
COXETER-LIKE COMPLEXES
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Abstract. Motivated by the Coxeter complex associated to a
Coxeter system (W, S), we introduce a simplicial regular cell com-
plex ∆(G, S) with a G-action associated to any pair (G, S) where
G is a group and S is a finite set of generators for G which is
minimal with respect to inclusion.

We examine the topology of ∆(G, S), and in particular the rep-
resentations of G on its homology groups. We look closely at the
case of the symmetric group Sn minimally generated by (not nec-
essarily adjacent) transpositions, and their type-selected subcom-
plexes. These include not only the Coxeter complexes of type A,
but also the well-studied chessboard complexes.

1. Introduction.

The Coxeter complex ∆(W, S) associated to a Coxeter system (W, S)
is a beautiful simplicial complex which encodes the structure of the
Weyl chambers for W . Its poset of faces has a very simple description as
the poset of cosets of parabolic subgroups ordered by reverse inclusion
[20, §1.15]. This description has many consequences for its topology
and homology representations.

In this paper, we propose a more general construction of a simplicial
cell complex for a pair (G, S) where G is a group and S is any finite
generating set which is minimal with respect to inclusion. We observe
a number of easy general facts about these complexes in Section 2, and
give many examples in Section 3.

In Section 4, we focus on the case where G = Sn, the symmetric
group, and S is a set of transpositions. Here S corresponds to a choice
of spanning tree on n vertices, and (G, S) forms a Coxeter system
exactly when this tree is a path. There turn out to be many constraints
on the homology representations of ∆(G, S) in this case, some related to
the properties of the spanning tree. In particular, we are led naturally
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to consider type-selected subcomplexes of ∆(G, S), which turn out to
include the much-studied chessboard complexes as a special case.

In Section 5, we look even more closely at the special case where the
spanning tree has only one branched vertex (i.e. vertex of degree at
least three). Here one can prove further constraints on the homology,
and our results are most complete when the unique branched vertex
has degree exactly three.
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2. Generalities.

2.1. The cell complex and its face poset. This section gives the
basic construction, and explores some of its general properties. Good
references for some of the terminology and facts regarding posets, sim-
plicial complexes and cell complexes are [4] and [5].

Let G be a (finitely generated) group, and S a finite generating set for
G which is minimal with respect to inclusion. Given any subset J ⊆ S,
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let GJ denote the subgroup 〈J〉 generated by J in G (by analogy with
Coxeter groups, call GJ a parabolic subgroup). Form the poset P (G, S)
whose elements are the cosets {gGJ : g ∈ G, J ⊆ S} with ordering by
reverse inclusion, i.e. gGJ < g′GJ ′ if gGJ ⊃ g′GJ ′ .

Proposition 2.1. P (G, S) is a simplicial poset in the sense of Stanley
[31], that is, every lower interval in P (G, S) is isomorphic to a Boolean
algebra.

Proof. It suffices to show that if gGK ⊆ g′GK′ then g′GK′ = gGK′ and
K ⊆ K ′, since then the interval below gGK in P (G, S) would consist of
{gGJ |J ⊇ K}, and hence be isomorphic to the Boolean algebra 2S−K

via the map gGJ 7→ S − J . To show this, we have these implications:

gGK ⊆ g′GK′ ⇒ 1 ∈ GK ⊆ g−1g′GK′

⇒ g−1g′GK′ = GK′

⇒ g′GK′ = gGK′

⇒ gGK ⊆ gGK′

⇒ GK ⊆ GK′

⇒ K ⊆ K ′

where the last implication uses the minimality of the generating set
S. �

A simplicial poset P is balanced if there is a coloring of the atoms of
P so that every maximal element of P lies above exactly one atom of
each color. Clearly P (G, S) is balanced with color set S by assigning
the atom gGS−{s} the color s.

We have the following immediate consequence.

Corollary 2.2. There is a unique (up to isomorphism) balanced regular
cell complex of Boolean type [5] or Boolean complex [16] having P (G, S)
as its poset of faces. �

We denote this regular cell complex having face poset P (G, S) by
∆(G, S); it will be our main object of study.

The regular nature of the face poset P (G, S) implies that the Boolean
complex ∆(G, S) enjoys many of the pleasant properties of Coxeter
complexes, which we review here.

Recall that a pure d-dimensional cell complex is gallery-connected if
any pair F, F ′ of d-faces are connected by a path

F = F0, F1, . . . , Fr−1, Fr = F ′

of d-faces in which Fi and Fi+1 share a (d − 1)-face for each i.
The next proposition is immediate from the definition of P (G, S).
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Proposition 2.3. (i) ∆(G, S) is a pure Boolean complex of di-
mension |S| − 1, which is gallery-connected and balanced with
color set S.

(ii) The group G acts transitively on its maximal faces.
(iii) Stabilizers of codimension 1 faces are non-trivial cyclic groups,

and the stabilizer of an arbitrary face is the subgroup generated
by the stabilizers of the codimension 1 faces containing it. In
particular, the transitive G-action on maximal faces is simply
transitive.

Remark 2.4. It is not hard to check that the properties listed in the
preceding proposition completely characterize the Boolean complexes
∆(G, S). To be precise, if one assumes that ∆ is a balanced Boolean
complex carrying a G-action satisfying properties (ii),(iii) listed above,
then G has a minimal generating set S consisting of a set of generators
for the cyclic groups that stabilize the codimension 1 faces of some
fixed maximal face of ∆, and ∆ ∼= ∆(G, S).

We also note1 that ∆(G, S) is a very special case of what has been
called a (developable) simplex of groups (see [18, §2.4] and [30]).

Although ∆(G, S) has simplicial cells, it need not be a simplicial
complex; see Example 3.4 below. However, there is a simple criterion
for this to occur. Given any Boolean complex ∆ with vertex set (0-
cells) V , define an abstract simplicial complex ∆ on the same vertex
set V as follows: F ⊂ V spans a face of ∆ if and only if there exists at
least one cell of ∆ containing all the vertices in F . Given any cell σ of
∆, let vertices(σ) denote its set of vertices. The following fact about
Boolean complexes is then straightforward.

Proposition 2.5. For any Boolean complex, the map

f : ∆ → ∆
σ 7→ vertices(σ)

induces a dimension-preserving simplicial surjection.
It is an isomorphism if and only if every cell σ of ∆ is uniquely

determined by its set of vertices, or equivalently, if and only if ∆ is a
simplicial complex. �

In the case of ∆ = ∆(G, S), there is a natural alternative description
of ∆ which ties it in with Tits coset complexes, as studied in [6] and
[17]. Let

C(G, S) = {gGS−s : g ∈ G, s ∈ S}.

1Thanks to Mike Davis for pointing this out.



COXETER-LIKE COMPLEXES 5

denote the covering of the set G by the cosets of maximal (proper)
parabolic subgroups. Let N (C(G, S)) be the nerve of this covering,
that is, the abstract simplicial complex with typical vertex labeled
gGS−s and a face {giGS−si

}r
i=1 whenever

⋂r
i=1 giGS−si

6= ∅.

Corollary 2.6. The simplicial complex ∆(G, S) which is associated to
the Boolean complex ∆(G, S) is N (C(G, S)). Hence the map

f : ∆(G, S) → N (C(G, S))
gGJ 7→ {gGS−s : s ∈ S − J}

induces a dimension-preserving G-equivariant cellular surjection.
It is an isomorphism if and only if (G, S) satisfies the intersection

condition

(2.1)
⋂

s∈S−J

GS−s = GJ for every J ⊂ S,

or equivalently, if and only if ∆(G, S) is a simplicial complex.

Proof. The first assertion is a restatement of the definitions. The rest
is then a straightforward application of Proposition 2.5. The condition
that every cell is uniquely determined by its vertices translates into the
intersection condition: we always have an inclusion

GJ ⊆
⋂

s∈S−J

GS−s,

but whenever there exists g ∈
(
⋂

s∈S−J GS−s

)

− GJ then gGJ 6= GJ

give two different faces of ∆(G, S) with the same vertex set. �

Remark 2.7.

All of the previous results easily generalize to a relative framework that
includes Tits buildings associated to groups with a BN -pair. Let G be
a group, and B any subgroup. Given a finite subset S ⊂ G which is
minimal with respect to inclusion having the property that G = 〈B, S〉,
define subgroups PJ := 〈B, J〉 for J ⊆ S. Then the poset P (G, B, S)
whose elements are the cosets {gPJ : g ∈ G, J ⊆ S} with ordering
by reverse inclusion is again a simplicial poset, so it is the face poset
of a unique regular cell complex ∆(G, B, S). This ∆(G, B, S) shares
many of the properties of ∆(G, S) proven above. In the case where G
is a group with BN -pair having associated Coxeter system (W, S), this
∆(G, B, S) is the usual Tits building.

Remark 2.8. We should mention that Brown [8] recently studied a
(different) topological space built from proper cosets of a group ordered
by inclusion. We are not aware of a direct link with his work.
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2.2. Pseudomanifolds, links, and singularities. Note that max-
imal faces of ∆(G, S) are indexed by cosets gG∅ = {g} and hence
correspond to the elements of G. Codimension one faces are indexed
by cosets gG{s}, and such a face will lie in as many facets as the order of
s in G. Since ∆(G, S) is gallery-connected, this implies the following.

