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ABSTRACT. The problem of predicting the possible topologies of
a geochemical phase diagram, based on the chemical formula of
the phases involved, is shown to be intimately connected with and
aided by well-studied notions in discrete geometry: Gale diagrams,
triangulations, secondary fans, and oriented matroids.
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FiGURE 1. The phase diagram for the simple chemical
system with phases ice, water, and steam.

1. INTRODUCTION

A central problem in geochemistry has been to understand how the
equilibrium state of a chemical system varies with temperature and
pressure, and predict the form of its temperature-pressure phase dia-
gram (hereafter called just the phase diagram). The purpose of this
paper is to explain how some recently developed tools from discrete
geometry (the theory of oriented matroids, triangulations, Gale dia-
grams, and secondary fans) can be used to elucidate this problem. Our
goal is to be comprehensible to both discrete geometers and workers in
geochemistry.

Figure 1 illustrates the familiar phase diagram for a simple chemi-
cal system that involves three phases (ice, water, steam) of the same
chemical compound, H>O. The topological structure of this diagram
is fairly simple: there is a unique point, called a triple point, where all
three phases can be present in equilibrium. The triple point lies at the
junction of three curves. Along each of these curves exactly two of the
phases are present in equilibrium (either ice + water, or ice + steam,
or water + steam), and these three curves separate two-dimensional



GEOCHEMICAL PHASE DIAGRAMS AND GALE DIAGRAMS 3

regions where only one phase (pure ice, or pure water, or pure steam)
can be present in equilibrium.

This example of a phase diagram is quite an elementary one, in
that all the phases have the same underlying chemistry, that of H>O.
Geochemists are interested in phase diagrams as the principal tool in
reconstructing the temperature and pressure conditions from rock for-
mations once deep within the Earth but which now reside at its surface.
Thus it is important to have accurate phase diagrams involving much
more complex systems in which the phases have different chemistry as
well as different states.

To be more precise, a phase means a physically homogeneous sub-
stance, having its own chemical formula, although different phases
within the system can have the same formula (as in the ice-water-steam
example). At a particular temperature and pressure, the equilibrium
state consists of groups of one or more phases that are referred to as
phase assemblages. Within a closed system at fixed temperature and
pressure, only certain phase assemblages will be stable, namely those
having the lowest possible Gibbs free energy under the given condi-
tions. Other assemblages with higher energy than the minimum under
those conditions are referred to as metastable — these assemblages react
spontaneously to produce a stable assemblage and a net decrease in
energy. For example, pure water placed in the stability field of ice will
spontaneously freeze because a lower Gibbs energy assemblage (ice) is
available under those conditions. When there are different chemical
formulae present among the phases, more exotic reactions than simple
phase changes are possible. The regions of simultaneous stability for
various collections of phase assemblages, and the chemical reactions
that relate them are conveniently summarized in the phase diagram.

The locus of temperatures and pressures within which a particular
phase assemblage is stable is called its stability field. The stability
field is called invariant, univariant, or divariant depending upon its
dimension, that is, the number of degrees of freedom one can vary
while staying within that stability field. In the example above, the
triple point (ice-water-steam) is an invariant point, there are three uni-
variant curves (ice-water, ice-steam, water-steam), and three divariant
stability fields (pure ice, pure water, pure steam). The univariant fields
correspond to simple chemical reactions that transform one phase as-
semblage to another, and hence are sometimes referred to as reaction
lines. In producing these phase diagrams, a prediction of the possi-
ble topologies (i.e. number of invariant points, number of univariant
curves joining them, etc.) is indispensable, as the thermodynamic data
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needed to resolve such topological features can sometimes be difficult
to obtain.

It turns out that much of the complexity of the phase diagram for a
chemical system is governed by two parameters:

e the number of phases, m, and
e the number of components, n (defined below).

We will see in Section 3 that these two parameters correspond to the
size of the ground set and the rank of a related vector configuration
(or affine point configuration, or oriented matroid) associated with the
chemical system. It is well-known, in both geochemistry and discrete
geometry, that what matters most in predicting the complexity of the
phase diagram is not the sizes of n and m, but rather the sizes of n
and m — n (the rank and the co-rank).

The number of components n for a chemical system is defined as
follows. Think of the chemical formulae of the various phases of the
system as vectors in a vector space of all possible such formulae (the
chemical composition space— see Section 3), whose coordinate axes cor-
respond to the elements present on Earth. Then the number n of com-
ponents of the chemical system is simply the dimension of the subspace
spanned by the chemical formulae of the phases present in the system?.
For example, the system of ice, water and steam from Figure 1 has
m = 3 phases and n = 1, while the system depicted in Figure 2 has
m = 4 phases and n = 2.

Phase diagram topologies for chemical systems with m < n + 2 are
fairly well-understood, even as m grows large. For m < n + 1 they are
essentially trivial, and for m = n + 2, they look roughly like Figure 1,
having an invariant point surrounded by several univariant reaction
curves. The schematic picture of such an invariant point surrounded
by reaction curves is referred to as an invariant point map [17]. We
will explain in Section 8 why invariant point maps look roughly like a
two-dimensional Gale diagram, in concordance with rules for the phase
diagram’s construction first delineated by Schreinemakers [25] nearly
100 years ago.

However, by m = n + 3 (a situation common for chemical systems
applicable to the Earth) the topology of the phase diagram can become
quite complex as m grows large. For example, under certain genericity
assumptions about the chemical formulae of the phases, the diagram

11t will be convenient in Section 3 to choose a basis for this space, that is a mini-
mal set of phases such that all the formulae of the phases can be expressed as linear
combinations of these basic components; hence the term number of components of
the system.
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will contain exactly n + 3 invariant points located at various tempera-
ture and pressure coordinates. These invariant points are connected to
one another by various reaction lines to a form a network of points and
lines referred to by geochemists as a petrogenetic grid. For example, a
typical grid for n = 4 and m = 7 will have 7 invariant points connected
by 21 different reaction lines.

The phase diagram topology of this (as well as higher order systems)
has been represented schematically by geochemists via a straight line
net, made up of a set of invariant point maps linked together by com-
mon reaction lines. In Section 9 we will explain how straight line nets
for systems with m = n + 3 can be constructed using 3-dimensional
Gale diagrams and secondary fans, and hence why their phase diagrams
strongly resemble the encoding of a 3-dimensional Gale diagram as a
2-dimensional affine Gale diagram.

Within the geochemical literature, there are two general approaches
to reconstructing the topology of the phase diagram. The first approach
was pioneered by Schreinemakers [25] who reasoned about relative
Gibbs energies of phases to deduce invariant point maps for m = n+2.
This method has been extended by various authors ([29], [31], [32]; [6];
[16], and references therein) to produce viable straight line nets for
systems with m = n+ 3. All feasible topologies are enumerated by this
method and then empirical data is used to eliminate those diagrams
which are physically impossible. This approach can be made much
more efficient by the methods described in this paper.

The alternative approach is to compute the variation in Gibbs energy
directly for every phase of interest. Modern thermodynamic databases
(e.g., [13] and references therein) now make these computations possi-
ble. The method fails in some cases because the data either lacks the
accuracy to distinguish between topologically different diagrams or is
simply not available for some phases. The latter situation is becoming
more common as new phases are discovered by laboratory synthesis
under high pressure conditions. The quantities of these phases are so
small that the necessary thermodynamic data will not be available in
the foreseeable future. Thus geochemists must rely on the topological
approach developed earlier.

We should point out that there have been a few authors [12, 27]
who have given a somewhat similar mathematical formulation of this
problem, but without taking advantage of the language, techniques
and highly developed theory provided by Gale diagrams and oriented
matroids. The applications derived in Section 10 of this paper are, as
far as we know, new. Furthermore, the theory described in this paper is
the basis for JAVA applets written by the second author and available
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on the web [18], which give practical tools for use in geochemistry to
predict phase diagram topology.

2. A GEOCHEMISTRY-DISCRETE GEOMETRY DICTIONARY

For the convenience of the reader, and as a guide to what lies in
store, we present a (very rough) dictionary of corresponding terms.

