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Signed Permutation Statistics
VicTor REINER

We derive multivariate generating functions that count signed permutations by various
statistics, using the hyperoactahedral generalization of methods of Garsia and Gessel. We also
derive the distributions over inverse descent classes of signed permutations for two of these
statistics individually (the major index and inversion number). These results show that, in
contrast to the case for (unsigned) permutations, these two statistics are not generally
equidistributed. We also discuss applications to statistics on the wreath product C, 18, of a
cyclic group with the symmetric group.

1. INTRODUCTION

There is an abundance of literature on permutations statistics (see [7] for some
references} and their joint distributions. Three statistics which have frequently been
studied are the number of descents d(), the major index maj(x), and the number of
inversions (or Coxeter group length) inv(sr) of a permutation

( 1 2 n)
=
b S 3 i,
defined by
din)=#{i:1<isn-1, 7,>m.,},
maj(z)= X i
LA S
l=is=n-—1

inv(a)=&{(E jr1si<j<sn, m,>mx}

In [7], Garsia and Gessel use the theory of P-partititons (see [11, Section 4.5]) to
derive a multivariate generating function for the joint distribution of

(d(), inv(zr), maj(x))

as s ranges over the the symmetric group §, of all permutations on n elements. They
then develop some of the theory of multipartite P-partitions, and use this to derive a
generating function for the joint distribution of

(d(), d(x™"), maj(x), maj(z~"))
(see also [4, 8] for some alternative derivations of this distribution).

The goal of this paper is to prove hyperoctahedral generalizations of these and other
results. In Section 2, we define the analogues of d(sr), inv(x), maj(x), and a new
statistic n(;r), where s is an clement of the hyperoctahedral group B, of signed
permutations. We then review the definitions and facts needed from the theory of
P-partitions and multipartite P-partitions for signed posets P.

In Sections 3 and 4, we use these to derive the two main results: the joint
distributions of

(d(), inv(x), maj(r), n(r))
(d(x), d(x™"), maj(), maj(z~"), n(x))

and

as m ranges over B,,.
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Section 5 deals with the distribution of (n(:x), maj(x)) and of (n(x), inv(x)) over
inverse descent classes in B, (to be defined later). Here the situation contrasts with that
of §,, where maj{;x) and inv(x) have identical distributions as s ranges over a fixed
inverse descent class (see [6]). Our results do not indicate any simple relation between
their analogous distributions in B,,. However, there is a simple relation between their
distributions over all of B,,, and in Section 6 we give a bijective proof of this utilizing a
well-known bijection of Foata [5].

By setting the variable @ which counts the new statistic n{sr) equal to zero, one
immediately recovers the known analogues of all of these results for the symmetric
group S,,. In Section 7, we show that by setting a =k — 1, we obtain new results on the
distribution of certain statistics on the wreath product C, | S, of a cyclic group with the
symmetric group S,,.

2. PRELIMINARIES

Let B, denote the hyperoctahedral group of all permutations and sign changes of the
co-ordinates in R”. Letting e; denote the ith standard basis vector, we will use the

two-line notation
( 1 2 /] )
_‘,T[ = P
ﬂ:] .7'[2 T,

where m; € {£1, ..., +n} to mean that 7(e;) = sgn(;)e,,. It will be convenient for us
to think of B, as a Coxeter group with roof system @,, positive roots &, and simple
roots IT, given by

P, ={te;, te; e 1<iFj=n},
Pr={+e,, +e;te, +e,—e:lsk<=ni<j=n},
,={+e,, +e;—e s 1<i<n),
where we label the simple roots a, ..., o, as follows: o, = +¢;,— ¢, if i<n, and

@, = +e, (see [2] for terminology and background about Coexeter groups and root
systems). By analogy with the symmetric group, the descent set of 7 is defined to be

D(x)={i: n(e) e — Py},

the number of descents is

d(a)=#D(7)
and the major index is
maj(m)= >, i
ieD(x)

Also by analogy with S,, the number of inversions (or Coxeter group length) is defined
by

inv(m)=#{ae & n ' (a)e —D7}.
One further statistic that we will use is the number of negative signs, defined by
n(m)y=#{i:m <0}.

For example, if

_(1 2 3 4 5)
TZ\o3 42 45 -1 —4
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then D(x)={1, 4,5}, so d(xx)=3, maj(x)=1+4+5=10, n(7r)=3, and one can
check that inv(sr) = 14. Note that a signed permutation = € B,, has n(s) =0 if and only
if & is actually just a permutation in S,,.