Proposition 2.9. ∆(W, S) is a pseudomanifold if and only if S con-
tains only involutions. When this is the case, ∆(W, S) is orientable as
a pseudomanifold if and only if the set map

ε : S → Z
× = {±1}

s 7→ −1

extends to a group homomorphism G
ε→ Z×. In this situation,

H|S|−1(∆(G, S), Z) ∼= Z

and the homomorphism ε coincides with the action of G on this top
homology.

In the cases where ∆(G, S) is a pseudomanifold, it is often singular.
The following trivial proposition about the links of its faces is helpful
in understanding its singularities (see [13, §3.3] for a careful discussion
of links in simplicial posets).

Proposition 2.10. The link of the face indexed by gGJ in ∆(G, S) is
isomorphic to ∆(GJ , J). �

Note that this implies that the singularities of ∆(G, S) are fairly easy
to understand by induction on |S|. In particular, we have the following.

Corollary 2.11. When S contains only involutions, the singularities of
the pseudomanifold ∆(G, S) have codimension at least 3. In particular,
when S consists of involutions and |S| ≤ 3, then ∆(G, S) is smooth.

Proof. Use the previous proposition and Proposition 2.3. The link of
every codimension 2 face is a gallery-connected pseudomanifold of di-
mension 1 and hence a sphere. �

2.3. Morphisms and quotients. Given pairs (G, S) and (Ĝ, Ŝ) as

above, say that a group homomorphism φ : Ĝ → G is a morphism of
pairs if φ(Ŝ) ⊆ S. The following proposition is straightforward.

Proposition 2.12. The map on cosets

ĝĜĴ 7→ φ(ĝ)Gφ(Ĵ)

induces an order-preserving map of posets P (Ĝ, Ŝ) → P (G, S) and

hence also a map of Boolean complexes ∆(Ĝ, Ŝ) → ∆(G, S).
Furthermore, surjectivity of the following maps are equivalent:
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(i) ∆(Ĝ, Ŝ) → ∆(G, S),

(ii) P (Ĝ, Ŝ) → P (G, S),

(iii) Ĝ → G,

(iv) Ŝ → S.

Lastly, the map ∆(Ĝ, Ŝ) → ∆(G, S) is dimension-preserving if and

only if the map Ŝ → S is injective. �

Morphisms of pairs relate to a natural construction of a quotient
complex H\∆(G, S) for a subgroup H of G (here H acts on cosets
gGJ by left-translation). Because the left-translation action of H on
∆(G, S) is type-preserving (so in particular, a face is stabilized by a
group element if and only if it is stabilized pointwise), this quotient is
again a Boolean complex whose geometric realization as a topological
space is homeomorphic to the quotient space of the geometric realiza-
tion of ∆(G, S) by the action of H. Its face poset H\P (G, S) has the
following description involving double cosets HgGJ : the elements of
H\P (G, S) are pairs (J, HgGJ) where J ⊆ S and g ∈ G, and we define

(J, HgGJ) ≤ (J ′, Hg′GJ ′) if J ⊇ J ′ and HgGJ ⊇ Hg′GJ ′.

Remark 2.13.

The previous definition of H\P (G, S) corrects [24, pp. 12-13], where it
was incorrectly asserted that H\P (G, S) is the poset of all double cosets
{HgGJ : g ∈ G, J ⊆ S} ordered by reverse inclusion. Fortunately,
this has no effect on the later results of [24], as they proceed from
the (correct) assumption that the faces of H\∆(G, S) having color set
S − J are in bijection with double cosets of the form HgGJ inside G.

The slight subtlety here is that whenever there exist coincidences
HgGJ = HgGJ ′ for J 6= J ′ (as happens in many interesting examples),
there will exist different poset elements (J, HgGJ) 6= (J ′, HgGJ ′) with
the same double coset in the second coordinate (but different color sets:
S − J 6= S − J ′).

A good example of this occurs when H = G, so that HgGJ = G for
all g ∈ G and all J ⊆ S. Then the quotient complex G\∆(G, S) is an
(|S| − 1)-simplex whose face poset G\P (G, S) has elements (J, G) for
J ⊆ S, ordered by reverse inclusion on the first coordinate.

Proposition 2.14. Let φ : (Ĝ, Ŝ) → (G, S) be a morphism of pairs

which is bijective when restricted to a map Ŝ → S, and let

K := ker(φ : Ĝ → G).

Then there is an isomorphism of Boolean complexes

K\∆(Ĝ, Ŝ) → ∆(G, S)
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induced by the isomorphism of face posets given by

(Ĵ , KĝĜĴ) 7→ φ(ĝ)Gφ(Ĵ).

Proof. Using the fact that K is a normal subgroup, so that

KĝĜĴ = ĝKĜĴ = ĝĜĴK

and the fact that G ∼= Ĝ/K, it is easy to check that the above map of
face posets is indeed an isomorphism. �

Corollary 2.15. When (G, S) has S consisting of involutions, ∆(G, S)

is a quotient of the Coxeter complex ∆(Ŵ , Ŝ) for the Coxeter system

(Ŵ , Ŝ) in which the order of ŝŝ′ in Ŵ is defined to be the same as the
order of ss′ in G. �

As will been seen in the next section, this corollary can be useful for
visualizing examples where |S| is small. Here one can often identify

the Coxeter complex ∆(Ŵ , Ŝ) either as a sphere or affine space (when

(Ŵ , Ŝ) is finite or affine), and visualize the action of K on this space
giving rise to the quotient space ∆(G, S). P. Webb has also pointed
out to us that many finite simple groups have involutive generating
sets whose presentations (as listed in the Atlas [2]) exhibit them as
quotients of Coxeter groups by easily described subgroups. See also
[24] for some combinatorics related to quotients of Coxeter complexes.

2.4. Homology representations. From the homological viewpoint,
a pleasant feature of ∆(G, S) is the simple description of its cellular
chain complex. Given a coefficient ring R, as R[G]-modules, the (aug-
mented) cellular chain groups C•(∆(G, S), R) with coefficients in R can
be described in terms of coset representations R[G/H]:

(2.2)

0 → R[G] →
⊕

s∈S

R[G/G{s}] →

· · · →
⊕

J⊆S:|J |=i

R[G/GJ ] → · · ·

→
⊕

s∈S

R[G/GS−s] → R → 0.

Here the boundary maps can be defined componentwise, and up to
sign, in each component are the natural maps R[G/K] → R[G/H]
with [gK] 7→ [gH] whenever K ⊆ H. The homological indexing is
given by

Ci(∆(G, S), R) :=
⊕

J⊆S:|J |=|S|−1−i

R[G/GJ ].
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One consequence of this is an expression for the (reduced) Euler
characteristic when G is finite:

(2.3) χ(∆(G, S)) =
∑

J⊂S

(−1)|S|−|J |−1[G : GJ ] = |G|
∑

J⊂S

(−1)|S|−|J |−1

|GJ |
.

Another immediate consequence is the following description of the
top homology as an intersection of kernels.

Corollary 2.16.

H|S|−1(∆(G, S), R) =
⋂

s∈S

ker(R[G] → R[G/G{s}]). �

The previous corollary already tells us something, when G is finite,
about the occurrence of one-dimensional representations of G in the top
homology considered as a C[G]-module. We use the notation 〈V, W 〉
to denote the inner product of the complex characters of two C[G]-
modules V and W . Recall that for any irreducible C[G]-module W ,
the quantity 〈V, W 〉 computes the multiplicity of W in V . Given a sub-
group H of G, let V ↓G

H and V ↑G
H denote the restriction and induction

of representations to and from H respectively.

Proposition 2.17. Let χ : G → C× be a one-dimensional representa-
tion of G. Then

〈H|S|−1(∆(G, S), C), χ〉 =

{

1 if for all s ∈ S, one has χ ↓G
G{s}

6= 1

0 else.

Proof. One knows that C[G] = C|S|−1(∆(G, S), C) carries exactly one
copy of each one-dimensional representation χ, namely as the C-span
of the element

∑

g∈G

χ(g−1)g.

It is then easy to check that χ ⊆ ker(C[G] → C[G/G{s}]) if and only if
χ ↓G

G{s}
6= 1, from which the statement follows. �

2.5. Type selection. Whenever one has a balanced Boolean complex
∆ with color set S, one can talk about its type-selected or color-selected
subcomplex ∆J for J ⊆ S, that is, ∆J is the subcomplex induced on
the set of vertices whose color lies in J . Since the face indexed by gGJ

in ∆(G, S) has color set S−J , the type-selected subcomplex ∆(G, S)J

is the unique Boolean complex whose face poset is

P (G, S)J := { cosets gGK : S − J ⊆ K, g ∈ G}
ordered by reverse-inclusion.
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The following proposition is the key to many deletion-contraction
arguments in Section 4.

Proposition 2.18. If G is a group, S is a finite minimal generating
set and s ∈ J ⊆ S then there is a short exact sequence of complexes of
C[G]-modules

0 → C•(∆(G, S)J−s) → C•(∆(G, S)J)

→ (C•(∆(GS−s, S − s)J−s))[1] ↑G
GS−s

→ 0.