Geochemistry Discrete geometry

chemical formula for a phase vector in composition space
chemical system acyclic vector configuration V
chemography affine point configuration A
number of phases m number of vectors/points

number of components n rank of vector/point configuration
reactions among phases linear /affine dependences of V/A
minimal reactions circuits

stable assemblage of phases simplex in a triangulation of A
phase diagram affine plane slice of secondary fan

phase diagram when m =n +2 2—dimensional Gale diagram A*
reaction half-line for m =n +2 vector in 2—dim’l Gale diagram A4*
phase diagram when m =n +3 2—dim’l affine Gale diagram for A*
invariant point when m =n + 3 vector in 3—dim’l Gale diagram A*
closed net when m =n+3 spherical representation of A*

Euler sphere for m =n + 3 great circles normal to A*

3. CHEMICAL COMPOSITION SPACE

In this section, we introduce the chemical composition space that
allows one to associate to each chemical system a configuration of vec-
tors, an affine point configuration, and their oriented matroid. For ter-
minology on vector configurations, point configurations and oriented
matroids, we refer the reader to two excellent references: the bible of
the subject [2] (in particular, its §1.2), and Ziegler’s book [33, Lecture
6].

Definition 3.1. The formulae of chemical compounds may be repre-
sented in a natural way by vectors in a chemical composition space
whose axes are indexed by the elements in the periodic table. For ex-
ample, H,O has coordinates which are two units on the hydrogen axis,
one unit on the oxygen axis, and zero on all other axes. The m phases of
a chemical system in this way give rise to a collection V = {vq, ..., v, }
of vectors spanning a subspace of some dimension n, which is called
the number of components of the system. By picking a basis for this
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FIGURE 2. (a) Vector configuration V, and (b) affine
point configuration A for the chemical system with
phases corundum (C), diaspore (D), gibbsite (G), and
water (W).

subspace, we can identify it with R" and specify each v; by a column
vector in R™. This allows us to identify )V with an n x m matrix having
full rank n, which we also call V by an abuse of notation.

Example 3.2. Consider a chemical system of relevance to geology
having m = 4 phases, which we denote by descriptive initials rather
than vy, v, v3, v4:

C = corundum Al,O4

(1) D = diaspore  AIO(OH)
G = gibbsite Al(OH);
W = water H>0.

Since the compounds in this system involve only the elements Al, O, H,
this system can have n at most 3. But one can check that these chemical
formulae span a space of dimension n = 2. Choosing C' and W to be
the standard basis vectors in this space (that is, the components for
this system), one can represent the configuration V as the columns of
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the following matrix

(2) v {(1)

W

!

and the associated vector configuration is depicted in Figure 2(a).

Q
DO [0 | — B
()

N |G [ =

Notice that by choosing a basis that identifies this n-dimensional
subspace with R", we are already abstracting away from the actual
chemical formulae of the phases and paying attention only to properties
that are invariant under a simultaneous change-of-basis acting on the
vectors, that is, properties invariant under GL,(R). One such set of
properties is the oriented matroid associated to the vector configuration

V.

Definition 3.3. The oriented matroid M associated to V is a combi-
natorial abstraction of the vectors V which forgets their actual coor-
dinates, but retains data specifying the signs involved in linear depen-
dences among the v;. The way in which we choose to record this data is
to list the signed circuits of M coming from each minimal (non-trivial)
linear dependence ), \jv; = 0, that is, the signed set (X, X ™) where

X*.={ie{l,...,m} :sign(\;) = £}.

Here minimality for signed sets is interpreted with respect to the or-
dering of their support sets:

(XT X7 )< (YT, Y ) means XTUX CYTUY™.

It is sometimes convenient to represent a signed set (X, X 7) instead
by its sign vectorin {+,0, —}"™ which has + in the coordinates indexed
by X*, and 0 in all other coordinates. For example, a minimal depen-
dence of the form +5v; — 3vy + %1)4 among m = 4 phases would be
recorded by the circuit whose signed set is ({1,4},{2}) or by its sign
vector (+ — 0+).

It is possible to write down a small set of circuit arioms satisfied by
by the set C of signed circuits coming from any vector configuration,
in such a way that collections of signed sets satisfying these axioms
(oriented matroids) mimic many features of sets of vectors in a real
vector space— see [2, p. 4]. Note that since the negation of a linear
dependence gives another linear dependence, one of these circuit axioms
for an oriented matroid says that the set of sign vectors of circuits is
closed under negation.



GEOCHEMICAL PHASE DIAGRAMS AND GALE DIAGRAMS 9

The linear dependences among the v; have an obvious chemical in-
tepretation: they are the coefficients in the mass-preserving chemical
reactions possible among the phases.

Example 3.4. Continuing the previous example, there are three min-

imal linear dependences/reactions, giving rise to the following signed
circuits (represented by two opposite sign vectors below):

minimal reaction/dependence circuits as sign vectors
G=1D +1W 0+—+, 0—-4—
2D = 1C + 1W +—04, —+0-
3D =1C+1G +—-4+0, —+-0

Note that another possible reaction among these phases is
1C+2W =1D + 1G
which would give rise to dependences with sign vectors
+—-——t, —++-

but these are not signed circuits because their support sets are not
minimal under inclusion.

The fact that every chemical compound contains a non-negative
amount of each element implies that the vector configuration ¥V will
be acyclic, that is, there will be no signed circuits with X— = {@}.
Equivalently, there exists a linear functional ¢(x) in (R™)* such that
((v;) > 0 for all 7. This allows one to replace each v; by a rescaled
vector a; satisfying f(a;) = 1, so that the a; lie in the affine hyper-
plane /(x) = 1 inside R", giving rise to an affine point configuration®
A in (n — 1)-dimensional affine space R"™!. In chemical terms, this
replacement corresponds to simply changing conventions for writing
down basic quantities of each phase: instead of considering one mole
to be the basic unit of quantity for some phase, one can consider a half
a mole or some other fraction to be its basic unit of quantity?.

The effect of this rescaling is to turn linear dependences ), A\;v; = 0
of the original vector configuration V into affine dependences of A, that
is, relations ) . \;ia; = 0 with > \; = 0. In terms of chemical reactions,

’In [17], this affine point configuration A is called the chemography of the system.

3We have already pointed out that two phases can have the same chemical for-
mula, giving rise to two copies of the same vector v; = v; in V; these give rise
to what are called parallel elements of the oriented matroid M. We should note
however that parallel elements can also arise after doing the rescaling from V to A
if two phases have chemical formula which differ by a scalar multiple, e.g. if both
oxygen Oy and ozone O3 were present as phases.
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this means that the reactions will not only achieve mass-balance for
each atom, but also “coefficient balance”, as in the following example.

Example 3.5. Continuing the previous example, we can choose the
linear function ¢(x) = x; + x5 in R? and rescale the coordinates of
C,D,G, W so that they have ¢(z) = 1, giving the new matrix

C D %G w
(3) [1 11
A= T4 ]
0 5 3 1
The affine point configuration in R! represented by A is depicted in

Figure 2 (b).
The rescaling in this case only required replacing GG by %G , SO that,
for example the previous reaction/linear dependence

1G=1D +1W
1AI(OH)3 = 1AIO(OH) + 1H,0

which achieves mass-balance for each atom but not coefficient balance
(1 # 14 1), now gives rise to the affine dependence

2. (%G) = 1D + 1W,

achieving coefficient balance: 2 =1+ 1.

Switching from the vector configuration V to the affine point config-
uration has psychological advantages, in that it allows one to reduce
the dimension by one for visualization purposes, and it makes it easier
to think about our next topic: triangulations? of A.

4. TRIANGULATIONS AND SUBDIVISIONS

Our goal in this section is to explain a phenomenon well-known to
geochemists: by performing reactions that minimize the Gibbs free en-
ergy resulting in a stable phase assemblage at a particular temperature
and pressure, Nature (generically) “computes” a triangulation of the
point set A.

Having fixed a temperature and pressure (7', P), each of the phases
ai, ..., a, of the chemical system will have a certain Gibbs free energy

“We should point out that there is a well-defined notion of triangulations for
general vector configurations (even when they are not acyclically oriented), as well
as for oriented matroids that do not come from configurations of vectors. See [24]
and the references contained therein.
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FIGURE 3. The chemography A from Figure 2, “lifted”
to A by the Gibbs energy values at two different values
of temperature and pressure.

g:(T, P) per molar quantity (or per whatever basic quantity is being
used after rescaling v; to a;).

