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Abstract. Two related results are proven in the modular invari-
ant theory of GLn(Fq ). The first is a finite field analogue of a result
of Springer on coinvariants of the symmetric group Sn acting on
C[x1, . . . , xn]. It asserts that the following two Fqn [GLn(Fq )×F

×

qn ]-
modules have the same composition factors:

• the coinvariant algebra for GLn(Fq ) acting on Fqn [x1, . . . , xn],
in which GLn(Fq ) acts as a subgroup of GLn(Fqn) by linear

substitutions of variables, and F
×

qn acts by scalar substitu-
tions of variables,

• the action on the group algebra Fqn [GLn(Fq )] by left and
right multiplication.

The second result is a related statement about parabolic invariants
and coinvariants.

1. Introduction

This paper concerns two related results in the modular invariant
theory of GLn(Fq).

The first compares two representations of G × C over Fqn , where

G := GLn(Fq)

C := F
×
qn .

On one hand, viewing Fqn as an n-dimensional Fq-vector space, scalar
multiplications by elements of F

×
qn are invertible Fq-linear maps. Thus

C may be viewed as a (cyclic) subgroup1 of GLn(Fq), and G × C
therefore acts on the group algebra Fqn[G], with G acting by left-
multiplication and C by right-multiplication. On the other hand, G
acts on polynomials Fq[x1, . . . , xn] by linear substitutions of variables,
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and by extending scalars, on S := Fqn [x1, . . . , xn]. Let A denote the
coinvariant algebra for this G-action, that is, the quotient S/(SG

+) where
(S+

G) is the ideal generated by G-invariants of positive degree. The quo-
tient algebra A still affords a G-action induced by linear substitutions
of variables, and C acts on A by scalar substitutions: xi 7→ cxi for
c ∈ C = F

×
qn . As these two actions commute, A becomes a representa-

tion of G × C.

Theorem 1. As Fqn [G × C]-modules, the coinvariant algebra A and
the group algebra Fqn [G] have the same composition factors.

The proof of Theorem 1 is given in Section 2, using the theory of Brauer
characters.

Section 3 proves the second main result, via a similar character com-
putation, concerning the invariants of a parabolic subgroup P ⊂ G.
Since the G-invariants SG form a subalgebra of the P -invariants SP ,
one can form a quotient A〈P 〉 := SP/(SG

+). This quotient no longer
affords an action of G, however it does afford an action of C = F

×
qn as

before.

Theorem 2. As Fqn[C]-modules, the algebra A〈P 〉 and the P -invariants

Fqn[G]P in the group algebra are isomorphic.

The remainder of this introduction gives some context for these re-
sults. Theorem 1 is a q-analogue of a well-known result from the theory
of reflection groups, where G = Sn and C is a cyclic subgroup of Sn

generated by an n-cycle, as we now explain.
For G a finite subgroup of GLn(C), an element g ∈ G is called a

reflection if its fixed subspace is a hyperplane in Cn (called its reflect-
ing hyperplane). One calls G a reflection group if it is generated by
reflections. Such groups were classified by Shephard and Todd [8], who
showed that their polynomial invariants form a polynomial subalgebra:

C[x1, . . . , xn]G = C[f1, . . . , fn]

where f1, . . . , fn are homogeneous invariants. Chevalley [1] gave a uni-
form proof of this fact, and showed that, as representations of G, the
coinvariant algebra

A := C[x1, . . . , xn]/(f1, . . . , fn)

and the group algebra C[G] are isomorphic.
Springer proved a beautiful refinement of this isomorphism in his

theory of regular elements. Say that c ∈ G is regular if it has an
eigenvector in Cn which lies on none of the reflecting hyperplanes for
reflections in G. Let C = 〈c〉 be the subgroup of G generated by
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a regular element c. Springer showed [10, Proposition 4.5] that the
following two G × C-representations are isomorphic2:

• the coinvariant algebra A, with G acting by linear substitutions,
and with C acting by c(xi) = γxi for all i, where γ ∈ C× is a
root of unity of the same multiplicative order as c.

• the group algebra C[G], with G × C acting by left and right
multiplication.

In the special case where G = Sn, the fundamental theorem of sym-
metric functions asserts C[x1, . . . , xn]G = C[e1, . . . , en], where ei is the
ith elementary symmetric function, having degree i. A result of Dickson
[3] gives a q-analogue for G = GLn(Fq):

Fq[x1, . . . , xn]G = Fq[dn,0, . . . ,dn,n−1]

where each Dickson invariant dn,i is a homogeneous polynomial of de-
gree qn−qi; see [9, §8.1]. Chevalley’s result was generalized by Mitchell
[7, Theorem 1.4], who showed that, as Fq[G]-modules, the coinvariant
algebra

A := Fq[x1, . . . , xn]/(dn,0, . . . ,dn,n−1)

and the group algebra Fq[G] have the same composition factors 3. The-
orem 1 refines this last assertion in the same way that Springer’s result
refines that of Chevalley.