We now recall some definitions and results from [9, 10]. A (natural) signed poset P is
a subser P c @, satisfying the following closure property: if o, Be P and aa + b € @,
for some @, b>0, then aa+bBfeP. Given a subset Ac P, the signed poset
generated by A is the smallest set P containing A which has the above closure property.
Given P, a signed poset, say a vector f € Z", is a P-partition if («, f) =0 for all € P
(where {-,-) is the usual inner product on R"). Denote by (P) the set of all
P-partitions, and define the Jordan—Hdlder set of P by

F(P)={meB, Pcad;}.

The main result about P-partitions is then as follows:

Tueorem 2.1 [10, Theorem 3.3).
AP)= [ s(xd;).

LAV
where [ denotes the disjoint union of sets.

By chasing through the definitions, one obtains the following more concrete
description of the sets A(xd;):

ProrosiTion 2.2 [10, Proposition 3.4]. A (a®)}) is the set all vectors (f,, ..., f.) €
Z" such that sgn(f;) = sgn(x;) and
|fal =1 Ul =27+ | fa ) ~n 0,

where ~, is the relation > if i € D() and ~; is = otherwise.

As an example, let n =2 and P = {+e¢,, +&, — ¢,}. Then

=‘('E(P)={(+i +§) (+i —i)(é —?)}

AP)={(fi, LY eZ* /,=0,fi=f,} by definition
={fi=zL=0}
U {fi=lh >0 £<0}
U {1£=f=0£<0} by the last two results.

To deal with bipartite P-partitions, we introduce the lexicographic order on R%:

and

(;‘l) =3 (fz) if we have (1) fi = £, and (2) f; = f; implies g, = g,.

One then defines the set of bipartite P-partitions by

ar={(g)e@r: ()=

The main result required about bipartite P-partitions is the following:

THeOREM 2.3 [9, Proposition 3.4.2, Lemma 3.4.3).

axp)= 1l {(; Je @)ig e tm @), 7)€ b 7)),

armeF(P)



556 V. Reiner

We will also use the following notations: [#] denotes the set {1,2,... a}. If F(x)is
a formal power series in x, then F(x)|,_, denotes the result of replacing x by g. We
further define the following:

[n],=10+p)Q+p+p*) - -(A+p+p°+---+p"h,
(@:q)a=(1—a)1-aq)(1-ag®---(1—aqg"™"),
(@;9,,92).,= [l (1-aqiqd),

Oir—1
O=j=s—1

["]!P = [I]P[z]p T [n]ﬂ’
(A1t = (—ap; p)alnll,

(z),, [k]',,{[’;]‘— k)L’

( " [n]'ﬂ
ki k/y bkl - k5,

([.kl k) [ku]u,,[iEn]]‘!:f"'[kr]!p'

3. Tuge Four-variaTE DistriBuTION OF (d(s), inv(x), maj(x), n(x))

Following {7], we will count vectors f € Z" according to some statistics in two ways:
one direct, the other a ‘Mahonian’ count that involves P-partitions. Equating these
two expressions will then yield the result.

For f € Z7", define

max(f) = max{{f}i-r..m  |fl= E fl, alf) = #{i: £ <0).

This gives three of the statistics. By Theorem 2.1, there is a unique i € B,, such that
f e d(ad]), which we will call z(f). We then define a fourth statistic by inv(f) =
inv(zz(f)) (one can give a more direct, but clumsier definition of inv(f)). Note that by
Proposition 2.2, one could equivalently define n(f) = n(z(f)).

We now set about calculating

Z tmax(f)qlflpin“(f)a"(f)

feZ”
in two ways.
For the direct approach, we begin by noting that
S pmagfipgimiDgntN = (1 — ) 3k F gVipiniDgnth), (1)
feZr k=0 FeZr

max(f)=k

If we et o(fY=x, - - - x5, then gf'= &(f)l,, ., Therefore one has
Z qiflpin\'(f)anm - 2 w(f)pinv(f)ﬂn(f)|x'_)qr

feZ® feZn
max(f)<k mux{f )=k
= 2 X0yt E pgrs) g

tot -y =n Fezn, #li: | fl=i)=p;
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Lemma 3.1.
pinv(f)an(f) — ( A ) — [ﬁl!a,p .
FeZn, #ic fil=fi=p oty " M/ ap [lu(.'l]!a,p[nul]!p Tt [nukl!p
Proor. Let 8= {te, the + M1y ... s e+ + 1} =n]. It is not hard to see from

