NOTE ON THE PFAFFIAN MATRIX-TREE THEOREM

SCOTT HIRSCHMAN AND VICTOR REINER

Kirchoff’s celebrated Matrix-Tree Theorem gives a determinant counting span-
ning trees in a graph. It has at least three different well-known proofs: one via the
Binet-Cauchy Theorem (see e.g. [5, §2.2]), one via a deletion-contraction induction
(see e.g. [2, §13.2]), and one due to Chaiken [1] via a sign-reversing involution.
Recently Masbaum and Vaintrob [3] proved a beautiful analogue of the Matrix-
Tree Theorem giving a Pfaffian that enumerates spanning trees in a 3-uniform
hypergraph. Their proof used the analogue of deletion-contraction induction. The
purpose of this note is to give a simple proof via a sign-reversing involution, anal-
ogous to [1]. We find this proof illuminating, because it explains the cancellations
involved directly.

We recall the main result of [3], along with some background and notation.
Let [n] := {1,2,...,n} be the vertex set for the complete 3-uniform hypergraph
K, which has edge set ("1). Say that a subhypergraph T = ([n], E(T)) where
E(T) C ([g]) is a spanning tree if the associated bipartite graph B(T') on vertex set
E(T) U [n], having an edge from {3, j,k} in E(T) to each of the vertices i, j, k in
[n], is a spanning tree for this bipartite graph. An example is depicted in Figure 1.
It is easy to see by “leaf induction” that K,(f) will have no spanning trees unless n
is odd.

Let {yijk }1<i,j,k<n be a set of variables which are skew-symmetric in the ordered
indices (4,4, k), that is, Ys(i)o(j)ok) = sign(o)yi for all permutations o € &3,
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FIGURE 1. The spanning tree T in K( ) with edge set E(T) =
{{1,3,8},{1,7,9},{1,6,11},{2, 5,6}, {4, 6 10}}, depicted via an
embedding of the associated bipartite graph B(T).
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and in particular y;;x = 0. To each spanning tree T associate a signed mono-
mial yr in these variables as follows. Embed the bipartite graph B(T') in the
plane, and walk clockwise around its perimeter, recording the vertices from [n] in
the order that they are first encountered to give a permutation ¢ = o1 ...0y,.
Then yr := sign(m) H{i,j,k}eE(T) Yijk, where we assume that for each i,j,k in
E(T), the ordering (i, j, k) used in y;;; is clockwise around the vertex of B(T)
corresponding to {1, j,k} in the planar embedding. An example is shown in Fig-
ure 1, where if one starts walking clockwise from the vertex 1, one produces
m=1793865241011 = (2758)(394), having sign(r) = —1, and yielding
Yyr = —Y1,3,8 Y1,7,9 Y1,6,11 Y2,6,5 Y4,10,6- It is not hard to see that the definition of
yr is independent of the various choices involved (the choice of planar embedding
of B(T), the starting point for walking around, the clockwise orderings around
vertices).

Recall the definition of the Pfaffian: any N x N skew-symmetric matrix B =
(bij)1<i,j<n has det(B) = 0 if N is odd, and when N is even, det(B) = Pf(B)?
where Pf(B) € Z[bsj] is the Pfaffian polynomial, uniquely defined up to =+ sign. It
can be defined by the following formula:

(1) Pi(B) = > (-perestm I by
perfect :)r}af:ﬁf}]lings {i<j}EE(m)

where cross(m) is the crossing number of m given by
cross(m) == #{i < j <k <l:{i,k},{j,l} € E(m)}.

We will need the following easily verified fact about crossing numbers (see e.g. [4,
Lemma 2.1]).

Lemma 1. Given a perfect matching m of [n] in which the vertices i,i+ 1 are not
matched, if s;m denotes the perfect matching obtained from m by swapping their
labels, then cross(s;m) and cross(m) differ by 1. O

Define an nxn skew-symmetric matrix A = (a;;)1<i,j<n by @ij = >_p_; Yijk, and
let A(® denote the skew-symmetric matrix obtained from A by removing both the
it" row and column. The Pfaffian Matrix-Tree Theorem of Masbaum and Vaintrob
can then be stated as follows.
Theorem 2. [3, Theorem 5.1] Let A be the matriz defined above. For odd n, and
1<i<n,