Theorem 2 may be viewed as the q-analogue of a consequence of
Springer’s result. When P is a parabolic subgroup of a reflection group
G, acting on S := C[x1, . . . , xn], semisimplicity of the actions implies

A〈P 〉 := SP /(SG
+) ∼= (S/(SG

+))P = AP

where here AP denotes the P -invariants of the coinvariant algebra A.
Then Springer’s result that A and C[G] are isomorphic as C[G × C]-
modules immediately implies that AP (∼= A〈P 〉) and C[G]P are isomor-
phic as C[C]-modules. Unfortunately, in characteristic p > 0, the situ-
ation is not as straightforward, and we see no way of using Theorem 1
to prove Theorem 2.

2This phrasing in terms of actions of G×C is actually borrowed from Kraśkiewicz
and Weyman [6]. They proved (independently) a result equivalent to Springer’s in
the special case where G is a Coxeter group of type A, B(= C), D and c is a Coxeter
element.

3The authors thank N. Kuhn and L. Smith for pointing this out. The same also
holds whenever G is a subgroup of GLn(F) for which F[x1, . . . , xn]G is a polynomial
subalgebra.
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2. Proof of Theorem 1

The proof of Theorem 1 relies on the theory of Brauer characters;
see [2, §82]. For a finite group H, an Fqn[H]-module W , and h ∈ H a
p-regular element (where p is the characteristic of Fqn), let φH

W (h) ∈ C

denote the Brauer character value of h on W . If W =
⊕

k Wk is a
graded Fqn [H]-module, define its graded Brauer character by

φH
W (h; t) :=

∑

k

φH
Wk

(h) tk.

When R =
⊕

k Rk is a graded k-algebra, define its Hilbert series

Hilb(R, t) :=
∑

k

dimk Rk tk.

To prove the theorem, we must show that for every p-regular element
(g, c) ∈ G × C there is an equality of the Brauer character values

(2.1) φG×C
Fqn [G](g, c) = φG×C

A (g, c).

We begin by computing the left side of (2.1).

Proposition 3. For c ∈ F
×
qn and g ∈ G = GLn(Fq), the Brauer char-

acter φG×C
Fqn [G](g, c) vanishes unless g−1 is G-conjugate to c.

When g−1 is G-conjugate to c, one has

φG×C
Fqn [G](g, c) = |GLn

r
(Fqr)| =

∏

0≤i≤n−1
i≡0 mod r

(qn − qi).

where the integer r is defined by Fq(c) = Fqr ⊂ Fqn.

Proof. Note that Fqn[G] is a permutation representation of G×C, and
therefore lifts to a representation defined over Z. Hence its Brauer
character is its usual character, namely φG×C

Fqn [G](g, c) is the number of

points fixed as (g, c) permutes G. Therefore

φG×C
Fqn [G](g, c) = |{h ∈ G : ghc = h}|

= |{h ∈ G : c = h−1g−1h}|

=

{

|CG(c)| if g−1 is G-conjugate to c,

0 else,

where CG(c) is the centralizer of c in G. Note that an invertible Fq-
linear transformation of Fqn centralizes c if and only if it is an Fq(c)-
linear transformation. Hence if Fq(c) = Fqr , then CG(c) ∼= GLn

r
(Fqr).

�
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We next turn to computing the right side of (2.1). For this, we
need some notation about the Brauer lifting process. Assume that
g ∈ G = GLn(Fq) is p-regular, and let V be the span of linear forms in
Fqn[x1, . . . , xn] (or in A). Since g is p-regular, it acts semisimply on V

with eigenvalues λ1, . . . , λn lying in an extension of Fqn by appropriate
roots of unity. Under the Brauer lifting process, these eigenvalues lift
to roots of unity λ1, . . . , λn ∈ C

×. Given c ∈ C = F
×
qn, which acts on

V as the scalar c, let γ be the root of unity in C× which lifts it.

Lemma 4. With notation as above,

φG×C
A (g, c) =

[

∏n−1
i=0 (1 − tq

n−qi

)
∏n

i=1(1 − λit)

]

t=γ

.