Proposition 2.2 that the map f+> n(f) gives a bijection between {f e Z", #{i: |fi| =
jY=u} and {7m € B,: D(m) < S}, the inverse of which may be described as follows: if
we let (s),...,s,) be the sequence which has u, occurrences of k followed by p,_,
occurrences of k—1, etc., then the inverse map sends = to (f;,...,f,). where
fi =sgn(m;)s,,,. Thus we have

priigntn = N pinvimgntn) 2)
FeZt, &(i:1f1=f1=py Dir)cs

Let Wy denote the parabolic subgroup of B, (see {2]) which is isomorphic to
S, xS, X B, and has §, acting on the first g, co-ordinates, §,, | acting on the next
Py, co-ordinates, etc. It is known [2], Chapter 4, Section 1, Example 3] that any
o € B, can be written uniquely as o = &7, where D{sr) = 5 and 7 € W; and, furthermore
inv(¢) = inv(xr) + inv(z). This decomposition also has the easily verified property that
n{o) = n{x) + n(r). Hence we have,

pinv(n)an(n) z pinv(r)an(r)z 2 pinv(a)an(c)

D(x)cS TEW, oeB,
and therefore
inv(o) . n{o)
pinv(n)an(n) — EO’EB,, P a
D(myes EteBM,pmv(r)an(t) EES}” pmv(r) A ZIESM pmv(r)

The result will then follow once we verify that

S, p0 =l

€S,

and

2 pinv(r)an(t] — [ﬁ]!a,p-
Tef,
The first of these is well known (see, e.g., [11, Corollary 1.3.10]). The second fact will
be proven in Section 6, but we remark that it follows from the first by considering S, as
a parabolic subgroup of B,. One nced only check that
2 pmMa" P =(=ap;p),.

TeR,
Diay=in}

Venfication of this is left to the reader. O

Continuing the derivation, from the lemma we have that

1y inv ) () _ [A]!ap “ "

> q'p av = - X" X e
fezn #u+-~-+m=n[M()}!a,p[ﬂll!p T [auk]!p ! « |x' i
max(f)=k

. (@)™ (@ (g
=[4]\a, . e
[ } ’ un+'“2+m=" [-u'()]!ap [Iul]',ﬂ [luk]'P
=[A]!,, - coefficient of u” in é[u], e[qu], - - - e[g*u),,

e[u], = E “

n=0 [n]!p

where

”
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and
ul‘l
elulap =2 .
d nz=0 [n]!a,p
Combining this with equation (1) gives an expression for our direct count:
1

GETY fmexNg i Dgnis)
. p ¥ A

= coefficient of u” in », t*¢[u], .e[qu), - - -elgul,. (3)
k=0

We now embark on the Mahonian approach. We will apply Theorem 2.1 to the case
in which P =(J, the empty signed poset, and hence £(P) = B,. This gives
7= [_L AP}

and hence that
z tmax(f)qlflpim'(f)an(f)= 2 2 tmax(f)qm () an(f)

P
feZ" neB, fed(ady)
— 2 pinv(ft)an(.ﬂ:) Z tm‘dx(f)qlfl.
neR, fed(ady)

For a fixed 7, by Proposition 2.2 we have f € S(x®}) iff sgn(f;) = sgn(r;) and

|fl:r‘l| RS |f|::.‘1| =0,

with the ith occurrence of = replaced by > whenever i e D(x). Thus we may
bijectively encode any such f as a partition A = (A, = - -4, =0) with at most n parts by
setting

A= il — B{jeD(T)j=i}).
The key properties of this encoding are that max(f)=max(d)+d(x) and |fi=
{A| + maj(x). We conclude that

lrmM(f)q.lfl = td(ﬂ')qmai(ﬂ) 2 tmaX(l)qlll
fest(ad]) iof length=<n

B td(n)q maj{x}

(195 9)x
where the last equality is a standard argument in partitions. This gives us that
maj() p inv() o nir)
S reDgingmngnn = L4 P @
feZ” mef, (tq; q)n

Combining this with equation (3) yields the final answer:

d(r)