Definition 4.1. These values ¢;(T, P) can be used as heights to “lift”
the points a; in R*~! to points

a.
AZ' = ! S Rn,
¢ [gi(T> P):|

giving a new lifted configuration of points A. In other words, we plot
the points a; together with their height along an extra Gibbs energy
axis; see Figure 3 for two examples having n = 2.

The convex hull, that is the set of all convex combinations, of this set
A of lifted points has the following physical interpretation. Suppose
we have an assemblage consisting of x; units of the basic quantity of
phase a; for each i = 1,...,m, and assume (without loss of generality)
that > . x; = 1. Then this assemblage will have total Gibbs energy
> xigi(T, P), which is the same as the height on the Gibbs energy axis
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of the point . x;a; which is a weighted average of the lifted points A,
and therefore lies somewhere in their convex hull. If this point does
not lie on the lower convex hull of these lifted points, then this is not
a stable assemblage of phases: there exist some reaction(s) available
which would alter the fractions of each phase a; in a way that lowers
the total Gibbs energy.

Example 4.2. We continue our previous example, and assume that the
Gibbs energies of the phases are as depicted in Figure 3(a). Consider
the assemblage consisting of % mole of C' together with % mole of D.

It lifts to the point %O + %f) at the midpoint of the line segment C'D
in Figure 3(a), whose height $g¢(Ty, Po) + 390 (T, Py) represents the
total Gibbs energy of this assemblage. It is not stable because one can
run the reaction

3D =1C + 1G

in the forward direction to convert the % mole of D into % mole each

of C' and G. This creates an assemblage with lower total Gibbs energy
consisting of % mole of C' together with é mole of G (or equivalently,

£ mole of 1G). The latter assemblage however is stable, as it lifts to a

point on the segment CG lying in the lower convex hull of A.

On the other hand, if the Gibbs energies of the phases looked as they
do in Figure 3(b), then the initial assemblage of % mole of C' together
with % mole of D would have been stable, and no reactions would occur.

Note that even after the temperature and pressure (7', P) have been
fixed, there can be more than one possible stable assemblage, and which
stable assemblages appear depends upon the initial quantities of each
phase present. In petrology, when one takes various samples from dif-
ferent locations inside a stratum of rock formed under the same tem-
perature and pressure conditions, one has a chance of sampling from
all the different stable assemblages.

From the previous discussion, we conclude that the sets of phases
which can form stable assemblages correspond to the sets of vertices
which lie on a face of the lower convex hull of A. Note that projecting
these faces of the lower hull in R® down into R"~! produces a set of
convex polytopes that disjointly cover the convex hull of A, forming
what is usually called a polytopal subdivision of A. If the vector

g=(q1(T,P),...,gn(T,P)) € R™

is sufficiently generic, then each of the faces of the lower convex hull
will be an (n — 1)-dimensional simplex (that is, the convex hull of n
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affinely independent points), and this polytopal subdivision is called a
triangulation of A; see [10, Chapter 7] for formal definitions.

Definition 4.3. Triangulations and polytopal subdivisions of A which
are induced in this fashion from a vector of heights ¢ = (g1, ..,9m)
in R™ are called coherent or regular, and we call A(g) the subdivision
induced by g.

We summarize here some of the conclusions of the preceding discus-
sion.

Proposition 4.4. For each fized temperature and pressure (T, P), the
vector
9=9(T,P):=((T, P),...,gu(T,P)) € R™

of Gibbs energies for the phases A = {a1,...,an,} induces a coherent
polytopal subdivision A(g) of A.

The polytopes participating in this subdivision have vertex sets corre-
sponding exactly to the stable assemblages of phases at that temperature
and pressure (T, P).

It is perhaps surprising that in general not all triangulations of a
point configuration A need be coherent. In Figure 4 we show an affine
configuration with 6 points in R? with two incoherent triangulations.
This example is well-known in the discrete geometry literature (see e.g.
[10, Chapter 7, Figure 27]), and is the “smallest” example due to the
following result.

Theorem 4.5. [15] When either n < 2 or m —n < 2, every triangu-
lation of an affine point configuration of m points in R"~! is coherent.

Bearing Proposition 4.4 in mind, in order to understand the topology
of the phase diagram for a chemical system, one needs to understand
how the coherent subdivision A(g) of a point configuration 4 varies
with the height vector g in R™. This is our next goal.

5. SECONDARY FANS

The goal of this section is to introduce the secondary fan F(A), and
its close relative, the pointed secondary fan F’(.A), which govern how
the coherent subdivisions A(g) of A change as one varies the height
vector g in R™. Some references for this material are [3, §4], [10,
Chapter 7].

Having fixed a particular affine point configuration A of m points in
R"~1 one can ask when two height vectors ¢ and ¢’ in R™ give rise
to the same subdivision A. It should come as no surprise that the
set of vectors g which give rise to a particular subdivision A forms a
polyhedral cone C(A, A) C R™, that is, it is defined by a finite set of



14 P.H. EDELMAN, S.W. PETERSON, V. REINER, AND J.H. STOUT

FIGURE 4. Incoherent triangulations of an affine point
configuration A: the standard, smallest example, along
with its two incoherent triangulations.

linear inequalities (which depend on the coordinates of the points A
and on A). As one varies the subdivision A, these cones C(A, A) fit
together to disjointly cover R™.

Definition 5.1. In the terminology of discrete geometry, these cones
form a (complete) fan called the secondary fan F(A); see Figure 5(a)
for the example of ice-water-steam from the Introduction®.

5Although we are not aware of a geochemical intepretation, we should point out a
beautiful result of Gelfand, Kapranov, and Zelevinsky asserting that the secondary
fan F(A) is actually the normal fan of a convex polytope, which they called the
secondary polytope L(A); see [10, Chapter 7]. One should also be aware of a slight
difference in focus when referring to their results, which they mainly prove for (.A),
but which can then be translated into results about F(A).
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Row(A)

(b)

FIGURE 5. For the chemical system of ice, water, and
steam with n = 1 and m = 3, we have (a) the secondary
fan F(A), (b) The image surface v(R?) decomposed by
F(A), and the phase diagram as the pull-back of this
decomposition.

We can now rephrase precisely what the phase diagram means in
these terms.
Definition 5.2. Consider the (7, P)-plane in which the phase diagram
is drawn as a copy of R%. Then the Gibbs energy functions g;(7T', P) for
the m phases can be viewed as specifying a Gibbs energy map
y: R — R™
(T> P) = g<T7 P) = (gl(Tv P)7 SR 79771(T> P))
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The image v(IR?) of this map will be some 2-dimensional surface in R™.
The decomposition of R™ into the cones of the secondary fan F(.A) will
restrict to a decomposition of this surface v(R?); see Figure 5(b) for
the example of ice-water-steam. This decomposition of the surface then
pulls back to induce a decomposition of the (T, P)-plane R? into regions,
which are the regions of simultaneous stability for various collections of
phase assemblages (i.e. two pairs (T, P), (T", P’) lie in the same region
of the phase diagram if and only if their images under v lie in the
same cone of F(A)). In other words, we have the following statement,
illustrated in Figure 5(b):

Proposition 5.3. The phase diagram for a chemical system having
chemography A is exactly the decomposition of the (T, P)-plane R?
which is the pull-back under v~ of the decomposition of the image
surface y(R?) induced by the cones of the secondary fan F(A).

Thus understanding possible phase diagram topologies amounts to un-
derstanding the structure of the secondary fan F(A) and the Gibbs
energy map 7 well enough to predict how the fan F(A) can decompose
2-dimensional surfaces v(IR?) in R™.

It turns out that there is a natural way to cut down the dimension
of F(A) by the number of components n, without losing any informa-
tion. Recall that A also denotes the n x m matrix whose columns are
the n-vectors a; (with each of these column vectors lying in the affine
hyperplane ¢(x) = 1). It is not hard to see that two height vectors g
and ¢’ which differ by a vector lying in the row space Row(A) of this
matrix A will induce the same coherent subdivision A: one can show
that the two configurations of lifted points they produce will differ by
an affine transformation of R", and consequently their convex hulls will
differ only by a “tilt” that does not affect the structure of their lower
hulls. As a consequence, each of the cones C(A, A) in the secondary
fan F(A) extends trivially in the n directions defined by Row(.A4); it is
a Cartesian product

C(A,A)=C'(A,A) x Row(A)

where C'(A,A) is a cone in an (m — n)-dimensional subspace of R™
complementary® to Row(A). As A varies over all coherent subdivi-
sions, these cones C'(A, A) disjointly cover this complementary (m—mn)-
dimensional subspace, producing what is called the pointed secondary

fan F'(A).