Proof. This is essentially a calculation along the lines of Molien’s The-
orem [9, Proposition 4.3.1]. We start by computing the graded Brauer
character for g on S = Fqn[x1, . . . , xn], which we identify with the sym-
metric algebra Sym(V ). Note that the eigenvalues of g on Symk(V )

will be all the monomials λ
k1

1 · · ·λ
kn

n with
∑

i ki = n. Consequently,

φG
Symk(V )

(g) =
∑

∑

i ki=k

λk1

1 · · ·λkn

n

φG
Sym(V )(g; t) =

n
∏

i=1

1

(1 − λit)
.

Let D∗(n) denote the extension of the Dickson algebra Fq[x1, . . . , xn]G

by the scalars Fqn, that is

D∗(n) = Fqn ⊗Fq
Fq[x1, . . . , xn]G

= Fqn [x1, . . . , xn]G = Sym(V )G = Fqn[dn,0, . . . ,dn,n−1].

Since deg(dn,i) = qn − qi, one has that

φG
D∗(n)(g; t) = Hilb(D∗(n), t) =

n−1
∏

i=0

1

1 − tqn−qi .

Let g ∈ G be a p-regular element. Observing the following three facts

• Sym(V ) = Fqn[x1, . . . , xn] is a free D∗(n)-module (see [9, Cor.
6.7.13]),

• A is a semisimple Fqn [〈g〉]-module, and
• g acts trivially on D∗(n),

we see that there is an isomorphism of graded Fqn [〈g〉]-modules

Sym(V ) ∼= A ⊗Fqn D∗(n).
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This implies
φG

Sym(V )(g; t) = φG
A(g; t) φG

D∗(n)(g; t).

Therefore

(2.2) φG
A(g; t) =

φG
Sym(V )(g; t)

φG
D∗(n)(g; t)

=

∏n−1
i=0 (1 − tq

n−qi

)
∏n

i=1(1 − λit)
.

To understand φG×C
A ((g, c); t) from (2.2), note that c acts on the kth-

graded piece Ak by the scalar ck. Hence φG×C
Ak

(g, c) is γk times the

coefficient of tk in (2.2). Then φG×C
A (g, c) comes from summing this

over all k, which is the same as setting t = γ in (2.2). �

In analyzing the right side of Lemma 4, one needs to know about the
zeros at t = γ of factors like tqj−qi

− 1. This is equivalent to knowledge
of when cqj−qi

= 1, which is easily characterized.

Lemma 5. For c ∈ F
×
qn, define r by Fq(c) = Fqr . Then for any two

integers i, j, one has cqj−qi

= 1 if and only j ≡ i mod r. Consequently,
the same holds replacing c by γ.

Proof. Without loss of generality, assume i ≤ j.
Assuming j ≡ i mod r, then qj − qi is an integer multiple of qr − 1.

Since c ∈ F
×
qr , one has cqr

= c, and hence cqr−1 = 1. Thus cqj−qi

= 1
also.

Conversely, assume 1 = cqj−qi

. Raising both sides of this equation
to the (qn−i)th power gives

1 = (cqj−qi

)qn−i

= c(qj−i−1)qn

= (cqj−i−1)qn

= cqj−i−1.

This implies that c lies in the splitting field for xqj−i

−x over Fq, that is,
the extension Fqj−i . But then Fqr = Fq(c) ⊂ Fqj−i , forcing r to divide
j − i. �

Theorem 1 will now follow by comparing Proposition 3 with the
following proposition.

Proposition 6. For c ∈ F
×
qn and g ∈ GLn(Fq), the Brauer character

φG×C
A (g, c) vanishes unless g−1 is G-conjugate to c. When g−1 is G-

conjugate to c, one has

φG×C
A (g, c) =

∏

0≤i≤n−1
i≡0 mod r

(qn − qi)
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where r is defined by Fq(c) = Fqr .

Proof. By Lemma 5 one has that γ is a (simple) root of each of the
n
r

factors of the form 1 − tq
n−qi

with i ≡ 0 mod r that appear in the

numerator of the rational function in Lemma 4. Suppose φG×C
A (g, c) 6=

0. Since the Brauer character value comes from substituting t = γ
in this rational function, γ must appear as a root of at least n

r
of the

factors in the denominator. Thus at least n
r

of λ−1
1 , . . . , λ−1

n must equal

γ, or equivalently, at least n
r

of the eigenvalues λ
−1

1 , . . . , λ
−1

n of g−1

must equal c. Denoting by mc,Fq
the minimal polynomial of c, which

has c as a simple root by separability, this implies (mc,Fq
)

n
r must divide

the characteristic polynomial of g−1. But this minimal polynomial has
degree r, so (mc,Fq

)
n
r equals the characteristic polynomial of g−1. The

minimal polynomial of g−1 equals mc,Fq
since g−1 is diagonalizable, and

this now completely determines the rational canonical form of g−1. It
follows that g−1 is uniquely determined up to conjugacy within G =
GLn(Fq), and since c is an element with the same rational canonical
form, g−1 is G-conjugate to c. This proves the first assertion of the
proposition.