PEAY) = (- Yy
spanning trees
T in K

Proof. For convenience we may assume that ¢ = n, since simultaneously swapping
rows 4, j and columns 4, j multiplies the Pfaffian by —1 (see e.g. [4, Lemma 2.3(b)]).
We expand the Pfaffian into a signed sum of monomials via (1):

P = S T (S

perfect matchings {i<j}eE(m) \k=1
m of [n—1]
= > (== I g
(m,f): m a perfect matching of [n—1], {i<j}eE(m)

f:E(m)—[n]
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FIGURE 2. Local structure of two bad pairs (m, f) and «(m, f)
having Y(m.7) = —Y.(m,s) Which will cancel in the left-hand side
of (2). Matching edges E(m) are depicted as solid arcs, and the
functions f : E(m) — [n] are depicted by dashed arrows.

Given a pair (m, f) as above, define y(n, r) = (—1)cross(m) H{z'<j}€E(m) Yij f (g} -
Then we must show

(2) Z Yim,5) = Z yr.

(m,f) as above spanning trees
T in K3

The method of sign-reversing involution is to

e first classify the pairs (m, f) as good or bad in some fashion,

e produce a fixed-point free involution ¢ : (m, f) — t(m, f) on the set of all
bad pairs, with the property that y(,, ) = —¥Y.(m,s), s0 that they cancel in
pairs on the left-hand side of (2),

e show that there is a bijection (m, f) — T'(m, f) from the set of good pairs to

the set of spanning trees in Kﬁg) , with the property that y(m,r) = Y1 (m,5)-

To this end, for any pair (m, f) we wish to associate a new function f mapping
E(m) U{n} into itself:

HORE
oo [T € (D)
”“””‘{n i £({7,7)) = n

We will say that (m, f) is bad if there exists some edge {i,7} which is a recurrent
element for f, that is, there exists some M > 0 having fM({i,j}) = {i,j}. Say
(m, f) is good otherwise, that is, if n is the only recurrent element for f.

When (m, f) is bad, there must exist at least one directed cycle as depicted in
Figure 2(a), which for definiteness we will assume contains the smallest labelled
vertex of any such cycle. Define the involution without fixed points ¢ : (m, f) —
t(m, f) on the set of bad pairs by replacing this cycle with the one depicted in
Figure 2(b) to obtain ¢(m, f). Note that y(,,,, sy = LY, (m,s); it is our immediate goal
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to show that one always has y(,,,, 5) = —¥.(m,s)- This is easy to check directly in the
very special case where the vertex labels going around the cycle in Figures 2(a) or
(b) are 1,2,3,... in clockwise order.

For the general case, one can reduce to this special case by performing a sequence
of adjacent transpositions s; = (i i + 1) to the labels of the vertices in both (m, f)

and t(m, f), and then one must check that ;((':n); )) = i((s:jn‘s:'"; )). This is checked in
two cases, depending on whether ¢,7 + 1 are matched in m or not, using Lemma 1
in the latter case. The details are straightforward, and left to the reader.

When (m, f) is good, the fact that n is the only recurrent element for f implies
that the digraph associated to f is a tree (in the usual graph-theoretic sense)

directed toward n. It is then easy to see that the 3-uniform hypergraph T'(m, f)

having
E(T(m, f)) := {{i, 3, f({i, 51} : {i, 5} € E(m)}

is a spanning tree in Kﬁf), and Y(m,r) = TY1(m,r)- Conversely, for each spanning

tree T in K,(f), there is a unique good pair (m, f) such that T'(m, f) = T': for every
edge in E(T) containing n, say {4, j,n}, the pair {4, } must form a matching edge
in E(m), with f({i,j}) = n, and one reconstructs the rest of (m, f) similarly, by
searching through T away from the root vertex n.

It remains to show that y(,, ) = +yr(m,r)- This is easy to check in the special
case where the 7" has a planar embedding such that the permutation = obtained
from reading clockwise around the perimeter is the identity permutation. For the
general case, one can again reduce to this special case by performing a sequence of
adjacent transpositions s; = (i 7 + 1) to the labels of the vertices in both (m, f)

and T(m, f). One must check that ny(:"’ff)) = y?{r((“m’f;) As before, this is a

straightforward verification involving two cases, depending on whether i,¢ + 1 are

matched in m or not, using Lemma 1 in the latter case. |
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