6Tt would be more natural to think of the cones C’(A, A) as living in the quotient
space R™/Row(A), but we won’t quibble here
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We next make explicit the simplifying assumption which is implicit
in the geochemical literature on this subject.

Geochemical assumption 5.4. Quver the ranges of temperature and
pressure (T, P) € R? relevant to most phase diagrams, the Gibbs energy
map v : R? — R™ is sufficiently close to linear that the image surface
v(R?) behaves nearly like a 2-dimensional affine plane in R™.

Furthermore, this 2-dimensional affine plane is located generically
with respect to the cones of the secondary fan F(A) in the following
sense: it has transverse intersection with every cone C in the secondary
fan (including the smallest face which is the row space Row(A)). This
means that the intersection is empty if the dimension of the cone C is
less than m — 2, and otherwise when C has dimension m —2,m —1,m
respectively, the intersection is either empty or it is of dimension 0,1, 2
respectively.

With these assumptions, and in particular the transversality assump-
tion, the problem of enumerating the possible phase diagram topologies
reduces to understanding the ways in which the pointed secondary fan
F'(A) can decompose an affine 2-dimensional plane inside the (m —n)-
dimensional space where it lives. It turns out that Gale diagrams hold
the key to this problem.

6. GALE DIAGRAMS AND DUALITY

In this section we introduce Gale diagrams of a vector configuration
or affine point configuration, and explain their relationship to (pointed)
secondary fans and oriented matroid duality.

Definition 6.1. Given the n x m matrix A of rank n whose columns
give an affine point configuration, choose a dual matriz A* to be any
(m — n) x m matrix whose row space Row(A*) coincides with the
nullspace (or kernel) Ker(A). By a similar abuse of notation as in
Definition 3.1, the configuration of column vectors {af,...,a},} of this
matrix will also be denoted A*, and is called a Gale diagram or Gale
transform [9] for A. Similarly, we could have started with any n x m
matrix V of rank n corresponding to a vector configuration and defined
a Gale diagram V* for it in the same fashion.

Example 6.2. Recall our running example with

C D g w

SR

N[O =
s - o
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@ 1 ; (b)

G*

A¥ F@A)

D1

FIGURE 6. (a) Gale diagram A*, (b) secondary fan
F(A), and (c) invariant point map, for the chemical sys-
tem corundum-diaspore-gibbsite-water.
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An example of a valid Gale diagram for this is
c* DY G W

1 =3 2 0

2 —4 0 2

and is pictured as a vector configuration in Figure 6.

) i

Note the use of the term “a” Gale diagram, instead of “the” Gale
diagram. This is because the rows of A* are not uniquely defined: they
can be altered by row operations, that is, by the action of GL,,_,(R)
on the left. This means that the Gale diagram vectors A* are also
well-defined only up to the same GL,,_,(R)-action’.

However, the oriented matroid M* associated to the Gale vectors
A* is uniquely defined by the oriented matroid M associated to A: it
is the dual oriented matroid (2, §3.4] of M. One manifestation of this
duality is that the circuits C for A (or M) correspond to sets in A* (or
M*) with their own interesting geometric characterization. These sets
in A* are called cocircuits.

Definition 6.3. Given a configuration of vectors V = {vy,...,v,} in
R™, its covectors are all possible sign vectors in {+, 0, —}" that can be
achieved by evaluating some non-zero linear functional f € (R")* on
the vectors in V:

¢ = c(f) = (sign(f(v1)), .. ., sign(f (vm))
A covector ¢ for V which is maximal with respect to its set of zeroes
is called a cocircuit of V. Equivalently, a covector is a cocircuit if its
corresponding signed subset has minimal support, or equivalently if the
subset of V on which it is 0 contains at least n — 1 linearly independent
vectors. Denote by C* the set of cocircuits of V.

As with the circuits C, it is possible to write down a list of cocircuit
axioms that will be satisfied by the cocircuits C* coming from any
vector configuration V, and in this way axiomatize the definition of
an oriented matroid M in terms of cocircuits. The observation from
above that the circuits C of A, V, M are exactly the cocircuits C* of
A* V. M means that these cocircuit axioms will look exactly like the
circuit axioms.

Example 6.4. In our previous example of A, the first circuit of A as
listed in Example 3.4 was (0 + —4), coming from the reaction 1G =

"Recall from Section 3 that there was a similar ambiguity in the definition of the
columns of A or V, stemming from a choice of basis for the space that they span.
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1D + 1W. In A* this is a cocircuit representing the fact that the line
spanned by C* has G* on one side and D*, W* on the opposite side,
i.e., there exists a linear functional f for which

F(C*) =0, f(D*) >0, f(W9) >0, and f(G*) < 0.

How does the Gale diagram A* relate to the pointed secondary fan
F'(A)? The relationship comes from looking at the positive cones
spanned by the vectors of A*.

Definition 6.5. Given any set W = {wy,...,wy} of vectors in RY,
define the positive cone spanned by W to be

k
pos(W) := {Z cw; €ERYN 2 ¢; >0 for all z} )
i=1
If the set of vectors W happen to be linearly independent, then pos(W)
is called a (relatively open) simplicial cone.

Recall that the affine point configuration A corresponds to an acyclic
vector configuration. It is a consequence of oriented matroid duality
[2, Proposition 4.8.9] that A* will be totally cyclic, that is, the origin
0 lies in the cone pos(.A*). As a consequence, the collection of positive
cones spanned by subsets of A* will cover the column space Col(.A*),
and this covering is closely related to the pointed secondary fan F’'(.A):

Theorem 6.6. [3, §4] The column space Col(A*) has a natural iden-
tification with the (m — n)-dimensional subspace complementary to
Row(A) within R™ covered by the pointed secondary fan F'(A).
Furthermore, under this identification, the cones of F'(A) are exactly
the common refinement of all the open simplicial cones pos(W') spanned
by linearly independent subsets W of the Gale (column) vectors A*.

One can be more precise about this relationship:

Theorem 6.7. [3, Lemma 4.3] Given a coherent triangulation A of
A, the corresponding (m — n)-dimensional cone in the secondary fan
F'(A) is the intersection

ﬂ pos(A* — ")
ocEA

where here o runs through the vertex sets of the (n — 1)-dimensional
simplices in the triangulation A, and

o*:={a :a; € g}.
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Example 6.8. Because the corundum-diaspore-gibbsite-water exam-
ple of A has m = 4 and n = 2, so that m = n + 2, the pointed
secondary fan F’(A) is 2-dimensional. Therefore its top-dimensional
cones are simply the sectors between cyclically adjacent Gale vectors
in A*. These cones are depicted in Figure 6(b). In (c) of the same
figure, these regions are labelled (as part of the geochemists’ invari-
ant point map; see Section 8 below) by their corresponding coherent
triangulations.

For example, the sector lying between the Gale vectors W* and D*
corresponds to a triangulation A having two segments {GW, CG}. This
agrees with Theorem 6.7: the complementary sets {C*D*, D*W*} are
exactly the ones whose positive cones contain this sector. On the other
hand, the sector between between D*, G* lies in the positive cone of no
other pairs of Gale vectors, and hence corresponds to the triangulation
having only one segment, namely the one with vertices A — {D,G} =
{C,W}.

Sections 8 and 9 will closely explore the consequences of the geometry
of the Gale diagram for phase diagrams when m is at most n + 3. But
first we must further explore more general geometric questions.

7. GEOMETRY OF THE PHASE DIAGRAM IN GENERAL

In this section we will explain the relationship between Gibbs’ phase
rule (e.g. [21]) and the secondary fan, and how the phase rule predicts
the dimension of various stability fields. We then look closely at the
meaning of 2,1, and 0-dimensional regions in the phase diagram, relat-
ing them to m,m — 1, and m — 2-dimensional cones in the secondary
fan.