Now assume g−1 is G-conjugate to c. Since the characteristic polyno-
mial of g has c−1 as a root, and the Galois group of Fqn over Fq is cyclic
of order n, generated by the Frobenius automorphism, the eigenvalues
of g will be {c−qi

}n−1
i=0 . As these eigenvalues lift to {λi}

n
i=1 = {γ−qi

}n−1
i=0 ,

Lemma 4 tells us in this case that

φG×C
A (g, c) =

[

n−1
∏

i=0

(1 − tq
n−qi

)

(1 − γ−qit)

]

t=γ

=







∏

0≤i≤n−1
i6≡0 mod r

(1 − tq
n−qi

)

(1 − γ−qit)







t=γ

∏

0≤i≤n−1
i≡0 mod r

lim
t→γ

(1 − tq
n−qi

)

(1 − γ−qit)

=
∏

0≤i≤n−1
i6≡0 mod r

(1 − γqn−qi

)

(1 − γ−qi+1)

∏

0≤i≤n−1
i≡0 mod r

−(qn − qi)γqn−qi−1

−γ−qi

=
∏

0≤i≤n−1
i≡0 mod r

(qn − qi).

where the third equality above uses L’Hôpital’s Rule. �
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3. Proof of Theorem 2

The proof of Theorem 2 is a character computation, very much anal-
ogous to that of the previous section.

Let P be the parabolic subgroup which fixes a particular flag of
Fq-subspaces

(3.1) 0 ⊂ V m1 ⊂ · · · ⊂ V m` = Fqn

in which dimFq
V ms = ms for each s. Given the sequence (m1, . . . , m`),

define the sequence of integers n := (n1, . . . , n`) that sums to n(= m`)
by

ms = n1 + n2 + · · ·+ ns for 1 ≤ s ≤ `,

and call any flag as in (3.1) an n-flag. Recall that the total number of
n-flags is counted by a q-multinomial coefficient

[

n
n1, . . . , n`

]

q

:=

∏n
i=1(q

n − qn−i)
∏`

s=1

∏ns

i=1(q
ms − qms−i)

.

Since C = F
×
qn has order qn−1, which is coprime to the characteristic

of Fqn, it acts semisimply, and a calculation in C with Brauer characters
suffices to prove the isomorphism asserted in Theorem 2. Fix once and
for all an isomorphism of C with the (qn − 1)st roots of unity in C.
Given c ∈ C, let γ ∈ C denotes its lift under this isomorphism.

One must show that for every c ∈ C, there is an equality of Fqn[C]
Brauer character values

(3.2) φ
Fqn [G]P (c) = φA〈P 〉(c).

We begin by computing the left side of (3.2).

Proposition 7. For c ∈ F
×
qn the Brauer character φ

Fqn [G]P (c) vanishes

unless the integer r defined by Fq(c) = Fqr divides every ni (or equiva-
lently, every mi). When this divisibility occurs, one has

φ
Fqn [G]P (c) =

[

n
r

n1

r
, . . . , n`

r

]

qr

.

Proof. Note that G acts transitively on n-flags and P is the stabilizer
of a particular n-flag. Hence the G-action by right-multiplication on
Fqn[G]P ∼= Fqn [P\G] is isomorphic to the permutation representation
in which G permutes n-flags. Restricting this to the subgroup C, one
concludes that the Brauer character value φ

Fqn [G]P (c) is the number

of n-flags stabilized by c. Since c generates the subfield Fqr over Fq,
an n-flag of Fq-subspaces is stabilized by c if and only if it consists of
Fqr-subspaces, and the result follows. �
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We next turn to computing the right side of (3.2). For this, we
employ a result of Kuhn and Mitchell [5] (rediscovered by Hewett [4])
generalizing Dickson’s Theorem, that describes the parabolic invariants
SP .

Theorem 8. ([5, Theorem 2.2], [4, Theorem 1.4]) Let P ⊂ G be the
parabolic subgroup stabilizing a chosen n-flag. Then the P -invariants
Fq[x1, . . . , xn]P form a polynomial subalgebra, with homogeneous gen-
erators of degree

qms − qms−i for 1 ≤ s ≤ ` and 1 ≤ i ≤ ns.