Here C•[1] denotes the chain complex C• with degree shift by 1, i.e.
Ci[1] = Ci−1, and ↑G

H denotes induction of a representation from a
subgroup H to G.

Proof. The injective map is induced from the inclusion

∆(G, S)J−s ↪→ ∆(G, S)J .

The rest is straightforward. �

Remark 2.19. The short exact sequence in Proposition 2.18 actually
reflects the cofibration sequence

∆(G, S)J−s ↪→ ∆(G, S)J �

∨

[G:GS−s]

Susp (∆(GS−s, S − s)J−s)

or in other words, the quotient space ∆(G, S)J/∆(G, S)J−s is homo-
topy equivalent to the one-point wedge of [G : GS−{s}] copies of the
suspension of ∆(GS−{s}, S−{s})J−{s}. This generalizes [9, Proposition
2.1].

3. Examples.

3.1. Euclidean reflection groups. A Euclidean reflection group W
is a finite group acting faithfully on a Euclidean space V and generated
by linear reflections2. Such groups are known to have a minimal gen-
erating set of reflections S which endows (W, S) with the structure of
a Coxeter system (see [20, Chapter 1]). In this case, ∆(W, S) is called
the Coxeter complex, and the description of its poset of faces P (W, S)
was our motivating example. Here ∆(W, S) triangulates the sphere
SdimV −1, and may be identified with the simplicial decomposition of
the unit sphere in V by the reflecting hyperplanes for the reflections in
W . There is an extensive literature on Coxeter complexes; see [7] for
some references.

2Some authors might apply the term “Euclidean reflection group” to the case
where W is possibly infinite but generated by affine reflections. For this reason,
one should perhaps call the finite reflection groups that we consider above spherical

reflection groups.
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(a)

(b)

Figure 1. Examples of ∆(G, S) which are 2-tori. In
(a), G = S4 and S = (12), (13), (14) (cf. [9, Figure 2]).
In (b), G is group of 4×4 unitriangular matrices over F2

and S is the subset of unitriangular matrices having one
non-zero superdiagonal entry and all other entries above
the diagonal zero.

On the other hand, if we choose any minimal generating set S of
reflections for W , one can still form ∆(W, S), and the fact that the
determinant or sign representation ε : W → Z

× is well-defined implies
that it will be an orientable pseudomanifold by Proposition 2.9.

Example 3.1. The first non-trivial example of the previous discussion
occurs when W = S4 the symmetric group on 4 letters, and

S = {s1 = (12), s2 = (13), s3 = (14)},

where (ij) denotes the transposition which swaps i and j. Since |S| = 3,
we know that ∆(W, S) is an orientable surface by Proposition 2.11. Its
Euler characteristic is easily calculated as in (2.3) to be 0, so it must
be a 2-torus.
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One can apply Corollary 2.15 to visualize this torus. Consider the
affine Coxeter system Ã2 = (Ŵ , Ŝ) where Ŝ = {ŝ1, ŝ2, ŝ3} satisfy the
following relations: (ŝi)

2 = (ŝiŝj)
3 = 1 for all i 6= j. One can check

directly that the si’s satisfy all of these same relations, along with
further relations of the form (sisjsisk)

2 = 1 with {i, j, k} = {1, 2, 3}.
Thus if K is the subgroup of Ŵ generated by all words of the form
(ŝiŝj ŝiŝk)

2 as above, then ∆(W, S) is isomorphic to the quotient of

the affine Coxeter complex ∆(Ŵ , Ŝ) by the action of K. This affine
Coxeter complex is a tessellation of the 2-plane by equilateral triangles,
and K acts as a lattice of translations on this 2-plane, leaving a quotient
homeomorphic to the 2-torus, which is ∆(W, S), as in Figure 3.1 (a).

It turns out that in this example ∆(W, S) is a simplicial complex (see
Proposition 4.2 below), and that it is isomorphic to the 3×4 chessboard
complex, first considered by Garst [17] in the context of coset complexes
of groups, and later by Björner, Lovasz, Vrecica and Zivaljevic [9] and
many other authors (see Example 4.5 below). In [9, p. 30] it was also
pointed out that it is a 2-torus.

In Section 4, we discuss the case where W = Sn in more detail.

Example 3.2. The previous example raises the question of which man-
ifolds can be achieved as ∆(G, S). The authors thank M. Özaydin for
pointing out the following simple construction which achieves all ori-
entable surfaces (orientable 2-manifolds) in this way. Let

G := D4n × Z/2Z

= 〈r, s, t : 1 = r2 = s2 = t2 = (rs)2n = (rt)2 = (st)2〉

where Dm denotes the dihedral group of order m. We choose S :=
{r, s, rt}. Since the elements of S are involutions, and the map sending
r, s to −1 and t to +1 extends to a homomorphism of G that sends
all elements of S to −1, we must have that ∆(G, S) is an orientable
surface, and then a quick Euler characteristic computation shows that
it has genus n − 1.

3.2. Unitary reflection groups. A unitary reflection group is a fi-
nite group acting faithfully on a unitary space (a finite dimensional
complex vector space with positive definite Hermitian bilinear form)
and generated by unitary reflections, that is, elements of finite order
which fix some hyperplane. Such groups were classified by Shephard
and Todd [28], and contain many interesting examples. There is one
infinite family of such groups G(de, e, r), consisting of the r × r ma-
trices with one non-zero entry in each row and column for which all
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non-zero entries are (de)th roots of unity, and for which the product of
the non-zero entries is a dth root of unity.

Unfortunately, unitary reflection groups seem to lack distinguished
sets of generators in general. However, there are at least two well-
behaved subclasses of unitary reflection groups which have them

• the complexifications of Euclidean reflection groups (i.e. ex-
tending the action of a Euclidean reflection group acting on Rn

to Cn), and
• the Shephard groups introduced by Shephard [27] and studied

further by Coxeter [12], which are the automorphism groups of
regular complex polytopes.

For Shephard groups and their distinguished generating sets S, the
complex ∆(G, S) has many different descriptions, including some which
make no reference to the choice of the generators S- see Orlik [21]. In
this situation, ∆(G, S) turns out to be a simplicial complex which is
homotopy equivalent to a wedge of spheres of dimension |S|−1, and the
homology representation H|S|−1(∆(G, S), Z) has many beautiful guises,
which are studied in [22].

Remark 3.3. Motivated by the Coxeter and Shephard cases, along
with Corollary 2.16 and Proposition 2.17, one might naively hope that
H|S|−1(∆(G, S), Z) carries some canonical representation of G, inde-
pendent of the choice of the minimal generators S, say for some “nice”
groups G.

Unfortunately, even for some of the groups in the infinite family
G(de, e, r) this appears to fail, e.g. the rank of H|S|−1(∆(G, S), Z) can
depend on the choice of minimal generators. For example, if G =
G(6, 2, 2), define unitary reflections

s0 =

[

ω2 0
0 1

]

, s1 =

[

0 1
1 0

]

, s2 =

[

0 ω−1

ω 0

]

, s′2 =

[

0 −1
−1 0

]

where ω is any primitive sixth root of unity. Letting

S := {s0, s1, s2}
S ′ := {s0, s1, s

′
2},

one can easily check that both S and S ′ are minimal generating sets of
unitary reflections for G. However a computer calculation shows that

H2(∆(G, S), Z) ∼= Z
2

H2(∆(G, S ′), Z) ∼= Z
4.

Nevertheless, a happy situation occurs when the unitary reflection
group G is generated by unitary reflections of order two (involutions).
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Perhaps surprisingly, there are many instances where this occurs, even
when the group is not the complexification of some Euclidean reflection
group (see e.g. the tables at the end of [10]). Any minimal choice of
generating involutive reflections S for such a group G will give rise to
an orientable pseudomanifold ∆(G, S) (via Proposition 2.9) since the
determinant representation is a well-defined homomorphism ε : G →
Z×.

Example 3.4. Within the infinite family G(de, e, r), the groups in
the subfamily G(2e, e, r) have the aforementioned property of being
generated by involutive (unitary) reflections. A close look at the case
of G = G(4, 2, 2) also illustrates how the Boolean complex ∆(G, S)
can fail to be a simplicial complex. Choose the following generators
S = {s1, s2, s3}:

s1 =

[

−1 0
0 1

,

]

s2 =

[

0 1
1 0

,

]

s3 =

[

0 −i
i 0

]

.

One can check (see [10, Appendix 2]) that the relations among these
si are generated by

s2
i = 1, s1s3s2 = s3s2s1 = s2s1s3.

These relations have some other consequences, such as

(sisj)
4 = 1 for i 6= j

sisjsi = sksjsk whenever {i, j, k} = {1, 2, 3}.
An Euler characteristic computation then shows that ∆(G, S) is an ori-
entable surface of genus 4. However, ∆(G, S) is not a simplicial com-
plex, since for example, one can check that the two cosets s1G{s2,s3} =
s3s1G{s2,s3} and G{s1,s3} index two vertices which are the endpoints for
two different edges, indexed by cosets s1G{s3} and s3s1G{s3}.