When one fixes particular molar fractions x; of each of the (rescaled)
phases a; in A initially contained in a particular sample, the discussion
of Section 5 shows how to predict the stable assemblage of phases which
will result after allowing the system to find chemical equilibrium. The
initial molar fractions give a point » . x;a; = 1 with >, z; = 1 which
lies in the convex hull of A, and lifts to a point ) . x;a; which lies in
the convex hull of A, but may or may not lie in the lower convex hull.
After performing reactions which affect the fractions x; ( but preserve
the condition ), z; = 1 due to our re-scaling) to reach chemical equi-
librium, the lifted point ). x;a; will evenutally lie in a unique face F
of the lower hull of A. The lifted points A’ C A which happen to
lie on this face F' lie above a subset A’ C A of the original phases,
that is A’ are those phases which appear with non-zero fraction in this
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chemical equilibrium, and A’ labels a polytope F' which is part of the
corresponding coherent subdivision of A.
Gibbs’ phase rule relates three quantities relevant to this situation:

e the number of phases m’ = |A’|(< m = |A|) participating in
this chemical equilibrium,

e the number of components n/(< n) of the subsystem A’, that
is, the dimension of the subspace of chemical composition space
spanned by A’, and

e the number of degrees of freedom f in (7, P) which one can
vary while maintaining these same phases in equilibrium, or in
other words, the dimension of the union of all regions in the
phase diagram which have A’ labelling one of the polytopes F
in their corresponding subdivision of A.

Proposition 7.1. (Gibbs’ phase rule) With the above notations,
f=n"+2-m.

In particular, one can have at most n’ + 2 phases that involve n' com-
ponents in chemaical equilibrium.

Note that in the geochemical literature, the phase rule is often stated
as
.f S n+2— m/a
which is consistent with the fact that n’ < n.

Example 7.2. In Figure 1, the triple point has an assemblage of m’ = 3
phases in equilibria (ice, water, steam), with n’ = 1 and f = 0, while
the assemblage consisting of pure ice has m’ =n' =1 and f = 2.

In Figure 6(c), the line segment DWW corresponds to a stable assem-
blage {D, W} in two different divariant regions and the curve that sep-
arates them (all in the upper right), so f = 2, and it has m’ = n’/ = 2.
The assemblage {D, G, W} is stable only along the univariant curve
lying between the two aforementioned divariant regions so f = 1, and
it has m’ = 3,n’ = 2. The quadruple point in the middle (f = 0) of
the diagram has all 4 phases in equilibrium, that is, m’(= m) = 4, and
n'(=n)=2.

We give here a proof of Gibbs’ phase rule in terms of the secondary
fan F(A) in R™.

Proof. There is a cone C in the secondary fan consisting of those vectors
g € R™ for which the lifted points A have A’ lying on a face F of the
lower hull: this cone is the intersection of the vector space V' on which
the lifted points A’ all lie on a single n’-dimensional affine subspace
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with the half-spaces given by various inequalities that assert all the
other lifted points a; in A — A’ lift above this affine subspace. The
subspace V is defined by m’ — n’ linear conditions: after choosing the
height coordinates of g to lift n’ of the elements A" which are affinely
independent, the remaining m’ — n’ coordinates of must be lifted to
heights which are linear functions of those first n’ heights. Thus V" has
dimension m — (m’ —n'). The fact that lifting all the points A — A’ to
any sufficiently large heights will force F' to be in the lower hull shows
that the cone C obtained by intersecting V' with the various half-space
inequalities will have the same dimension as V', namely m — (m' —n').

By Proposition 5.3 and Assumption 5.4, the union of all regions in
the phase diagram which have A’ labelling one of the polytopes F' in
their corresponding subdivision of A comes from the the transverse
intersection of an affine 2-plane with the cone C. If m' —n’ > 2,
there would be no intersection due to Assumption 5.4. If m’ —n' <
2, then since we assumed that these phases A’ could exist in stable
equilibrium, there must be a non-empty intersection. Depending upon
whether m" — n’ = 0,1, or 2, this transverse intersection of C with
an affine 2-plane will have dimension f = 2,1, or 0 respectively, i.e.
f=2—(m—-n)=n"+2-m' O

Understanding the 2,1, and 0-dimensional regions in the phase di-
agram amounts to understanding the cones of dimensions m,m — 1,
and m — 2 in the secondary fan F(A) or equivalently, the cones of
dimensions m —n,m —n — 1,m —n — 2 in the pointed secondary fan
F'(A). The 2-dimensional regions in the phase diagram correspond
to the top-dimensional cones in F(A) (or F'(A)), which are labelled
by the coherent triangulations of A in the manner described in The-
orem 6.7, and there is little to add to that description. The more
interesting cases are those of the 1 and 0 dimensional stability fields.

7.1. Bistellar operations and 1-dimensional stability fields. The
1-dimensional curves separating the regions in the phase diagrams cor-
respond to natural transformations on triangulations of A called bistel-
lar operations, that are closely related to the circuits of A. We discuss
these now somewhat informally; for a more formal treatment, see [10,
Chapter 7 §2C].

Figure 7 illustrates three examples of a pair of triangulations of affine
point configurations A in R? that are related by a bistellar operation.
For each bistellar operation between two triangulations, there is a dis-
tinguished subset C' C A which is the support set C = X+t U X~ of
some signed circuit (X, X~) of A, and such that the convex hull of



24 P.H. EDELMAN, S.W. PETERSON, V. REINER, AND J.H. STOUT

@ Diagonal flip
Inserting/removing

~ D

FIGURE 7. Three examples of pairs of bistellar opera-

tions for triangulations of affine point configurations A
in R?.
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C' is triangulated (differently!) in the two triangulations. In this case,
we say that the bistellar operation is supported on the circuit C. Note
that in the first two examples in Figure 7 this circuit C' has a full 2-
dimensional convex hull, but as the third example illustrates, C' can
have a convex hull of lower dimension.

Recall that a circuit C' = X U X~ of A corresponds to a cocircuit
of A*, that is there is an (m — n — 1)-dimensional hyperplane H¢
spanned by the Gale vectors indexed by A — C' which separates the
Gale vectors indexed by X from those indexed by X~. When C is
the circuit supporting a bistellar operation between two triangulations,
this reflects the following geometry of pointed secondary fans.

Proposition 7.3. [10, §7.2.C] Two triangulations A, A" differ by a
bistellar operation supported on a signed circuit C' if and only if their
corresponding top dimensional cones in F'(A) are adjacent along a wall
whose linear span is the hyperplane He.
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This has an interpretation for the temperature pressure phase dia-
gram which is well-known to geochemists: the segments of curves sepa-
rating regions in the phase diagram are always portions of a larger curve
corresponding to some minimal reaction possible among the phases in
the chemical system. Two regions will be adjacent and separated by
such a curved segment if and only if their corresponding triangulations
differ by retriangulating the convex hull of the phases involved in that
reaction.

It is also useful to think of a bistellar operation as represented by
the coherent polytopal subdivision that labels the wall between the
two top dimensional cones guaranteed by the previous proposition. In
the language of Gibbs’ phase rule, this subdivision contains a special
polytopal face F' labelled by a subset A" C A having m' = n’ + 1;
namely A’ is the support set of the circuit C'. Note that if " = n
then F'is a full (n — 1)-dimensional polytope in the subdivision, and
all the other full-dimensional polytopes in the subdivision are (n — 1)-
dimensional simplices.

A reasonable question at this point is, “How well do the bistellar
operations tie together the set of all triangulations of A— is it possible
to connect any two triangulations of a point set A by a sequence of
bistellar operations?” The answer has important consequences for cal-
culating the set of triangulations of A: the algorithms (e.g. [20]) that
start with one triangulation and find the rest bistellarly connected to
it by performing all possible bistellar operations are much faster than
algorithms that find all triangulations by the currently available tech-
niques [7, 20].

Unfortunately, the answer to the above question is “No” in general:
Santos [22, 23] has recently produced examples of triangulations of
affine point configurations that are connected to no other triangulations
(1) by bistellar operations. Fortunately, however there are positive
results relevant for the geochemical applications:

e All triangulations are connected by bistellar operations when
n < 3 [14],

e the same holds when m —n < 3 [1], and

e the subset of coherent triangulations are always connected by
bistellar operations [10].

In particular, this last result allows one to rely on the very fast bis-
tellar flip algorithms of [20] (utilized in [18]) to find all of the coherent
triangulations.