T

u o
- td(n) maj(sx) lnv(ﬂ)an(n)____ t"e’[u]a e qu] e e[qku] .
REZ:O (t, q)n+l[”']!a,p nel, 1 P kE?l] ‘P [ i i
4. THE FIVE-VARIATE DistriBUTION OF (d(7), d(n™Y), maj(r), maj(z™"), n(x))
Again we follow [7] and count in two ways the expression

2 t'l““"(f)tg’a"("’)q 'If'q'zf'a"(g).
(DedAP})
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Using the direct approach, first rewrite the above sum as
(A-1)A-t) 2, ek > g\'q'a™®,

k=0, k=0 (5 sta( D)
max(f)<k,, max(g)=k;

Next note that by definition, (£) € #(®;) iff
()= = ()=o)
£1 8n 0

and hence is completely determined by the multiset

(G

We conclude that

2 qliflqlzflan(g)
Dyest(d)
max( £ <k, max(g)<ks

is equal to the coefficient of 1" in
1 1

171, Ll 11, 1jl
osisk, 1 — Ug; 'Q"z] yesiszk, 1 — QUG ‘42’
O=j=k, 1<—j=k;

and finally that

2 t'ln“(f)t'z"a"(g)q'lf'q'zg‘a"(g)
Destfd})

is equal to the coefficient of 4" in
0
&30, ky==0 (u; g, q;.)k.+|,k,+:(au'fh‘h§ qi1, fh)k.,k; )

For the Mahonian count, we apply Theorem 2.3. Since (@)= {1}, we have

(I —1)(1-1}

@)= 1 [ )eesamon, =) e aen)

and therefore

2 tl{nax(f)tgnax(g)qIlflqlzgla"(!:)
Desd( bt

— E 2 t;naX(f)t;a’t(g)q Ilflqlzglarﬂg)

my.mEeB,  gesd(mdy)
=1 a7(f)esd(x &})

> > raxDglfl N maxie)glelgnie)
zeB, a(fled(xd;) gesi{x

dm) gmai(m) gt gmaia=) i)
xe8, (115 G1)n (82915 92),

where the last equality follows from reasoning similar to the Mahonian count in Section
3. Equating this expression with the direct count yields the final answer:

n

74
w20 (113 @)rns1(825 G2)ns 1t neB,

,f(n)[g(n")q T”j(”)q?“i(”_])a"(”)

Rk

k=i, k=0 (3 @15 @)+ 1.0,41(AUG G235 44, 92), ks
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5. DIsTRIBUTIONS OVER INVERSE DESCENT (CLASSES
Given § c [n], the set
9y={meB, Dx =8}

is called an inverse descent class. For S,, it is known that maj and inv are
equidistributed over inverse descent classes {see [6] for a bijective proof), and that this
distribution may be expressed neatly as a determinant. In this section we derive similar
determinantal expressions for the distribution of maj and inv over %, which show that
they are not in general equidistributed.

For the remainder of this section, we adopt the following convention: if §=
{s1,...,5.}, then 54=0.

ProposiTiON 5.1. Let
L‘Yinv(S) -— 2 Pinv(.n)an(n')_

D(x~NHcs

Then

w )= 7 )

F1—8 S8 08 =8 R84,

T — ——— ——
G, o), o)

Sy~ Sol up 82" 817 ap s,—s,—1
Proor. The third expression above is easily seen to be equal to the second, so we

only need to show that the first two are equal. In the proof of Lemma 3.1, we showed
that the second is the same as

a,p

2 pinv(n)an(n)

D(n)cS
But inv(r) = inv(z~') and n(x) = n(x™"), so the latter is equal to
Pinv(n’)arr(ﬂ:). O

D{x"es

CoroLrLarY 5.2.  Let
ﬁinV(S)= 2 pinv(n)an(:r}_

Then
B™(S) =[A]L,, detla(i, j)) = det(b(i, j)),
where the (r + 1) X (r + 1) matrices (a(i, ), (b(i, J)) are defined by
1

—_— ifisr,
. [S,'_S-ﬁ ]'p
a(i, j) = Jl E
e ifi=r+1,
L T
(n_sjﬁ]) ifi=<r,
b, jy=4 NI

1 ifi=r+1.
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Proor. Since

a™($)= 3 F(T),

TS

by the principle of inclusion—exclusion, we have

ﬁinv(s) - 2 (_1)#(5‘—T)a,inv(T)'
TS
Using the two expressions for a™(S) given by Proposition 5.1, it is a standard
argument [11, Proposition 2.2.6] to deduce from this the two determinantal expressions
for £(S). O