3.3. Unipotent groups over F2. Let G be the unipotent group con-
sisting of all upper unitriangular n × n matrices over F2, and let S =
{s1, . . . , sn−1} where si has a 1 in the (i, i + 1) entry and zeroes else-
where off the diagonal. It is easy to check that S is a minimal generating
set for G consisting of involutions. One can also check that the map
ε : si 7→ −1 extends to the homomorphism

G
ε→ Z

×

(aij)
n
i,j=1 7→ (−1)

∑n−1

i=1
ai,i+1

Therefore ∆(G, S) is an orientable pseudomanifold by Proposition 2.9.
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Biss [3] has shown that all relations among the si are generated by
the following Coxeter-like relations

(3.1)

s2
i = 1

(sisi+1)
4 = 1

(sisj)
2 = 1 for |i − j| > 1,

along with the extra relations (sisi+1si+2)
4 = 1. Consequently Corol-

lary 2.15 implies that ∆(G, S) is a quotient of the Coxeter complex

∆(Ŵ , Ŝ) for the Coxeter system described by the relations (3.1), where

one quotients by the normal subgroup K of Ŵ generated by the ele-
ments (ŝiŝi+1ŝi+2)

4.

Example 3.5. Taking the special case where n = 4 in the previous
discussion, the Coxeter complex ∆(Ŵ , Ŝ) is the regular tessellation of
the 2-plane by isosceles right triangles, and K acts as a 2-dimensional
lattice of translations, yielding a quotient ∆(G, S) which triangulates
a 2-torus, as in Figure 3.1 (b). As in Example 3.1, the fact that one
obtains a 2-torus can be predicted independently by an easy Euler
characteristic computation.

Example 3.6. We give an example where ∆(G, S) is non-orientable,
but still comprehensible. Let

G = S4

S = {s0 = (12)(34), s1 = (23), s2 = (34)}.
One can easily check that S minimally generates G. By Proposition 2.9,
∆(G, S) will be a non-orientable surface, and an Euler characteristic
computation shows that it is in fact the real projective plane.

Alternatively, one can use Corollary 2.15. Note that the si satisfy the
Coxeter relations s2

i = (s0s1)
4 = (s0s2)

2 = (s1s2)
3 = 1 for the (finite)

Coxeter system (Ŵ , Ŝ) of type B3. One can check that they also satisfy
an extra relation: s0s1s0s1s2s1s0s1s2 = 1. The left-hand side in this
relation happens to coincide with the image of the longest element w0 in
Ŵ under the surjection Ŵ � G, so the kernel K of this surjection must
contain the cyclic group of order two generated by w0 in Ŵ . Hence K
must coincide with this cyclic group, since |W | = 48 = 2|G|. As Ŵ is
the symmetry group of the regular cube or octahedron, ∆(W, S) is a
2-sphere isomorphic to the barycentric subdivision of the boundary of
the cube or octahedron. The longest element w0 happens to act in this
case as the antipodal map on the 2-sphere ∆(Ŵ , Ŝ), and ∆(G, S) is
the triangulation of the real projective plane arising from the antipodal
identification.
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4. The case of the symmetric group.

Here we examine more closely the case where G = Sn considered as
a reflection group, and S is a minimal generating set of reflections.

4.1. Trees and forests. The following proposition is easy and well-
known.

Proposition 4.1. The reflections in Sn are the transpositions (ij). A
set S of transpositions forms a minimal generating set if and only if
the graph on vertex set [n] := {1, 2, . . . , n} having an edge {i, j} for
each (ij) in S is a spanning tree. �

In light of this proposition, we introduce the following bit of notation.
Given a spanning tree T on [n], let ∆T := ∆(Sn, ST ) where ST is the
corresponding minimal generating set.

Proposition 4.2. For any spanning tree T on [n], the pair (Sn, ST )
satisfies the intersection condition (2.1), and hence ∆T is a simplicial
complex.

Proof. Given the spanning tree T with edge set corresponding to ST ,
for any J ⊂ ST , one has GJ = SB1

×· · ·×SBn−|J|
, where B1, . . . , Bn−|J |

are the blocks of the partition of [n] into the vertices of the trees in the
subforest of T induced by the edge subset J . Similarly, for each edge s
in ST , there is a corresponding partition of [n] into two blocks Bs

1, B
s
2

(the bond or cocircuit induced by s) such that GS−s = SBs
1
× SBs

2
.

Showing the intersection condition then amounts to showing

SB1
× · · · × SBn−|J|

=
⋂

s∈ST−J

SBs
1
× SBs

2

or equivalently, in the lattice of partitions of [n] one has

{B1, . . . , Bn−|J |} =
∧

s∈ST−J

{Bs
1, B

s
2}.

This is easily shown by induction on n − |J |. �

The simplicial complex ∆T has a useful alternate description. Fix a
spanning tree T on [n], so that the vertices of T have a fixed labeling.
By a labelled subforest (F, w) of T , we mean a subforest F of T along
with an assignment w of a subset of [n] to each tree in F , such that a
tree having r vertices is assigned a subset of cardinality r, and these
subsets disjointly partition [n]. Order the labelled subforests by saying
(F, w) ≤ (F ′, w′) if the vertex set of every tree in F is a union of vertex
sets of trees in F ′, and the corresponding label sets in w are the unions
of the label sets in w′.
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Proposition 4.3. For any spanning tree T on [n], the face poset
P (S, ST ) of ∆T is isomorphic to the above partial order on labelled
subforests of T .

Proof. A coset wGJ corresponds to a pair (F, w) in which F is the
subforest of T induced by the edge set J . Here w indicates how to
relabel the vertices of T and hence also how to label the vertex sets of
the subtrees in F . It is easy to check that this is a poset isomorphism.

�

In fact, the previous description of ∆T suggests a slightly more
general family of simplicial complexes which arise naturally as type-
selections of ∆T . Given a spanning tree T on [n], let a multiplicity
sequence

m = (m1, . . . , mn) ∈ N
n

be an assignment of a non-negative integer mi to each vertex i of T ,
and call the pair (T,m) a spanning tree with vertex multiplicities. For
any such pair (T,m), a labelled subforest is a pair (F, w) where

• F is a subforest of T ,
• w is an assignment of a (possibly empty) subset of [m], where

m :=
∑

i mi, to each tree in F ,
• each tree in F is assigned a subset of cardinality equal to the

sum of the mi as i runs through its vertex set and
• these subsets disjointly partition [m].

Ordering these labelled subforests as before, it is not hard to check
that this defines the face poset of a simplicial complex which we will
denote ∆T,m. For example, when m = (1, 1, . . . , 1), then ∆T,m = ∆T .

It turns out that every complex ∆T,m with mi ≥ 1 is a type-selected

subcomplex of a complex ∆T̂ for some spanning tree T̂ on [m] where

m =
∑

i mi. Given (T,m) with mi ≥ 1, let T̂ be a tree on m vertices
and J ⊂ ST̂ a subset of edges such that

• the induced subforest on J has subtrees with mi vertices for
each i,

• the tree obtained from T̂ by contracting the edges in J is T (in
other words, T is the underlying tree structure connecting the
components of the subforest induced by J).

With these definitions, the following proposition is a straightforward
translation of the definitions.

Proposition 4.4. In the above situation,

∆T,m
∼= (∆T̂ )S

T̂
−J .
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Example 4.5. Chessboard complexes.
Let T be an n-vertex star, i.e. T has n − 1 leaves each connected

to the same central vertex v of degree n − 1. For r ∈ N, define a
multiplicity sequence mr by setting mi = 1 for each leaf vertex i,
and mv = r. Then one can easily check that ∆T,mr

is isomorphic to
the (n − 1) × (n + r − 1) chessboard complex ∆n−1,n+r−1 considered
in [1, 9, 15, 17, 26, 34, 35], whose faces correspond to placements of
non-attacking rooks on an (n − 1) × (n − 1 + r) chessboard.

In particular, when T is an n-vertex star,

∆T = ∆T,(1,1,...,1) = ∆T,m1

∼= ∆n−1,n.

It was noted in [9, §2] that ∆n−1,n is a pseudomanifold with singularities
lying in codimension at least 3 (but all other chessboard complexes are
not pseudomanifolds), in agreement with Proposition 2.9.

We return to this example in the discussion of Example 4.15.

Remark 4.6.

For any pair (G, S) having only involutions in S, the facet graph of
∆(G, S), having vertices indexed by maximal faces and an edge for
each pair of maximal faces that share a codimension one face, coincides
with the (undirected) Cayley graph of G with respect to the generators
S. Thus it is possible that the study of ∆(G, S) and its topology may
have a bearing on questions about such Cayley graphs.

In particular, when G = Sn and T is a path, so that ∆T is the Cox-
eter complex for Sn, many questions about this Cayley graph have been
answered. For other spanning trees T on [n], less is known, although
the case where T is the star graph (so that ∆T is the chessboard com-
plex ∆n−1,n as in Example 4.5) was considered in [14, §5], and studied
more extensively in [23].

4.2. Deletion-contraction and flossing. For the remainder of the
paper, we examine the topology of ∆T , and particularly the complex
representation of Sn on its homology H•(∆T , C). For this purpose, we
will make use of standard terminology about the symmetric group and
its complex representations, such as can be found in [25, 32]. In what
follows, all simplicial chain groups and homology groups are taken with
C coefficients, unless explicitly stated otherwise.