7.2. Invariant points and indifferent crossings. We conclude this
section with an informal discussion of 0-dimensional regions in the



26 P.H. EDELMAN, S.W. PETERSON, V. REINER, AND J.H. STOUT

phase diagram. These will correspond to cones of dimension m — 2
in F(A) or cones of dimension m —n — 2 in F’(A). These correspond
to coherent polytopal subdivisions of A of two possible types, and
therefore give rise to two distinct types of points in the phase diagram:
invariant points and indifferent crossings.

Definition 7.4. If a coherent polytopal subdivision of A corresponds
to a cone of dimension m — 2 in F(A), then one of the polytopes F’
in the subdivision might correspond to a stable assemblage A’ having
m’ = n’+2 phases. When this occurs, the same holds for every polytope
in the subdivision which contains F” as a face. However, the remaining
polytopes which do not contain F” will all be simplices.

It is in this situation that geochemists reserve the term invariant
point for the corresponding 0-dimensional region in the phase diagram.
In this situation it is possible for all of the phases in A’ to co-exist
in chemical equilibrium, but one cannot vary (7, P) at all while main-
taining this. For example, the central point in Figures 1 and 6(c) are
invariant points, as are the points labelled [B], [C], [D], [G], [W] within
the diagrams labelling regions in Figure 12.

Geochemists usually label the invariant point by the phases B :=
A — A’ not involved in the invariant equilibrium. It is also well-known
to geochemists that the local structure of the phase diagram around an
invariant point is similar to the corresponding phase diagram with m’ =
n’ + 2 for the chemical subsystem A’. This corresponds to the known
fact [4] that the local structure of the pointed secondary fan F’(.A)
about the cone pos(B) and the structure of the fan F'(A") = F'(A —
B) coincide, reflecting the fundamental duality between deletion and
contraction in (oriented) matroid theory: the dual point configuration
(A—B)* to the deletion A — B is isomorphic to the contraction A*/B*.

Definition 7.5. On the other hand, when a cone in F(.A) has dimen-
sion m — 2, there can also be two polytopes F’ and F” in the corre-
sponding polytopal subdivision, neither contained as a face of the other,
corresponding to stable assemblages A’ and A” with m’ =n'+1,m"” =
n” 4+ 1. The polytopes in the subdivision containing neither of F’ or
F" will all be simplices. For each of A" or A” individually, the union of
regions in the phase diagram where they occur as a stable assemblage
corresponds to a cone of dimension m — 1 in F(A), and a curve in the
phase diagram coming from a minimal reaction possible in A. These
two curves intersect at what is called an indifferent crossing, where
either A" or A” might exist in equilibrium (as might assemblages corre-
sponding to other simplices in the subdivision), but the union A" U .A”
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FIGURE 8. An m = n + 3 system illustrating the dis-
tinction between invariant points and indifferent cross-
ings.

cannot stably co-exist: the faces F', F" lift to two different faces in the
lower hull of A, lying above disjoint possibilities for the molar fractions
of the phases.

Example 7.6. To illustrate the distinction between the two kinds of
cones of dimension m — 2 in F(A) that give rise to invariant points
versus indifferent crossings, we augment our previous chemical system
of corundum, diaspore, gibbsite, water with a fifth phase: ice, abbrevi-
ated I, having chemical formula H50, the same as water. Rescaling this
to a chemography as before gives a new chemography A with n = 2
as before, but now with m = 5 = n + 3, depicted in Figure 8(a). Fig-
ures 8(b) and (c) depict lifted configurations A that would correspond
to cones of dimension (m — 2) in F(A) corresponding to an invariant
point and indifferent crossing, respectively.

In (b), the interesting stable assemblage is A" = {D, G, W, I} having
m' =4,n'(=n) =2som’ =n'+2, and the corresponding lifted points
A’ lie on a single face F” in the lower hull of A. If the phase diagram



28 P.H. EDELMAN, S.W. PETERSON, V. REINER, AND J.H. STOUT

were to contain a point corresponding to this cone of F(A), it would
be an invariant point, labelled [C] for the missing phase corundum not
in A’

In (c), there are at least two interesting stable assemblages: A" =
{W, 1} with m' =2 n" =1, and A" = {C, D,G} with m" = 3,n' = 2,
so that m’ =n'+1,m” =n” + 1, and their corresponding lifted points
A, A7 span different faces F’, F” of the lower hull of A. If the phase
diagram were to contain a point corresponding to this cone of F(A), it
would be an indifferent crossing, lying at the intersection of two curves
corresponding to the two circuits (reactions) involving the phases A’

and A”.

8. THE CASE m = n -+ 2: PHASE DIAGRAM = GALE DIAGRAM

After dispensing quickly with the cases m = n and m = n + 1, in
this section we examine in detail the structure of Gale diagram A*, the
pointed secondary fan F'(.A), and the phase diagram when m = n + 2.
The conclusion is that they all look roughly the same in this case.

When m = n, the m phases cannot perform any reactions that pre-
serve mass-balance, and so are mutually inert and nothing can happen.

When m = n + 1, not much interesting happens. There is ex-
actly one reaction possible, corresponding to the unique signed circuit
C = (XT,X7) of A. The Gale diagram A* is a set of vectors lying on
the real line R! with their tails at the origin 0. Those a} having i € X+
will point in the positive direction, those with ¢ € X~ will point in the
negative direction, and those i € {1,...,m} — (XT U X ™) will be zero
vectors pointing nowhere. The secondary fan F'(.A) decomposes the R
into two cones: the two rays emanating from the origin in the positive
and negative directions. These rays correspond to the two triangula-
tions of A which differ by a bistellar operation supported on C. At a
particular temperature and pressure, the Gibbs energy of the ensemble
of products/reactants, whichever is lower, will force the reaction to run
in one direction or another, so that the stable assemblages will corre-
spond to the simplices of one or the other triangulation. In this case,
the phase diagram consists of two divariant regions separated by the
univariant curve corresponding to the single reaction.

When m = n + 2, things start to become interesting. First, we can
assume without loss of generality that there are no indifferent phases®,
that is, every phase participates in some possible reaction or phase

8An indifferent phase would give rise to an element a; of the oriented matroid
for A known as an isthmus or coloop, and also to a zero Gale vector a} = 0.
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change. By excluding indifferent phases, we know that the Gale dia-

*

gram A* has m non-zero Gale vectors aj, ..., a , although it is possible
that some differ by positive scalar multiples and hence point in the same
direction”. The pointed secondary fan F'(A) will look very similar to
the Gale diagram, having at most m rays emanating from the origin,
pointing in the directions of the Gale vectors, and 2-dimensional cones
lying between cyclically adjacent Gale vectors. According to Proposi-
tion 5.3, the phase diagram should look roughly like a 2-dimensional
slice of this 2-dimensional pointed secondary fan F’(.A), that is, like
F'(A) itself. Hence the phase diagram will closely resemble the Gale
diagram A*.

Roughly speaking, geochemists have known some version of this,
in the guise of a method for constructing their invariant point maps
as schematic representations of the local picture around an invariant
point, based on knowledge of the minimal reactions possible among the
phases. Their method uses Schreinemakers’ fundamental aziom [25,
30], which is a re-formulation of the oriented matroid duality assertion
that the circuits of A coincide with the cocircuits of A*. The axioms
assert that

e cach phase a; should label some univariant reaction half-line
emanating from the invariant point, corresponding to a minimal
reaction among the remaining phases other than a;, and

e the extension of this half-line to a line through the origin should
separate the other univariant reaction half-lines into those cor-
responding to the two sides of the reaction in question.

In other words, each Gale vector a} lies on a line through the origin
corresponding to a cocircuit of A*, which corresponds to a circuit of
A.

Using this rule, one can sketch the invariant point map by proceeding
through the list of minimal reactions among the phases, and using the
axiom to place the half-lines around each other in cyclic order. There
is an initial choice of orientation one must make for the diagram using
the first reaction (should the reactant /products/missing-phase-half-line
go in clockwise or counterclockwise order around the invariant point?),
but after that the picture is determined. To decide which orientation is
consistent with the actual geochemical phase diagram (i.e. to determine
the actual placement of the image surface v(R?) within the secondary
fan F(A)), some thermodynamic data is required.

9This will happen whenever there are affine hyperplanes in R~ that contain
all but two of the points of A
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Example 8.1. Figure 6(c) shows the invariant point map constructed
for the corundum-diaspore-gibbsite-water example. Note that we have
used the geochemical conventions of labelling the univariant reaction
half-lines emanating from the invariant point by the phase(s) missing
from the reaction, putting the product/reactants on either side of the
line, and indicating with dashes the metastable extensions of these half-
lines.

