = (&2, £2) where
All A12 Bl A12 All Bl
D = det Dy = det Dy = det .
¢ [Am A22]’ L=de [32 A22]’ 2= [Azl BJ

Here we can be very explicit about the genericity conditions assumed in the
theorem, and check if they suffice to force the coordinates of this unique solution
to have the predicted valuations.

If one chooses a generic vector v in R?, then the dot product of (7,1) with
points in the lifted triangle in R® will be minimized on one of its vertices. However,
somewhat less generic choices of v in R? give rise to vectors (7, 1) in R® whose dot
product minimizes on various edges of the lifted triangle, producing initial systems
in,(f) = 0 of the form

arf . _ by azf o _ by ann arz| (o) _ |0
st | |b2|? (@22 P [b2)’ @21 G2z |72 0]

Requiring that all of these initial systems have no solutions in (z1,2) in (K*)? is
then seen to be equivalent to non-vanishing for the following three determinants in
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K:

D :=det [C_ln Gzl Py = det by Y2 Py = det |1 bl
a21 Q22 by G2 a21 b

Equivalently, these conditions assert that
ord(D) = aq + a2
ord(D1) = 8+ a2
ord(Ds3) = a1 + S,

One can then see that indeed these genericity conditions suffice to imply the weaker
genericity assumptions needed to apply Bernstein (cf. Lemma 10), and also to
conclude that

ord(z1,x2) = (ord (%) ,ord (%)) =(B—a1,f—a2) =.

Remark 13.

Consider the special case of Theorem 2 where K is the ring of formal Laurent
series k((t)) with ¢-adic valuation, and k has characteristic zero. This relates to
classic results in Walker [13], Maurer [10], as well as Khovanskii’s Curve Theo-
rem on the Puiseux expansions z(t) about ¢t = 0 for the branches of an algebraic
curve defined by f;(x,t) € k[z1,...,2Zn,t] for i = 1,...,n with prescribed (n + 1)-
dimensional Newton polytopes A;. The Puiseux expansions are vectors in L™ where
L is the algebraic closure of K = k((t)). Theorem 4 or the Curve Theorem predicts
(generically) that the variety V(f1,. .., fn) is a curve having exactly M(P, ..., P)])
branches with Puiseux expansions about ¢ = 0 of the form

Cyy 4+ O(t’yl+1)
X = :
et +o(t7+)

Remark 14.
For some applications where fi,..., fn are polynomials rather than Laurent poly-
nomials, it is more appropriate to count solutions in affine space A} rather than
the torus (L*)™. For example, building on previous work in this direction, Huber
and Sturmfels [7] calculate the generic number of solutions in complex affine space
A2 for f = 0 where f € C[x]". In fact, the paper of Rojas [11] proves a much
more general result than Theorem 1, which as a special case, extends the results of
[7] from C to an arbitrary algebraically closed field k. For a field K with discrete
valution, one can (although we omit the details here) adapt the proof of Theorem 4
to prove the following generalization.

Given fi,..., fn € K[x], choose a large positive number N, and define pointed
versions A, At of A;, A; as follows:

AF = A; U {0}
+ o wi,0 if 0 e A;
) wio {N if0 ¢ A

Af = {(@,uwf,) rac 4}

Let conv(-) denote the convex hull of a set of points. Following [7], it can be shown
that for N sufficiently large, the combinatorial structure of the lower convex hull
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of the Minkowski sum Y | conv(A}) is constant in the following sense: there is a
finite collection of vectors I' = {7;} C Q", having entries which are affine functions
vi = m;N + b; of N, such that {(v;,1)},;er is exactly the set of inward-pointing
normal vectors for n-dimensional faces of the lower convex hull (note that if the
point (0, N) is not a vertex of the face corresponding to ;, then m; = 0). Say that
v in I is stable if all of the slopes m; are non-negative, and for a stable v in I' say
that a vector € L™ has ord(x) agreeing with -+ if

e z; = 0 if and only if m; > 0.

o ord(z;) = vi(=b;) it m; = 0.
Roughly speaking, this convention means we are treating N asif N = +00 = ord(0).