One useful feature of the setting (G, S) = (Sn, ST ) is that Propo-
sition 2.18 can be re-interpreted in terms of certain deletion and con-
traction operations, for which we now introduce notation.

Given a spanning tree with multiplicities (T,m) on [n], and an edge
e in the tree with vertex set e = {i, j}, one can speak of the contraction
T/e in the usual graph-theoretic sense. In other words, T/e has the



COXETER-LIKE COMPLEXES 19

same vertex set as T except that i, j have been coalesced into a single
vertex ij, and the edges of T/e correspond to the edges of T other than
e. Further define m/e by

(m/e)k = mk for k 6= i, j

(m/e)ij = mi + mj

so that (T/e,m/e) is a spanning tree with multiplicity on [n − 1].
In light of Proposition 4.4, ∆T/e,m/e is the type-selected subcomplex
(∆T )ST−{e}.

When one deletes the edge e from T to obtain the graph T−e, it splits
into two connected components T ′ and T ′′ which (up to isomorphism)
are trees on vertex sets [n′] and [n′′] respectively where n′ + n′′ = n.
Let m′ and m′′ be the multiplicities in m restricted to the vertex sets
of T ′ and T ′′ respectively, so that (T ′,m′) and (T ′′,m′′) are spanning
trees with multiplicity on [n′] and [n′′] respectively.

In this case the exact sequence of Proposition 2.18 becomes the fol-
lowing crucial tool.

Proposition 4.7. Given any spanning tree with multiplicities (T,m)
on [n], and any edge e of T , there is a short exact sequence of complexes
of C[Sn]-modules

0 → C•(∆T/e,m/e) → C•(∆T,m)

→ (C•(∆T ′,m′) ⊗ C•(∆T ′′,m′′))[1] ↑Sn

Sn′×Sn′′
→ 0. �

There is a particularly useful way to combine two instances of the
previous proposition for inductive arguments (used in Subsection 4.3
below), which we will refer to as the flossing induction. Say that a
pair of leaf vertices `, `′ in a tree T floss the vertex v if v is the unique
branched vertex (i.e. having degree 3 or higher) on the path from ` to
`′ in T .

Proposition 4.8. In any tree T which is not a path, there exists a
triple of vertices (`, ˆ̀, v) in which `, ˆ̀ are leaves that floss the vertex v.

Proof. Root the tree T at one of its leaves, so that each edge of T
connects a parent vertex to a child vertex, the child being the one
further from the root. Also erase the vertices of degree 2 in T , so as
to create a homeomorphic (rooted) tree T̄ with possibly fewer edges.
Because neither T nor T̄ is a path, in T̄ there will always exist two
leaves `, ˆ̀ other than the root which share the same parent vertex v,
and these will correspond to a triple (`, ˆ̀, v) in T as desired. �

When `, ˆ̀ floss v, relabel without loss of generality so that

distT (`, v) ≤ distT (ˆ̀, v)
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Figure 2. An example of flossing induction: two trees
T, T̂ related by the two short exact sequences (4.1), (4.2).

where distT (−,−) denotes graph-theoretic distance in T .

Definition 4.9. Define `(T ) to be the number of leaves of a tree T .
Define

δ(T ) := min{distT (`, v) : (`, ˆ̀, v) such that `, ˆ̀ floss v},
a positive quantity whenever T is not a path, and for convenience define
δ(T ) = 0 when T is a path.

The flossing induction relates T to a tree T̂ which either has fewer
vertices, or the same number of vertices but fewer leaves, or the same
number of vertices and leaves but with δ(T̂ ) < δ(T ); see Figure 4.2

for an example. Let (`, ˆ̀, v) be a triple such that distT (`, v) achieves
the minimum δ(T ), and define e to be the first edge on the path from

v to `. Then T̂ is formed in two steps: one first contracts T along
e to create T/e, with a natural multiplicity sequence m/e assigning
multiplicity 2 to the contracted vertex and multiplicity 1 on all other
vertices, and then one obtains T̂ by “un-contracting” or “stretching”
this contracted vertex into a new edge ê that extends along the path
toward `′ (equivalently, one can think of T̂ as obtained from T/e by
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subdividing the first edge along the path from the contracted vertex to
ˆ̀).

Note that in this process, one has that T̂ /ê = T/e, and hence the
spanning tree with multiplicities (T/e,m/e) fits into two short exact
sequences coming from Proposition 4.7,

(4.1)
0 → C•(∆T/e,m/e) → C•(∆T )

→ (C•(∆T ′) ⊗ C•(∆P ))[1] ↑Sn

Sn′×Sn′′
→ 0

(4.2)
0 → C•(∆T̂ /ê,m/ê) → C•(∆T̂ )

→ (C•(∆T̂ ′) ⊗ C•(∆P̂ ))[1] ↑Sn

Sn̂′×Sn̂′′
→ 0

which are illustrated schematically in Figure 4.2. Here we denote by
T ′, P (= T ′′) the two components of T −e, and by T̂ ′, P̂ (= T̂ ′′), the two

components of T̂ − ê, emphasizing the fact that the components P, P̂
which contain `, ˆ̀, respectively, are paths.

We will say that a proof proceeds by flossing induction if it attempts
to prove a property of the homology of ∆T as follows. The base case
is when T is a path. When T is not a path, one uses induction simul-
taneously on the number of vertices in T , the number of leaves `(T ),
and on the quantity δ(T ): one assumes that the property holds for any
tree having either

• fewer vertices (such as T ′, P, T̂ ′, P̂ ), or

• the same number of vertices but fewer leaves (such as T̂ if ` is
adjacent to v in T ), or

• the same number of vertices and leaves, but smaller δ value
(such as T̂ if ` is not adjacent to v in T ),

and then uses the long exact homology sequences associated with the
sequences (4.1) and (4.2), possibly also taking advantage of the fact

that P, P̂ are paths.
Flossing induction is used in the proofs of Theorem 4.10, 4.11, and

5.3 below.

4.3. Constraints on the homology representations. The goal of
this subsection is to prove several constraints on the irreducible repre-
sentations of Sn which can occur in the homology of ∆T or ∆T,m.

Recall that irreducible C[Sn]-modules are indexed by partitions λ
of n. Let Sλ denote the irreducible indexed by λ. Recall that given a
C[Sn]-module V , the notation 〈V,Sλ〉 denotes the multiplicity of Sλ in
V .
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We first consider the occurrences of hook representations S(r,1n−r) in
the homology of ∆T .

Theorem 4.10. For any spanning tree T on [n], we have

Hn−2(∆T ) ∼= S1n .

For any hook shape (r, 1n−r) and i < n − 2,

〈Hi(∆T ),S(r,1n−r)〉 = 0.

Proof. The first assertion follows from Proposition 2.9. For the rest,
we proceed in two steps.
Step 1: The case r ≤ 2.

Here we argue directly about the occurrences of S(r,1n−r) in the chain
groups, and their images under the boundary map.

For r = 1, from the description (2.2) of C•(∆T ) and the irreducible
decompositions of the coset representations

C[Sn/(Sn1
× · · · × Snr

)]

(sometimes called Young’s rule), one sees that S1n occurs exactly once
in C•(∆T ), in degree n−2. Thus it must give rise to (n−2)-dimensional
homology, in agreement with Proposition 2.9.

Similarly S(2,1n−2) occurs

• exactly n − 1 times in Cn−2(∆T ),
• exactly once in each of the summands C[G/Ge] of Cn−3(∆T ),

as e runs through the n − 1 edges of T ,
• nowhere else in C•(∆T ).

Based on this, we claim that it would suffice to show the following:
there exists

• an ordering e1, e2, . . . , en−1 of the edges of T , and
• for each i = 1, 2, . . . , n − 1 a copy Vi of the irreducible module
S(2,1n−2) in C[Sn]

with the property that the component maps ∂k : C[G] → C[G/Gek
]

satisfy

• ∂k(Vl) = 0 for k > l
• ∂k(Vk) 6= 0.

This would imply, via a triangularity argument and Schur’s Lemma,
that the S(2,1n−2)-isotypic component of Cn−2 maps under the bound-
ary map isomorphically onto that of Cn−3, leaving no S(2,1n−2) in the
homology.

To this end, note that if e has endpoints {i, j}, then C[G/Ge] is
isomorphic as an C[Sn]-module to the principal left ideal C[Sn]γ+

{i,j},
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where we define for any subset A ⊂ [n]

γ+
A :=

∑

w∈SA

w

γ−
A :=

∑

w∈SA

ε(w) w.

and ε is the sign character. Also the e-component C[G] → C[G/Ge] of
the boundary map is (up to a scalar multiple) the map

C[Sn] → C[Sn]γ+
{i,j}

x 7→ x · γ+
{i,j}.

Order the edges e1, e2, . . . , en−1 in such a way that for each i, the edge
ei has a vertex vi which is a leaf of T − {e1, e2, . . . , ei−1}. Define Vk to
be the principal left ideal C[Sn]γ+

{vk,v′
k
}γ

−
[n]−vk

, where ek has endpoints

{vk, v
′
k}.

It follows from the theory of Specht modules that Vk
∼= S(2,1n−2).