9. THE CASE m = n -+ 3: PHASE DIAGRAM = AFFINE GALE
DIAGRAM

We next examine in detail the structure of the Gale diagram A*, the
pointed secondary fan F'(A), and the phase diagram when m = n+ 3.
The conclusion is that two methods used by geochemists to reduce
an essentially 3-dimensional picture to two dimensions have parallel
constructions in discrete geometry, and the phase diagram bears a close
resemblance to a 2-dimensional affine Gale diagram.

When m = n + 3, we can again assume without loss of generality
that there are no indifferent phases, and hence no zero Gale vectors
a;. However we make no other genericity assumptions for the moment.
The Gale diagram A* is a vector configuration in R3. As before, some
Gale vectors may differ by a positive scalar multiple and hence give
rise to the same ray in the secondary fan F’(A), so we know there
will be at most m such rays. Note that unlike the case m = n + 2,
here the cones of the pointed secondary fan F’(A) can be more exotic
in shape: they are intersections of the 3-dimensional simplicial cones
spanned by linearly independent subsets of A* and hence can have
arbitrary polygonal cross-sections.

The one-dimensional cones (rays) in F'(A) will correspond to 0-
dimensional (point) regions in the phase diagram when they intersect
the image surface v(IR?) of the Gibbs energy map. As discussed in Sub-
section 7.2, these points will either be indifferent crossings or invariant
points. Since the invariant points correspond to chemical subsystems
A" C A which have m’ = n’ + 2, if we have n’ = n (as happens generi-
cally) then |A’| = | A| — 1, that is, there is exactly one phase a; missing
from A’, and the corresponding ray in F'(.A) is spanned by the Gale
vector a;. This is the reason that invariant points in phase diagrams
with m = n + 3 are generically labelled by the single phase missing
from the invariant equilibrium at that point. As also discussed in Sub-
section 7.2, the local structure about the invariant point will look like
the invariant point map for the m’ = n’ + 2 subsystem A’.
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stable reaction line

metastable reaction line ! | metastable reaction line

“ o
‘pj//o -Pi,
—a*/ doubly-metastable  \__
i reaction line a

FIGURE 9. A typical reaction loop defined by two Gale
vectors a; and aj.

Vector configurations in R? (like .A*) can be difficult to visualize. We
discuss two methods that have been commonly used to cut down the
dimension by one (and produce a picture closer in spirit to the phase
diagram): the spherical representation and affine Gale diagrams.

9.1. The spherical representation: closed nets. Intersecting the
pointed secondary fan F'(A) in R* with a unit sphere centered about
the origin gives a useful spherical representation, similar to what has
been called a closed net in [29]. In the conventions for the closed net,

one includes not only the point of intersection with the sphere p; := %
for each ray spanned by a Gale vector af (represented by a black dot
labelled by the corresponding phase a;), but also its negation —p; (rep-
resented by a white dot labelled similarly)!®. Furthermore, the arc
representing the intersection curve on the sphere of a 2-dimensional
cone in F'(A) is augmented to be part of a great circle called a reac-
tion loop, corresponding to the unique minimal reaction (circuit of A,
cocircuit of A*) to which it is associated. Typically such a reaction will
involve all but two phases a;, a; (although this will not always be the

case when A is not generic and therefore has some circuits of smaller

10This supplementation of the Gale diagram A* by adding in negations of all
its vectors is reminiscent of the Lawrence construction [2, §9.3] in oriented matroid
theory.
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S Q o o -P;
o o
-Pi -P;

F1GURE 10. The four possible projections of a reaction
loop onto an affine 2-plane.

FIiGURE 11. Two opposing hemispheric views of the
closed net for the system with phases corundum,
boehmite, diaspore, gibbsite, and water.
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support). As one traverses such a typical reaction loop, one passes
through four arcs as depicted in Figure 9.

The point of the closed net representation is that a hemispherical or
planar projection of it from some angle should give a schematic picture
of the actual phase diagram. Which projection occurs in nature will
depend upon the location and orientation of the image surface (R?) of
the Gibbs energy map from Section 5 inside the secondary fan F(.A).
Under our Assumption 5.4, one of each pair {p;, —p;} will appear in the
projection, and there are four possibilities for the portion of a typical
reaction loops that will appear in the projection, depicted in Figure 10.

Example 9.1. We add a fifth phase (different from the ice added in
Example 7.6) to our original example of corundum, diaspore, gibbsite,
and water: the mineral boehmite (B) which is a polymorph of dias-
pore, that is, it has the same chemical formula AIO(OH), but different
crystal structure. Thus B, D become parallel elements in the oriented
matroid M for this new point configuration A, having m = 5 and
n = 2, so that m =n + 3.
We have

Sy

IS L Ny P

Q
<

C
(6) 4=

— O

D
1
0 1

DO [0 [ =

and a valid Gale transform is

c¢* D B* G* W~
Y a=lo 10 o
0o 0 1 =2 1

Two opposite hemispheric views of the closed net for this example
are depicted in Figure 11. Note that the parallel elements B, D in A
give rise to a circuit

C D B G W

0O + — 0 0
that corresponds to a cocircuit of A*: the Gale vectors C*, G*, W* are
coplanar, and their corresponding points on the closed net lie on a great
circle which separates D* from B*.

9.2. Two-dimensional affine Gale diagrams. The affine Gale di-
agram is simply an affine point configuration in R? used to encode
the 3-dimensional vector configuration A*; see [33, Definition 6.17], [2,
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§9.1]. Arbitrarily choose a 2-dimensional affine plane T" in R? to “slice”
the Gale vectors: if this plane I" is defined by the equation f(x) = ¢
for some generic linear functional f € (R?)* and some positive value c,
then we replace each Gale vector a! by the unique point e ( ﬁ_‘) in its

span that lies in this plane I'. Color these rescaled Gale points in I’
black or white depending upon whether f(af) > 0 or f(af) < 0. Since
A was an affine point configuration and hence A* is a totally cyclic
vector configuration, there will always be both black and white points
in the affine Gale diagram, regardless of how the functional f is chosen.

We can further annotate the affine Gale diagram by drawing in line
segments that correspond to the intersections of 2-dimensional cones
from F'(A) with the plane I' that happen to connect the black points
in the diagram. Bearing in mind Assumption 5.4, the choice of the
functional f (equivalently, the choice of the plane I') corresponds to
the choice of the location of the image surface v(R?) of the Gibbs
energy map. It follows from Proposition 5.3 that this “decorated affine
Gale diagram” is a schematic picture for one possible toplogy of the
phase diagram. Such schematic pictures, when annotated further with
more arcs of reaction loops using conventions similar to the closed nets
discussed in Subsection 9.1 above, have appeared in [17] and are called
potential solutions for the phase diagram topology.

When are two such affine Gale diagrams/potential solutions consid-
ered “equivalent”? Fortunately, discrete geometers and geochemists
agree on this: when the assignment of either a black and white dot to
each phase is the same. Equivalently, this means they have the same
sign vector (sign(f(a})),...,sign(f(ak,)) € {+,—}", or in oriented ma-
troid terminology, that f achieves the same acyclic (re-)orientation (or
tope) of the vector configuration A* [2, Section 3.8]. This turns out to
have the following geometric re-intepretation: if we regard the func-
tional f(x) = fixy + fows + f33 as its vector of coefficients (f1, fo, f3),
then the acyclic orientation achieved by f is determined by which side
of each of the hyperplanes (a})* normal to the Gale vectors it lies on.
Therefore intersecting this arrangement of hyperplanes (a})* with the
unit sphere in R? gives an arrangement of great circles on the sphere
(called the Euler sphere in [16]), whose 2-dimensional regions param-
etrize the different acyclic orientations/affine Gale diagrams/potential
solutions.

The method developed in [16] of constructing potential solutions
for systems with m = n + 3 systems involved looking at each phase,
using the method of Schreinemaker from Section 8 to infer the local
structure/invariant point map about the invariant point where that
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phase is missing from the assemblage, and then “fitting together” these
various invariant point maps to produce the straight line net.

Example 9.2. Figure 12 shows a view of the Euler sphere for the
previous example with m = n+ 3, along with two of its regions labelled
by their corresponding affine Gale diagrams/potential solutions.