Given a stable v in T, let M(P/,,..., P, ,) be the mixed volume of the poly-

topes P/ ,,..., P, ., where P/, is the image under the projection R+ 5 R” of
the face of the lower hull of A} on which the dot product with (7, 1) is minimized.
We remark that for N sufficiently large, the polytopes {(P{ ..., P, )} er give
a subdivision of (Af,..., A1) in the sense of [6], which refines the subdivision
introduced in [7] for the sake of stating their affine root-count.

Theorem 15. With the above notation, on a non-empty Zariski-open subset U of
such f;’s in the moduli space Alj?” XX Alj“é"l of reduced coefficients (C;.a), the sys-
tem £ = 0 has only a finite number of isolated solutions in the affine space A} . Fur-
thermore, every such solution x* has ord(x*) agreeing with some stable v € T, and
the number which agree with vy, counted with multiplicity, is M(P{Y I P,'LY’ 4). O

Example 16.
We give an example to illustrate Theorems 4 and 15. Consider the system f =0

fi=ay® +b2’y* =0
fo=cz+dz® +ex® =0

with f1, fo € K][z,y] for some complete discretely valued field K, and assume
that a, b, ¢, d, e are generically chosen with ord-values a, 3,7, d, € € Z, respectively.
In this case it happens that one can enumerate solutions in the affine plane by
factoring out powers of variables from f;, fo. Letting r;,r2 denote the two roots
of the quadratic equation ¢ + dr + ex? = 0, if we assume for definiteness that
8 < +(v +¢€), then the quadratic formula shows

ord(r;) =vy-96
ord(re) =d — €
and f = 0 has the following solutions:
solution ord multiplicity

(0,0) (00, +00) 3
(7'1, 0) (’Y - 57 +OO) 2
(r2,0) (0 —€,+00) 2
(Tl,—ng) (’7—5,2(’}’—(5)—}-,3—@) 1
(ro,—er2) (0—¢€2(0—€)+p—a) 1

The convex geometry of this example is illustrated in Figure 1 for the particular
values

N=5 a=1,8=2 v=3,0=3, e=A4.
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0+c -F:H-d 0+q_
A +A,

(b)

FIGURE 1. An example of Theorems 4 and 15.

Figure 1(a) shows the point sets A, A in Z2 with the points labelled by the
coefficient of their corresponding monomial in f; or fo. Figure 1(b) depicts their
Minkowski sum A +.47 along with its subdivision induced by the lower convex hull
of the lifted points A} + A7, as shown in Figure 1(c). Note that the b+ 0 does not
participate in the subdivision, as it lifts to a point above the lower convex hull. The
set I" contains six vectors {va,vB,Yc, YD, YE, YF }, corresponding to the labelled 2-
dimensional faces in Figure 1(b). The corresponding normal vectors (v, 1) to the

2-dimensional faces in Figure 1(c), and the mixed volumes M(P/,..., P, | ) may
then be computed to be
normal vector (vy,1) stable?  M(P{,,..., P, })

A (N=v, 3(N-a), 1) yes 3

B (y=6, N+6—-B—~, 1) yes 2

C (6—¢, N+e—p—-4, 1) yes 2

D (y-=6, 2y=0)+B-a, 1) yes 1

E (6—€ 200-€+B-a, 1) yes 1

F (2(N+2a-38), 2(N-a), 1) yes 0

In this example, every v in I" is stable, but yr contributes no solutions because
the associated mixed volume is 0. Note that the multiplicities and valuations of
non-zero coordinates of the roots of f = 0 agree with the mixed volumes and
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the first and second coordinates of the entries in the above table, as predicted
by Theorem 15. Theorem 4 deals only with the two solutions lying in the torus
(L*)?, whose coordinates’ valuations are predicted by the data in the above table
corresponding to the faces labelled D, E that give a subdivision of A; + As.