By construction, whenever k > l we have {vk, v
′
k} ⊂ [n] − vl, so that

γ−
[n]−vl

γ+
{vk,v′

k
} = 0. This implies that

∂k(Vl) = Vlγ
+
{vk ,v′

k
} = C[Sn]γ

+
{vl,v

′
l
}γ

−
[n]−vl

γ+
{vk,v′

k
} = C[Sn]γ+

{vl,v
′
l
} · 0 = 0

for k > l. It only remains to show ∂k(Vk) 6= 0, for which it suf-
fices to check that the coefficient of the identity permutation id in
γ+
{vk,v′

k
}γ

−
[n]−vk

γ+
{vk,v′

k
} is exactly +2, coming from the two terms in the

product

+id · +id · +id
+(vkv

′
k) · +id · +(vkv

′
k).

This completes the case r = 2.
Step 2: The case r ≥ 3.

We will argue that 〈H•(∆T ),S(r,1n−r)〉 = 0 for r ≥ 3 via the flossing
induction, explained in Subsection 4.2.

First note that if Vi for i ∈ {1, 2} are C[Sni
]-modules with ni ≥ 1

and n1 + n2 = n having the property that 〈Vi,S(r,1ni−r)〉 = 0 for r ≥ 2,
then the Littlewood-Richardson rule shows that

〈(V1 ⊗ V2) ↑Sn

Sn1
×Sn2

,S(r,1n−r)〉 = 0 for r ≥ 3.

(In fact, we will only need this in the special case of the Littlewood-
Richardson rule known as Pieri’s formula, where V2 is the sign repre-
sentation S1n2 ; this is due to the fact that P, P̂ are paths, and hence
have only the sign representation occurring in the homology of the
Coxeter complexes ∆P , ∆P̂ ).
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Since T ′, P, T̂ ′, P̂ all have fewer vertices than T , induction applies to
them, and then the Künneth formula along with the previous fact shows
that the homology of the third term in both short exact sequences (4.1)
and (4.2) contains no occurrence of S(r,1n−r) for r ≥ 3. On the other

hand, induction also applies to T̂ , because it has its shortest distance
from a leaf to a branched vertex shorter than in T or else the distance
was 1 and T̂ has fewer leaves than T . So the homology of the middle
term in (4.2) has no occurrences of S(r,1n−r) for r ≥ 2. This implies
by the long exact sequence in homology that the homology of the first
term in (4.2) contains no occurrences of S(r,1n−r) for r ≥ 3. But since

T̂ /ê = T/e implies that this is the same as the homology of the first
term in (4.1), we can conclude that the homology of the middle term
in (4.1) has this same property, as desired. �

A similar flossing induction argument gives a bound on the length of
the longest row of λ for any Sλ which occurs in the homology of ∆T .

Theorem 4.11. For any spanning tree T on [n] with `(T ) leaves, and
any partition λ of n

〈H•(∆T ),Sλ〉 = 0 unless λ1 > `(T ) − 1.

Proof. We use flossing induction, as in the last proof, taking advantage
of the fact that P, P̂ are paths, so that their homology only contains the
irreducible representations S1n′′ ,S1n̂′′ respectively. Note that Pieri’s
formula implies that for any partition µ of n′ and λ a partition of n,
one has

〈(Sµ ⊗ S1n′′ ) ↑Sn

Sn′×Sn′′
,Sλ〉 = 0 if λ1 > µ1 + 1.

The other crucial facts are that

`(T ′) = `(T ) − 1

`(T̂ ′) = `(T̂ ) − 1

`(T̂ ) ≤ `(T ).

�

We conjecture that the number of leaves `(T ) also gives rise to a
(loose) lower bound on the connectivity of ∆T,m. Recall that a topo-
logical space X is said to be k-connected if its homotopy groups πi(X)
vanish for i ≤ k.

Conjecture 4.12. For any spanning tree with multiplicities (T,m) on
[n] with `(T ) leaves, the complex ∆T,m is (n − 1 − `(T ))-connected.

This conjecture is well-known and tight for `(T ) = 2; see Exam-
ple 4.14 below. It also turns out to hold when m = (1, 1, . . . , 1) for
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`(T ) = 3 (see Appendix 7), and is tight in this case by Theorem 5.3.
However, see the discussion of chessboard complexes in Example 4.15
below as an illustration of the looseness of this conjectural connectivity
bound in general.

Some recent ideas of P. Hersh [19] regarding a notion of weak or-
dering on (n − `(T ))-faces of ∆T,m may lead to a stronger assertion
than Conjecture 4.12, namely that the (n− `(T ))-skeleton is shellable.
Similar results were proven by Ziegler [34], Shareshian and Wachs, [26],
and Athanasiadis [1], for chessboard and matching complexes.

Lastly we mention a somewhat trivial constraint on the homology
representations of ∆T,m which ignores the tree structure T . Given two
partitions λ and µ of the same number, say that λ dominates µ, written
λ . µ, if

∑k
i=1 λi ≥

∑k
i=1 µi for all k.

Proposition 4.13. Assume m1 ≥ · · · ≥ mn by re-indexing, if neces-
sary.

Then 〈H•(∆T,m),Sλ〉 6= 0 implies λ . m.

Proof. The same constraint turns out to hold on the chain level. One
checks that C•(∆T,m) is a direct sum of C[Sm]-modules of the form
C[Sm/(Sm′

1
× · · ·×Sm′

n′
)] where m′ = (m′

1, . . . , m
′
n′) is obtained from

m by merging parts, and therefore m′ . m. On the other hand, it is
well-known from Young’s rule that

〈C[Sm/(Sm′
1
× · · · × Sm′

n′
)],Sλ〉 6= 0

implies λ . m′. Hence λ . m′ . m. �

4.4. Some examples.

Example 4.14. Rank-selections of Boolean algebras.
In the case when `(T ) = 2, so that T is a path with n vertices, the

complex ∆T,m is a type-selected subcomplex of the Coxeter complex for
Sm where m =

∑

i mi. Equivalently, it is the order complex for a rank-
selection of the Boolean algebra 2[m]. Specifically, if the vertices along
the path T are labelled 1, 2, . . . , n in order, then ∆T,m corresponds to
selecting 2[m] at the rank

D
m

:= {m1, m1 + m2, . . . , m1 + m2 + · · ·+ mn−1}.

The Coxeter complex is shellable, a property which is automatically
inherited by all of its type-selected subcomplexes (see e.g. [4, §11]).
Hence in this case ∆T,m is homotopy equivalent to a wedge of (n− 2)-
spheres, which is (n−3)-connected, in agreement with Conjecture 4.12.
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The homology is also well-known as an C[Sm]-module (see [33, The-
orem 4.3]): the multiplicity of Sλ in Hn−3(∆T,m) is the number of
standard Young tableaux of shape λ whose descent set is exactly D

m
.

We should point out that this entire discussion is known to generalize
to Coxeter complexes associated to an arbitrary finite Coxeter system
(W, S); see [7, Remark 6.7]. The Coxeter complex ∆(W, S) and all of
its type-selections ∆(W, S)J are shellable, and their associated homol-
ogy representations can be expressed in terms of the Kazhdan-Lusztig
cell representations corresponding to left cells having a fixed descent
set (using an appropriate definition of descents for Coxeter group ele-
ments).

Example 4.15. Chessboard complexes revisited.
Recall from Example 4.5 that when T is an n-vertex star and m

assigns r to the central vertex and 1 to the remaining vertices, ∆T,m is
the chessboard complex ∆n−1,n+r−1. In [9] it was shown that ∆m,n is
ν − 2-connected, where we assume m ≤ n and

ν = min

(

m,

⌊

m + n + 1

3

⌋)

.

It was also conjectured there (and recently proven by Shareshian and
Wachs [26]) that this connectivity bound is tight. This shows that the
above conjecture on the connectivity of ∆T,m for T a star and m as
above is very far from tight: these known results show that in this chess-
board case, ∆T,m is roughly 2n+r−2

3
-connected, while Conjecture 4.12

would only assert that it is 0-connected (i.e. connected) .
The chessboard examples also illustrate how far the homology with

complex coefficients can deviate from the integral homology for ∆T,m.
The homology with complex coefficients of ∆m,n was described com-
pletely by Friedman and Hanlon [15], even as a C[Sm × Sn]-module.
For example, if T is a star, then using their results for ∆n−1,n one can
deduce that Hi(∆T , C) will start to vanish for i roughly below dimen-
sion n − √

n, while the results of [9, 26] show that the Hi(∆T , Z) will
only start to vanish for i roughly below dimension 2n

3
.

5. The case of a single branch vertex.

In this section, we examine more closely the simplicial complexes ∆T

(and more generally, ∆T,m) introduced in the previous section, in the
case where T is a tree having at most one branch vertex, i.e. at most
one vertex of degree 3 or higher. Note that this class encompasses both
Examples 4.14 and 4.15.
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5.1. A general lower bound. We begin with a companion lower
bound for the upper bound on λ1 given in Theorem 4.11. Note that
this bound is sensitive to the dimension in which the homology occurs.

Theorem 5.1. Assume T is a spanning tree on [n] having at most one
branch vertex v, and that m achieves its maximum value at mv. Then

〈Hi(∆T,m),Sλ〉 = 0 if λ1 < mv + n − 2 − i.