There is a good bit of theory to help one enumerate these acyclic re-
orientations (see [2, Theorem 4.6.1] and Subsection 10.2 below), or to
produce a list of them all algorithmically using a straightforward appli-
cation of Farkas’ lemma [26, §7.3]. In the Java applet “CHEMOGALE”
[18], such an algorithm is part of the implementation. For systems in-
put by the user with m = n + 2 or n + 3, the program computes A*
and uses data generated by [20] to obtain F'(A). When m = n + 3,
the intersection of F’(A) with the unit sphere is depicted, allowing
the user to select 2-dimensional cones of F'(A) and receive the corre-
sponding triangulation. For m = n 4 3 systems, the user may also view
the Euler sphere and see the potential solution to the phase diagram
topology associated with each region. This work was fully described in
[19, Chapter 3].

10. FURTHER IMPLICATIONS/APPLICATIONS

We collect here a few further implications/applications of some of
the theory developed.

10.1. Slopes around invariant points. Let p be an invariant point
in the phase diagram, and let {aq,...,a;} be the union of all sets of
phases that can form stable assemblages at p. There will be at most &
univariant reaction curves emanating from p corresponding to reactions
that omit each of the phases a;, and each has a limiting slope pu; as it
enters p. Doing the experiments to determine these slopes accurately is
expensive and time-consuming, so it is helpful to be able to determine
the slopes from as little data as possible.

Proposition 10.1. Knowing the formulae {ay,...,axr} of the phases,
and knowing three different limiting slopes ji;, , i, fis determines all of
the slopes iy, ..., -

Proof. As discussed in Section 7.2, the local structure of the phase
diagram about p coincides with the phase diagram for only the subsys-
tem of phases in A" := {ay,...,ax}, and this must be a system with
k = n + 2 phases. Let its Gale transform be A™ := {a},...,at}, so
that up to an invertible linear change-of-basis in R2, these give the
slopes of the rays emanating from the origin in the pointed secondary



36 P.H. EDELMAN, S.W. PETERSON, V. REINER, AND J.H. STOUT

F1GURE 12. The hemisphere of the Euler sphere lying in
one side of (W*)* for the m = n + 3 system with phases
corundum, boehmite, diaspore, gibbsite, and water. Two
regions are shown labelled by the corresponding affine
Gale diagrams/potential solutions to phase diagram
topology.

fan F'(A’). By Assumption 5.4, the slopes {u1, . . ., ux } are also related
to the slopes of these rays in the pointed secondary fan by an invert-
ible linear change-of-basis (namely, the Jacobian matrix of the Gibbs
energy map 7y : R?> — R™ evaluated at the point p € R?, composed
with the linear projection map from R™ — R™™" that sends the sec-
ondary fan to the pointed secondary fan). Hence the (known) slopes
of the Gale vectors in A are related to the limiting slopes about p by
an invertible linear change-of-basis. Therefore knowledge of 3 distinct
slopes 1, , iy, fti; Will determine any other slope p;,, e.g. by invariance
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under invertible linear transformations of the cross-ratio
(fri, = pray ) (pig — i)
(ti, — Hin) (phis — fliy)

(:uha:uiz | :ui3a:uir-) =
O

Example 10.2. In the example of corundum, diaspore, gibbsite, and
water, which had Gale diagram

c* D G* W*
(8) .1 -3 20
A:[2 —-4 0 2]

we see that the slopes of C*, D*, G*, W™ are 2, %, 0, 0o giving the cross-
ratio

)(co — 2) 2

Thus if we have already determined (say from thermodynamic data)
that the phase diagram has limiting slopes ey, ta), fpw) for the three
reaction curves labelled [C], [G], [W] entering the invariant point, then
the limiting slope fp) of the fourth reaction curve labelled [D] will
satisfy

(ke pgs (=20 _ 1

MW*7MD*>: ( =
3

I (ko) = piey) (wy — tye)
—= = (e, e | 1w, o) =
(o) — i) (pw) — Hiey)

2

which can be solved for ppj, giving the formula

iy = Spcia) — Ml w] — HGIHw)
v 20161 — 3w + Hiey

10.2. Counting potential solutions. As mentioned in Section 9.2,
there is theory available for counting the acyclic orientations of a vector
configuration (or oriented matroid) such as the Gale diagram A*. Here
we elaborate on this and explain how to easily count potential solutions
to phase diagram topology when m = n + 3.

As we saw in Section 9.2, counting the potential solutions to phase
diagram topology amounts to counting the 3-dimensional cones cut
out by an arrangement of planes through the origin in R3, or the
2-dimensional regions cut out by an arrangement of great circles on
a sphere, or the acyclic orientations of the oriented matroid M* as-
sociated to the Gale diagram A*. The problem of counting the n-
dimensional regions cut out by an arrangement of (n — 1)-dimensional
hyperplanes through the origin in R™ was treated first by Winder in
1966, and then later independently by both Las Vergnas and Zaslavsky
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around 1975. The basic idea is that even though the combinatorial
structure of the regions cut out (e.g. how many faces of each dimension
they have) depends on the associated oriented matroid, the number of
regions only depends up the coarser information recorded in the ma-
troid. We review some of this material here; see [2, §4.6] for a fuller
treatment.

For example, one way to record the matroid data associated to A* is
to list all of its (unsigned) circuits, which are the support sets of mini-
mal linear dependences (with no record of the signs of the coefficients
in the dependence). An alternative way to encode the data which is
more useful for counting the regions (but equivalent data to specifying
the circuits) is to write down the lattice of flats L(A*), which is the
partial ordering by inclusion of all subspaces spanned by subsets of A*.
The bottom element of this partially ordered set, called 0, corresponds
to the zero subspace (spanned by the empty set of Gale vectors).

The Mdbius function p(x,y) is an integer associated to each pair
of elements x < y which are related in the partial order L, defined
recursively by these properties:

u(z, ) = +1
pla,y) =— Y pla,2) if v <y

r<z<y
One can use this to count regions via the following result.

Theorem 10.3. [2, Theorem 4.6.1] The number of regions cut out by
the hyperplanes normal to a collection of vectors with lattice of flats L

> lul0,2)].

zel
Since we wish to apply this is to geochemical systems with m = n+3,
we detail here explicitly (in more concrete terms) what happens in this
case.

Proposition 10.4. Let A be a chemography with m = n+3, so that its
Gale diagram A* is a configuration of vectors in R3. Then the number
of potential solutions to phase diagram topology is

2 (1 +Y (mp— 1))

where P runs through all 2-dimensional planes spanned by pairs of the
Gale vectors A*, and mp 1is the number of distinct lines spanned by Gale
vectors lying in the plane P (or equivalently, the number of parallelism
classes of Gale vectors within the plane P).
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In particular, if A is in general position (in the sense that every
subset of n elements in A are affinely independent, or equivalently,
every minimal reaction among the phases involves at least n+1 phases),
the number of potential solutions is (cf. [17])

2 (1+(3))

Proof. Since A* lives in R3, there are four kinds of elements x in the
lattice of flats:

e & =0, having ;(0,0) = +1,
e © = (, a line spanned by a Gale vector af, having ©(0,¢) = —1,
e r = P, a 2-dimensional plane spanned by Gale vectors, having

e v = R?, having

) CCLED SRS Y

¢ P
= —1 + #{ lines ¢ spanned by Gale vectors}

+ Z(mp - 1)

Adding the absolute values of all of these gives the result stated in the
Proposition.

In the generic case, since A has n points, there will be n distinct
Gale vectors A*, no two of which span the same line ¢, and there will
be (5) different planes P spanned by them (A is generic if and only
if A* is generic by matroid duality). Also, each of these planes will
contain exactly two lines £ so mp —1 = 1. The second assertion follows

from plugging these values into the first equation. O

Example 10.5. In Figure 12, the Euler sphere shown has 20 regions
total (10 visible on the hemisphere shown, 10 more on the “underside”).
One can compare this with the formula predicted in the proposition,
which can be evaluated with the aid of the closed net picture of Gale
vectors in Figure 11. This figure shows (the intersection with the sphere
of ) 8 planes P spanned by pairs of Gale vectors, namely

BC,BG,BW, DG, DC, DW, BD, BGW,
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of which the first 7 have mp = 2 and the last has mp = 3. Thus the
proposition would predict

21+7-(2—1)+1-(3—1)) =20

regions, as expected.
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