For the statistic maj, we use the theory of P-partitions. Let P, be the signed poset
generated by

{ay, a2, .oy i) = (e~ e }10),

and let Py be the signed poset generated by {e; € IT,:i ¢ S}. Again following [7], we
will count Y. py ¢7'a" in two ways. By Theorem 2.1,
2 qman(f) = E E qlflan(f)
fesd(Py) nef(Py) fesd(mady)
gmaitTgnia)

L

megtry (434
where the second equality follows by the same argument as in Section 3. Now notice
that

re PP Pycad)

Sa'(Ps)c o

D S
and so we have our Mahonian count:

2 q|f|an(f)= 2 E qlflan(f)

Fed(Py) e E(P5) fed(ndl)
gmaitmgntn

b nes (G 9)n

For the direct count, notice that f € Z” is a Ps-partition iff its first 5, co-ordinates are
in decreasing order, its next s, —s, co-ordinates are in decreasing order, etc., and its
last n —s, co-ordinates are non-negative and in decreasing order. This may be
rephrased as saying that its first 5, co-ordinates form a P, -partition, its next s, —s,
co-ordinates form a P _ -partition, etc., and its last n —s, co-ordinates form a
@, _, -partition. Therefore,

2 qlf\an(f) = 2 q1f|an(f) - 2 qlflan(f) Z qlflan(f).
fed(Py) fest(P -} fest(P ) fest(®l )
If we let
M,(a, q)= 2, qmma"?,
AH(Py)

the usual argument allows us to rewrite this as

2 q'ﬂa"(” — MS|—-\'|)(a’ q) D MS,—.s,_l(ar q) 1
Fesd(P) (9:9)., -, (@ Dsmsy (@D n-s,
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since Z(@,_,)={1}. Equating this with the Mahonian count gives the following:
THEOREM 5.3. Let

a,maj(S) = z qmaj(n).
D(xhes
Then

A M, _ (a, M, _, (a, 1
a™i(s) = (], Mo o q) M, (g q)

* Isi—sally s, =51y [n—s]
n—S, n—s,_,
= MS —sy\¥r ( ) T Ms — ’ ( )
i |l(a Q) S| _Sn q r r-;(a ‘I) sr_S,.__] N
n
= MSI—Iu(a: q) . Ms,-—sk](a! q)( )
$1—8g 8 85,085,

COROLLARY 5.4.  Let B™(8) =1 e g™, Then
B (8) = [n]!, det(a’ (i, ) = det(b'(i, /),
where the (r + 1) X (r + 1) matrices (a’(i, )), (b'(i, j)) are defined by

Ms-fs‘ | a,
— " ’_( 9 ifisr,
[si —s;1]lq
a'(i,j)= 1
&1 R ifi=r+1,
[n —Si—l]!q
M, _(a, q)(: _Sj_') ifisr,
o — i Yi—1/p
b= fi=r+1.
Proor. See the proof of Corollary 5.2. d

In the light of these last two results, it is useful to have more explicit expressions for
the polynomials M, (a, q). The author is grateful to D. Foata for pointing out that the
next proposition implies that M, (a, ¢) is the same as the Rogers—Szegd polynomial
H,(aq), about which a great deal is known (see |1, p. 49, Problems 3-9]).

PROPOSITION 5.5.
M,(a, q)x" _ 1
i (@@, @ g)(axg; g

Proor. We know from our previous calculations that
M(a, (g @)= 2. ¢"a"?,
Fesd(Py)
and hence that the left-hand side in the proposition is

SOS gVlaroxn

n=0 fest(F,)

Recall also that f = (f;, . . ., f,) € &(P,) iff the f's are in decreasing order. Hence this
last expression is equal to

qlf.|+---+|ﬁ.|a#{i:.ﬁ<0)xnn (1 —xq"")’l H (1- aquil)“1. O
n= (fi..... fa)eZ" izl <0

==t



Signed permutation statistics 563

6. A Buecrion RELATING maj(m) anD inv(m)

By taking § = [r] in Proposition 5.1 and Theorem 5.3, we have

> pimEgt ™ = [a]l, . = (—ap; p).ln], 4
mel,
and
2 pmaj(n)an(ﬂ) — M|(ﬂ', p)ﬂ[n]!p = (1 + ap)"[ﬂ]!p (5)

nekB,

and hence we have the following relation between the distributions of / and maj over
all of B,,:

(—apip)n 2 p™"a" =1 +ap) 2 p™ e, (6)
ael, xeB,

The objective of this section is to sketch a bijective proof of (6). Cur approach will be
to prove (4) and (5) using bijections that relate maj and ! in B, to maj and [/ in §,,
respectively, and then combine these with Foata’s bijection ¢ [5] which relates maj to /
in §,. It would be interesting to find a more direct bijection, as this might also shed
some light on the relation between &™(S) and a™¥(S) or ™(S) and A™I(S) in
general.

To prove (4) bijectively, on the right-hand side we interpret (—ap; p), as counting
subsets T of [r] jointly according to their cardinality and the statistic maj(T) = X;.ri, and
we interpret [n]!, as X .. p"™. Hence (4) will follow if we can establish a bijection
&8 B,—2"x S, such that if 8(x)=(T, o) then inv(s)=maj(T) + inv(o). Given
7w € B,, since §, is a parabolic subgroup of B,, we can write 7 uniquely in the form
m=r10, where €8, and D(t)c {n}. In fact, D(t)<{n} is equivalent to the
following condition: for some k, we have

T__(1 2 n~k n—k+1 n—k+2 n)
j jZ er-k _il _i2 _ik '
where 0<j, <<---<j,_rand {;,>- >0 Soifwelet T={n+1—i,...,n+1—

ix}, then t is completely determined by T and, furthermore, one can check that
inv(t) = maj(T), n(t) = #T. Hence the map &(x) = (T, ¢) has the properties we want.
To give an example, if
( 1 2 3 4 5 6)
:[ =

-2 +6 +5 +1 -4 +3
then

n_(123456)(123456)_
L4143 45 46 -4 —2/\+6 44 43 +1 +5 42/ O

so 8(x) = ({3, 5}, o).
To prove (5) bijectively, on the right-hand side we interpret (1 +ap)" as counting
subsets T < [n] according to their cardinality, and {n]!, as I,.s p™ (see [5]).

Hence (5) will follow if we can establish a bijection &: B,—2" xS, such that if
g(n) = (7, o) then maj(x) = #T + maj{o) and n(w) = #T. Given

(7" 2
Jga = sa y

iy

we let T = {i: —i appears among the m/s}. We then define o by repeatedly applying the
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following operator k: B, — B, to & until we reach an unsigned permutation o:
(1) Let i be the smallest element in T, so that x; = —i for some j.

{2) Replace ;= —i by ;= +i.

(3) Let A be the linear order

+l<4+2< - <H4n<—p<- o< =2< —1

(it is easy to check that i e D(x) iff ;> m,,, in this order, where @, ,=n+1 by
convention). If +i=min,{+i, x;_,, m;,,} then stop. Else either a;,_, or m;., is
min{+i, &;_,, ;. }. Assume without loss of generality that this minimum is 7, (the
other case is symmetric). Let / be the smallest positive integer such that

J’[j+1 <ﬂj+2<‘ b ﬂj+f< +I
using the A order. Replace the consecutive sequence +i, 7.y, Tiq, ..., My in 7

£
with the sequence 7T, ,, 7,5, ..., Ty +i

We must apply x exactly #7T times to reach a permutation o € S, and we then define
g(m) = (T, o). For example, if
gy m,=48-2+14+3-447-5+6

then T ={2, 4,5}, and the results of three successive applications of x are shown
below:

+84+1+24+3-4+7-5+6,
+84+1+244434+7-54+6,
+8+1+2+4+3+7+5+6.
It is not hard to check that, given T, we can reverse each application of x, so that is a
bijection. Also, after each application of &, the major index and the statistic » are both
lowered by 1, so that maj{s} = #T + maj(¢) and n(x) = #7T as desired.

We can now offer a bijection for (6). Let ¢:5,— 5, be Foata’s bijection [5],
having the property that inv{(¢ (o)) = maj(o). We then define our bijection ¥: 2"l x
B,—2"I X B, to be the composite

idxe idXid X ¢ (swap T, U)yxid idxd-
(T,m) —» (I,U,0) = (T,Up) > (W, T,p) = (U5)

Note that
maj(7T) + maj(sx) =maj(T) + maj{o) + #U
=maj(T)+ inv(p) + #U

=inv({) + #BU
and
BT +n(x)=8#T+ &#U

=#U + n(f).