This allows one to calculate the Hilbert series for A〈P 〉, and hence
also its Fqn [C] Brauer character.

Corollary 9. Let S = Fqn[x1, . . . , xn] as before. Then the quotient ring
A〈P 〉 := SP/(SG

+) has Hilbert series

Hilb(A〈P 〉, t) =

∏n
i=1(1 − tq

n−qn−i

)
∏`

s=1

∏ns

i=1(1 − tqms−qms−i)

=:

[

n
n1, . . . , n`

]

q,t

which we will call a “(q,t)-multinomial coefficient”.
Consequently, the Fqn[C] Brauer character value φA〈P 〉(c) is obtained

from

[

n
n1, . . . , n`

]

q,t

by setting t = γ, where γ ∈ C is the lift of c.

Proof. By Theorem 8, we know that

SP = Fqn [x1, . . . , xn]P ∼= Fqn ⊗Fq
Fq[x1, . . . , xn]P

is a polynomial algebra, and hence is a Cohen-Macaulay ring. Therefore
since SP is an integral extension of the polynomial subalgebra SG =
D∗(n) [9, §2.3], it is free as a D∗(n)-module. Thus

Hilb(SP , t) = Hilb(D∗(n), t) Hilb(SP /(SG
+), t), so that

Hilb(A〈P 〉, t) =
Hilb(SP , t)

Hilb(D∗(n), t)
.

Using the degrees of the generators of SP given in Theorem 8, one then
has

Hilb(SP , t) =
1

∏`
s=1

∏ns

i=1(1 − tqms−qms−i)

and the result follows. �

Theorem 2 will now follow by comparing Proposition 7 with the
following proposition.
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Proposition 10. For c ∈ F
×
qn, the Brauer character φA〈P 〉(c) vanishes

unless the integer r defined by Fq(c) = Fqr divides every ni. When this
divisibility occurs,

φA〈P 〉(c) =

[

n
r

n1

r
, . . . , n`

r

]

qr

.

Proof. We proceed similarly to the proof of Proposition 6: since φA〈P 〉(c)
is obtained from the (q, t)-multinomial coefficient by setting t = γ, we
analyze the zeros at t = γ among the factors in numerator and denom-
inator of this rational function.

As before, Lemma 5 implies that γ appears as a root n
r

times in the

numerator, in the factors 1 − tqn−qn−i

for i ≡ 0 mod r.
In the denominator, the factor 1 − tqms−qms−i

has γ as a (simple)
root if and only i ≡ 0 mod r, again by Lemma 5. Thus each product
∏ns

i=1(1−tq
ms−qms−i

) in the denominator can contribute at most ns

r
zeros

at t = γ, with equality if and only if r|ns. Since
∑`

s=1
ns

r
= n

r
, this

means that the rational function will vanish at t = γ unless r|ns for
each s.

Now assume r|ns for each s. Then

(3.3)

φA〈P 〉(c) =

[

∏n

i=1(1 − tq
n−qn−i

)
∏`

s=1

∏ns

i=1(1 − tqms−qms−i)

]

t=γ

=

∏

1≤i≤n
i6≡0 mod r

(1 − γqn−qn−i

)

∏`
s=1

∏

1≤i≤ns

i6≡0 mod r
(1 − γqms−qms−i)

× lim
t→γ

∏

1≤i≤n
i≡0 mod r

(1 − tq
n−qn−i

)
∏`

s=1

∏

1≤i≤ns

i≡0 mod r
(1 − tqms−qms−i)

Note that since r divides n and each ms, one has γ = γqn

= γqms
, and

hence

γqn−qn−i

= γqms−qms−j

⇔ γ−qn−i

= γ−qms−j

⇔ j ≡ i mod r

by Lemma 5. This implies that the first quotient of products on the
right side of the last equation in (3.3) is 1. Using L’Hôpital’s Rule on
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the second quotient of products yields

φA〈P 〉(c) =

∏

1≤i≤n
i≡0 mod r

(−(qn − qn−i)γqn−qn−i−1)
∏`

s=1

∏

1≤i≤ns

i≡0 mod r
(−(qms − qms−i)γqms−qms−i−1)

=

∏

1≤i≤n
i≡0 mod r

(qn − qn−i)
∏`

s=1

∏

1≤i≤ns

i≡0 mod r
(qms − qms−i)

=

[

n
r

n1

r
, . . . , n`

r

]

qr

.

�
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