4. APPENDIX BY WILLIAM MESSING

Our goal is to state and prove Lemma 17 below on multiplicities, which was
used at the end of the proof of Theorem 4. We begin by recalling the definition of
multiplicity [4, IV 4.7.12] which we employ.

Assume C' is an Artin local ring with residue field K, and that C is a finite
dimensional k-algebra for some field k. Then clearly

dim, C =£(C) - [K : k]
where £(C) denotes the length of C' (as a C-module). In the case C' = Oy, for y a
point on the k-scheme Y, we define mult, Y = dim;, C.

Lemma 17. Let o be a complete discrete valuation ring with residue field K, frac-
tion field K, and maximal ideal generated by the uniformizing parameter .
Let X = Spec(A) with A a finitely generated o-algebra. Assume Xg is a zero-

dimensional scheme. If v € X and 21, ..., zN are the points of X g which specialize
to x, then

N

Z mult,, Xx < mult, Xg.

i=1

The following is an easy application of Nakayama’s Lemma.

Lemma 18. Let R be a local ring and integral domain, with fraction field K and
residue class field K. Let M be o finitely generated R-module. Then

Proof. M ®r K is a finite dimensional K-vector space. Let {aj,...,a,} be a
basis for M ®gr K over K. Let {d4j,...,4.} be an arbitrary set of liftings in
M. By Nakayama’s Lemma, {&y,...,4,} in fact generate M over R. But then
{1 ®1,...,4, ® 1} generate M ®g K over K. O

We now apply this lemma and some results of Grothendieck to prove Lemma 17.

Let S = Spec(o) and X 4 sa separated morphism of finite type. Assume o is
a henselian local ring. Let f(z) = s, the closed point of S. Assume the closed
point z is isolated in the special fiber (i.e. {z} is open and closed in Xz). Then
X = X'II X", the disjoint union of open subschemes with z € X' and X'/S finite
and X" C Xk [4, IV 18.12.1]. In the case where 0 is a complete Noetherian local
ring (as in Lemma 17 when o is a complete discrete valuation ring), the result is
considerably more elementary and a simpler proof is given in [4, IT 6.2.4].

By hypothesis, Xz is zero-dimensional, so the coordinate ring A is an Artinian
K-algebra. As such,

(5) A=A x---x A

where the A; are the local rings of A with respect to its maximal ideals. These
ideals correspond to the closed points of Xz, and we fix notation so that 4; =
Oxy,z- If we set X' = Spec(A’), then A’ is finite over o, and o is henselian. Hence
there is a one-to-one correspondence between the idempotents of A and those of
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A" [3, III, Lemme 2]. Consequently the system of pairwise orthogonal idempotents
corresponding to (5) can be lifted to A’ so that

A=A x---x A

with A} /mA!, = A;, where m is the maximal ideal of 0. Any maximal ideal M' of A}
must contain mAj since otherwise mAj + M’ = A/, which contradicts Nakayama’s
Lemma.

But then clearly M' is the pre-image (under reduction mod mAj}) of the unique
maximal ideal M; of A;. Hence M' is the unique maximal ideal of A, and A}
is local. Since Aj is a factor of A’, clearly A} = Ox ;. The prime ideals of A’
which contain 7 trivialize in A’ ®, K. Thus the points of X which specialize to
x correspond to the height zero prime ideals of A} which do not contain 7. Let
{p:}¥, be those prime ideals of A} not containing 7, and let p} = p; ®, K be the
corresponding prime ideals in A} ®, K. Let z; denote point of X specializing to
x which corresponds to p;. The direct product factorization of the Artinian ring
Al ®, K yields

N
All ®o K = H(All Qo K)p;-
i=1
Then
N
dimg (A ® K) = Y _ dimg(A] €, Ky
i=1

N
= Z mult,, Xk.

i=1
But by Lemma 18 above,

dimg (4] ®, K) < dimg (4] ©, K)

= mult, (XR')
This completes the proof of Lemma, 17.
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