Hence the existence of the bijection ¥ proves (6).

7. AppLicaTioN: C 1S, STATISTICS

For k =2, we let C; ]S, denote the wreath product of a cyclic group C; of order k
with the symmetric group S,,. A typical element 7 in C, 15, sends the jth standard basis
vector g; 1o C"'emf,, where £ = e and 0=, < k. We will denote this element 7 by

( 1 2 n )
T= E .
Ehm,  &om, &,
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Note that C,] S, is the same as B,. It turns out that some of the natural statistics on
C. | B, are related in an almost trivial fashion to statistics on B,, and hence we can
count these statistics by simply specializing a in the results of Sections 3 and 4.

For this purpose, we define a surjective set map ¢: C, | S,— B, by sending 7 to #,

where
+e,, if I, =0,
—€p, if;>0.

A(e) = {

It is worth noting that although ¢ is nor a group homomorphism (unless & = 2), we do
have that ¢p(x~") = ¢ ().
As a group, C, 1S, is generated by the set

o=t =B (7,12

We define the length or the number of inversions of & by
inv(x) =min{r: x =55, - - - 5, for some s, }
and we define the descent set of x in C, | S, by
D(x) = {i: inv(zs; ") = inv(xr) — 1},

from which we derive the descent number d(m)=D(m) and the major index
maj(n) = X,cpiri- The next proposition summarizes the relation between these
statistics in C; | S, and their counterparts in B,,.

Prorosition 7.1, (1} inv(a) = inv(p(x)) + X, por (6 — 1).
(2) D(x)=D($(m)). _
(3) Dz )= D(¢(m)™).
{4) For any 7 € B,,, we have
E pinv(n) — pinv(ﬁ)([k — llp)n(:'[)-
meCy ! S,
p(m)=#

Proor.  The proofs of items (1)—(3) are routine verifications, which we leave to the
reader. To prove (4), note that choosing a & which maps to a given & amounts to
choosing /; between 1 and k — 1 for each i such that m; e N(&). By part (1), we then
have

inv(m) =inv(p(m)+ > (L-1).

m,eN(F)
Therefore
k=1
z pinv(.rr) — pinv(:'r) H 2 pl,—l =pinv(ﬁ:)([k _ llp)n(ﬁ)' 0
ne(c,S 1S meN(i) =1
P{m)=m

If we now specialize the four-variate distribution from Section 3 to a = [k — 1], and
the five-variate distribution of Section 4 to a=4k —1, we reap the following two
corollaries:

CoROLLARY 7.2.

u"

lél (t; Q)n+l[n]!p(71)[k - 1]P;p)n‘ 7eCy1S,

td(n) mig( ) inv(sa)

q 4

= f—’[“]lk-ll,,.p ,,.E;o t”'e[qu]pe[QZH]p < e[gTu),.
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COROLLARY 7.3.

n

u -1 i il
E trl!(ﬂ)tg(n )qunaj(ﬂ)qrznaj(n )
w20 (115 @ D)n+1{l2) G2)n+1 25,
1
- S i .
Ki=0 (45 15 g2)i, 1,001 ((k — 1)1q1G2; 91, G2)i,
k=0

REMARK. Setting p =g =1 and replacing u by ku(1 —t) in the first corollary above
yields

n u{l—1)
u gy __©

amo ! 2GS, 1—reke=0"’

a generalization of the well-known generating function for the Eulerian polynomials. In
[12], Steingrimsson defines another descent statistic d() for & in C 1 S, which is easily
seen to be equidistributed with d(x). He also defines the exceedarice

e(x)=#{i:m;>ior (m; =i and [, > 0)}

and shows that it is equidistributed with d(;r) (and hence also with d(r)). We take this
as evidence that although there does not seem to be a canonical Mahonian distribution
on C,18,, there does scem to be a canonical Eulerian distribution, given by the
exponential generating function above.

We should also remark that simultaneously with the preparation of this paper, the
distribution of the descent statistic d over B, (e.g. the case p=¢g =a =1 in the main
result of Section 3) was computed by Stembridge [13] and the joint distribution {d, n)
of descents and negative signs (the case p =¢ =1 in the aforementioned result) was
computed by Brenti [3].
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