Remark 5.2. The assumptions that T has only one branch vertex v
and that mv achieves the maximum value in m turn out to be necessary
here. The spanning tree T on [n] = [8] with edge set

{12, 13, 14, 45, 56, 67, 68}
has more than one branch vertex, and computer calculations show that
〈H4(∆T ),S(2,2,2,2)〉 = 1, violating the above inequality. The spanning
tree T on [n] = [5] having edge set {12, 23, 34, 35} has one branch
vertex v = 3, and if we take m = (2, 1, 1, 1, 1) so that m3 = 1
is not the maximum value in m, then computer calculations show
〈H2(∆T,m),S(2,2,2)〉 = 1, violating the above inequality.

Note also that the hypotheses of the theorem are satisfied by the pairs
(T,m) for which ∆T,m is a chessboard complex (see Example 4.5).

Proof. We use induction on the number of edges in T and utilize Propo-
sition 4.7, choosing e to be any edge of T incident to the branch vertex
v. Note that since λ1 < mv + n− 2− i and (m/e)v ≥ mv + 1, we have
λ1 < (m/e)v + (n − 1) − 2 − i. Therefore induction applies to show
〈Hi(∆T/e,m/e),Sλ〉 = 0 so Sλ does not occur in the i-dimensional ho-
mology of the first term of the short exact sequence of Proposition 4.7.

We wish to show that Sλ also does not occur in the i-dimensional
homology of the third term of this short exact sequence, so that the
desired vanishing would follow from the associated long exact sequence
in homology. Without loss of generality, we may assume that T ′ is
the subtree containing v, so that T ′′ is a path. Induction applies to
T ′, so that 〈Hi′(∆T ′,m′),Sµ′〉 6= 0 implies µ′

1 ≥ mv + n′ − 2 − i′. Also
note that Example 4.14 implies ∆(T ′′) only has homology in dimen-
sion n′′ − 2. Therefore by the Künneth formula, Sλ can only occur in
the i-dimensional homology of the third term if it occurs in the de-
composition of some tensor product Sµ′ ⊗ Sµ′′ into irreducibles where
n′ + n′′ = n, µ′ ` n′, µ′′ ` n′′ and one has µ′

1 ≥ mv + n′ − 2 − i′

for some i′ satisfying i′ + (n′′ − 2) = i − 2. On the other hand, the
Littlewood-Richardson rule for decomposing this tensor product easily
implies that λ1 ≥ µ′

1. Putting all of these inequalities and equalities
together gives λ1 ≥ mv + n − 2 − i, a contradiction. �
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5.2. The case of three leaves. The case `(T ) = 2 was discussed in
Example 4.14, and using some of our results constraining the homology,
we can now deal with the case where `(T ) = 3 with all multiplicities
1, i.e. m = (1, 1, . . . , 1). Let Ta,b,c be the spanning tree on [n] for
n = a + b + c + 1 which has a central vertex v of degree 3, and three
“arms” consisting of a, b and c other vertices respectively. We assume
without loss of generality that a ≥ b ≥ c ≥ 1.

We introduce the following convenience for describing the homology
representations of ∆Ta,b,c

. For two pairs (p, q), (r, s) of positive integers
satisfying p + q = r + s = n and p > max(r, s) ≥ min(r, s) > q, define
a (virtual) C[Sn]-module by the equation

V(p,q),(r,s) ⊕
(

S1p ⊗ S1q ↑Sn

Sp×Sq

)

∼= S1r ⊗ S1s ↑Sn

Sr×Ss

which actually turns out to define a genuine (not virtual) representation

(5.1) V(p,q),(r,s)
∼=

min(r,s)
⊕

k=q+1

S(2k ,1n−2k).

Theorem 5.3. Let a ≥ b ≥ c ≥ 1 and n = a + b + c + 1. Then ∆Ta,b,c

has all of its (reduced) integral homology concentrated in dimensions
n − 2 and n − 3, and no torsion.

Furthermore, the homology with C coefficients has the following de-
scription as an C[Sn]-module:

Hi(∆Ta,b,c
) ∼=

{

S1n if i = n − 2
⊕

c1,c2≥1, c1+c2=c+1 V(a+b+c1,c2),(b+c2,a+c1) if i = n − 3

Remark 5.4. Note that using this theorem, one could easily write
down a formula which is piecewise-linear in k for the multiplicities

ck := 〈Hn−3(∆Ta,b,c
),S(2k ,1n−2k)〉.

However the presence of the min(r, s) in the formula (5.1) for V(p,q),(r,s)

would make this somewhat clumsy.

Remark 5.5. Note also that the theorem is consistent with the con-
straints from Theorems 4.10, 4.11 and 5.1. In fact, these results would
suffice to imply all of the assertions about vanishing homology in the
theorem, except for the lack of torsion.

Proof. Since ∆Ta,b,c
has dimension n−2, Theorem 7.3 below implies the

result about homology concentration. It also implies that there is no
torsion in Hi(∆Ta,b,c

, Z): the only non-vanishing homology groups are
the top two, and Proposition 2.9 implies that ∆Ta,b,c

is an orientable
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pseudomanifold, which never has torsion in its top two homology groups
(see e.g. [29, p. 206, Exerc. 4.E.2]).

We know from Proposition 2.9 that the assertion of the theorem
for i = n − 2 is correct, and that this top homology gives the only
occurrence of S1n . Thus only the homology in the single dimension
n − 3 is unknown, and there can be no two occurrences of the same
irreducible module in two different homology groups. It therefore suf-
fices to compute the (virtual-)C[Sn]-module Euler characteristic (or
Lefschetz character) which is the formal sum of modules

χ(Ta,b,c) :=
∑

i≥0

(−1)i〈Hi(∆Ta,b,c
),Sλ〉 Sλ

For this we again use the two exact sequences (4.1) and (4.2), choos-
ing the edge e on T := Ta,b,c to be the edge containing the central
vertex v and lying on the arm having c vertices, and choosing the edge
ê on T̂ := Ta+1,b,c−1 to be the edge containing v which lies on the arm
having a + 1 vertices (Note: this is again an example of the flossing
induction). Let m and m̂ be the multiplicity sequences of all ones on

T and T̂ respectively so that (T,m)/e = (T̂ , m̂)/ê. If we let Pr denote
a path having r vertices, these two exact sequences become:

(5.2)

0 → C•(∆T/e,m/e) → C•(∆Ta,b,c
)

→ (C•(∆Pc
) ⊗ C•(∆Pa+b+1

))[1] ↑Sn

Sc×Sa+b+1
→ 0

0 → C•(∆T̂ /ê,m̂/ê) → C•(∆Ta+1,b,c−1
)

→ (C•(∆Pa+1
) ⊗ C•(∆Pb+c+1

))[1] ↑Sn

Sa+1×Sb+c+1
→ 0

Since Euler characteristics are additive on short exact sequences and
multiplicative on tensor products, one concludes that

χ(Ta,b,c) = χ(T/e,m/e) − χ(∆Pc
) ⊗ χ(∆Pa+b+1

)

χ(Ta+1,b,c−1) = χ(T̂ /ê,m/ê) − χ(∆Pa+1
) ⊗ χ(∆Pb+c+1

).

where the symbols ⊗ on the right-hand side should be interpreted as
the induction product on virtual characters. Since ∆Pr

is the Coxeter
complex for Sr whose homology vanishes except for S1r in the top
dimension, one concludes that

χ(Ta,b,c) − χ(Ta+1,b,c−1)

= S1b+c ⊗ S1a+1 ↑Sn

Sb+c×Sa+1
−S1a+b+1 ⊗ S1c ↑Sn

Sa+b+1×Sc

= −V(a+b+1,c),(b+c,a+1)
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By induction on c, and using the fact that Ta,b,0 = Pa+b+1 for the base
case, one obtains

χTa,b,c
= (−1)n−2

(

S1n −
∑

c1,c2≥1,c1+c2=c+1

V(a+b+c1,c2),(b+c2,a+c1)

)

as desired. �

6. Remarks and questions.

We begin by asking: What is the correct (tight) version of Con-
jecture 4.12? Can one prove such a result via shellability or vertex-
decomposability of some skeleton of ∆T,m, as in [1, 34]?

A different question deals with how the two extremes of trees from
Examples 4.5 and 4.14 bound the homology of ∆T for an arbitrary
spanning tree T on [n]. Let Pn denote the path with n vertices, and
Starn the star graph on n vertices. Since for any tree T , the complex ∆T

is an orientable pseudomanifold carrying the sign representation of Sn

on its top homology (Proposition 2.9), the homology of the Coxeter
complex for Sn (that is, ∆Pn

) trivially gives a lower bound for the
multiplicities of irreducible Sn-representations in any homology group
H·(∆T , C). We speculate that the chessboard complex ∆n−1,n (that is
∆Starn

) provides a companion upper bound:

Question 6.1. Is it true that for every irreducible Sn-representation
Sλ, and every spanning tree T on [n], one has

〈H̃i(∆Pn
, C),Sλ〉 ≤ 〈H̃i(∆T , C),Sλ〉 ≤ 〈H̃i(∆Starn

, C),Sλ〉?

One can check using Theorem 5.3 and the results of [15] that the answer
is affirmative when T has at most 3 leaves, but we have not checked it
extensively in other cases. One could also ask more generally whether
there exists a partial ordering ≤ on all spanning trees on [n], roughly
from “less branched” to “more branched”, so that paths are at the
bottom and stars are at the top, with the property that T ≤ T ′ implies

〈H̃i(∆T , C),Sλ〉 ≤ 〈H̃i(∆T ′ , C),Sλ〉.

Lastly, we remark that chessboard complexes have the unexpected
property that the combinatorial Laplacians defined from their simpli-
cial boundary maps have only integer spectra [15], but unfortunately,
the same property is not shared by ∆T in general. This fails, in fact,
even when T is a path Pn for n ≥ 4.
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7. Appendix: A special case of the connectivity

Conjecture 4.12.

Our goal here is to use nerve-type arguments as in [9] to prove The-
orem 7.3 below. This result confirms Conjecture 4.12 in a very special
case needed for the assertions about torsion-free homology in Theo-
rem 5.3: the case where T has 3 leaves, and the multiplicity sequence
m assigns 1 to all vertices except possibly for the unique vertex v of
degree 3. It is due to the different flavor of the arguments in this proof,
and our hope that the conjecture (or a tighter connectivity bound)
will eventually be proven, that we have relegated this discussion to an
appendix.

Let ∆r
a1,...,ak

denote the complex ∆T,m when T has

• `(T ) = k,
• a central vertex v of degree k,
• k arms consisting of ai other vertices each,
• n := 1 +

∑

ai vertices total,
• m assigning multiplicity 1 to all vertices except v,
• mv = r.

For example ∆1
a,b,c is what was previously called ∆Ta,b,c

. We also allow
for the possibility that r < 0, even though this was not originally
allowed in the definition of ∆T,m; one can check that ∆r

a1 ,...,ak
is a well-

defined, non-empty simplicial complex as long as m := r +
∑

i ai ≥ 0.
Our goal will be to describe the homotopy type of ∆r

a1,a2
for r an

arbitrary integer, and the connectivity of ∆r
a1,a2,a3

for r ≥ 1.
We begin with ∆r

a1 ,a2
. Of course, here the tree T is unbranched, and

hence Example 4.14 applies as long as r ≥ 1. But since we are allowing
r to be an arbitrary integer, more needs to be said to determine the
homotopy type of ∆r

a1 ,a2
in general.

Lemma 7.1. For a1 ≥ a2 ≥ 0 and r ∈ Z, let

m = a1 + a2 + r

n = a1 + a2 + 1.

Then the homotopy or homeomorphism type of ∆r
a1,a2

is as follows.
For r ≥ 1, one has that ∆r

a1 ,a2
is a type-selected subcomplex of the

Coxeter complex of type Am−1, and hence homotopy equivalent to a
wedge of (n − 2)-spheres.
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Otherwise, ∆r
a1 ,a2

is


















a homotopy (m − 2)-sphere if 0 ≤ −r < a2

contractible if a2 ≤ −r < a1

a type Am Coxeter complex if a1 ≤ −r < n

empty if n ≤ −r.

Proof. The assertions for r ≥ 1 and for n ≤ −r follow from the previous
discussion.

For r in the range 0 ≤ −r < a2, we use a nerve argument. Cover
∆r

a1,a2
by the stars of the vertices vi for i = 1, 2, . . . , m, where vi corre-

sponds to the labelled subforest of the path on n vertices which has a
singleton on the end-vertex of the a1-vertex branch labelled by the sin-
gleton subset {i} and the remaining path of n−1 vertices labelled by the
set [m]−{i}. It is easy to check that this indeed covers ∆r

a1 ,a2
, using the

fact that a1+r ≥ 1. One can also check that for any t < m, the intersec-
tion of the stars of vi1 , . . . , vit will have a cone vertex. Specifically, this
cone vertex corresponds to the labelled subforest with s = t if t ≤ a1

and s = t − r + 1 otherwise, partitioning the path into the s vertices
furthest toward the a1-vertex branch, labelled by the set {i1, . . . , it},
and the n − s remaining vertices, labelled by the complementary set
[m]−{i1, . . . , it}. On the other hand, for t = m, this labelled subforest
is no longer a vertex as it does not partition the path into two sets (the
second set has cardinality n − t + r − 1 = n − m + r − 1 = 0), and
in fact the intersection of all of the stars of the vi is the empty face.
Hence by the usual nerve lemma (see [4, (10.7)], or the limiting case
k = ∞ in the Lemma 7.2 below), ∆r

a1,a2
is homotopy equivalent to the

nerve of this covering, which is the boundary of an (m−1)-dimensional
simplex, so an (m − 2)-sphere.

The same nerve argument works for r in the range a2 ≤ −r <
a1. The only difference is that now for t = m ≤ a1 the intersection
will no longer be the empty face, and will again have a cone vertex
corresponding to the labelled subforest described as the first case in
previous paragraph. Hence the usual nerve lemma implies that ∆r

a1 ,a2

is contractible in this situation.
If a1 ≤ −r < n = a1 + a2 + 1, we repeatedly use the following

isomorphism of simplicial complexes:

(7.1) ∆r
a1,a2

∼= ∆r+1
a1,a2−1 if a1 + r < 0.

This isomorphism (7.1) is a special case of the inclusion in the cofi-
bration sequence of Remark 4.7, in which e is one of the two edges
incident to the vertex v, namely the edge pointing toward the branch
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having a2 vertices. Here the inclusion is also surjective (and hence an
isomorphism) because the assumption that a1 + r < 0 implies every
non-trivial labelled subforest must use e in one of its subtrees. We
obtain

∆r
a1,a2

∼= ∆−a1

a1,m
∼= ∆−m

m,m

by applying the isomorphism (7.1) first −(r + a1) times to lower the
a2 in the subscript, and then −(r + a2) times to lower the a1 in the
subscript.

It only remains to describe an isomorphism from ∆−m
m,m to the Coxeter

complex of type Am. Given a typical labelled subforest corresponding
to a face of ∆−m

m,m, its subtrees are labelled by sets which give an ordered
decomposition of [m], i.e. a sequence of sets B1, . . . , Br with [m] =
qiBi, where it is possible that the set Bi0 labeling the unique subtree
containing vertex v is the empty set. Replacing Bi0 by Bi0 ∪ {m + 1}
gives an ordered decomposition of [m + 1] into non-empty sets, which
labels a typical face in the Coxeter complex of type Am. One can easily
check that this is the desired isomorphism. � �

For the case of ∆r
a1,a2,a3

, we use a connectivity nerve lemma from [9].

Lemma 7.2. [9, Lemma 1.2] Let ∆ be a simplicial complex covered by
a family {∆i}s

i=1. Suppose that every non-empty intersection
⋂t

j=1 ∆ij

is (k − t + 1)-connected for t ≥ 1. Then ∆ is k-connected if and only
if the nerve of the covering {∆i}s

i=1 is k-connected. �

Theorem 7.3. Given a1, a2, a3 ≥ 0, let n = a1 + a2 + a3 + 1.
If r ≥ 1, the complex ∆r

a1,a2,a3
is (n − 4)-connected. In particular,

∆Ta,b,c
is (n − 4)-connected.

Remark 7.4. Note that this agrees with Conjecture 4.12 in this case,
since `(T ) = 3 here.

Remark 7.5. Although ∆r
a1 ,a2,a3

is a well-defined simplicial complex
even for r negative, some lower bound on r is necessary for the conclu-
sion of the theorem. For example, the complex ∆−2

1,1,1 is isomorphic to
the 1 × 3 chessboard complex, and has n = 4, but is disconnected, i.e.
not 0-connected.

Proof. We use a nerve argument as in the proof of the previous theorem,
but applying Lemma 7.2. Cover ∆r

a1,a2,a3
by the stars of the vertices vi

for i = 1, 2, . . . , m, where vi corresponds to the labelled subforest which
has a singleton on the end-vertex of the a1-vertex branch labelled by
the singleton subset {i} and the remaining tree of n−1 vertices labelled
by the set [m] − {i}. As before, these stars do indeed cover ∆r

a1 ,a2,a3
,

using the fact that a1 + r ≥ 1. Also as before, one can check that for
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any t ≤ min(a1, m − 1), the intersection of the stars of vi1 , . . . , vit will
have a cone vertex with a similar description to the one in the previous
proof: the branch with a1 vertices has an end subtree labelled by the
set {i1, . . . , it}, and the remaining vertices form a subtree labelled by
the complementary set [m] − {i1, . . . , it}.

For t in the range a1 < t < m, one can check that the intersection of
the stars of vi1 , . . . , vit is isomorphic to ∆r+a1−t

a2,a3
. By checking various

cases using Lemma 7.1, one concludes that ∆r+a1−t
a2 ,a3

is always at least
(n − 3 − t)-connected for t in this range.

Finally, if t = m, this intersection of stars is the empty face. This
means that the nerve of this covering is the boundary of an (m − 1)-
simplex, and hence (m − 3)-connected. Since r ≥ 1 implies m − 3 ≥
n− 3, the nerve is (n− 3)-connected, and we can apply Lemma 7.2 to
conclude that ∆r

a1,a2,a3
is (n − 3)-connected. �
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