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Abstract. In this report we explore the Smith invariants of certain maps
in differential posets. These maps correspond to induction-restriction and
restriction-induction maps when the poset is viewed in a representation theo-
retic way.

1. Introduction

Definition 1. [S1] For r a positive integer, a poset P is called r-differential if it
satisfies the following:

(1) P is locally finite, graded, and has a 0̂ element.
(2) If x 6= y are in P and exactly k elements of P are covered by both x and y,

then exactly k elements of P cover both x and y.
(3) If x ∈ P covers exactly k elements, then it is covered by exactly k + r

elements.

Given a locally finite poset P , we define two linear operators, called up and down

maps; these map to and from KP , the K-vector space with basis P .

Definition 2. Let P be a locally finite poset and x ∈ P . Then the up and down

maps U and D are defined by

Ux =
∑

y≻x

y and Dx =
∑

z≺x

z,

where t ≻ x denotes x is covered by t in P .

The following well-known theorem relates these two definitions, and is straight-
forward to prove.

Theorem 3. [S1] Let P be a locally finite graded poset with a 0̂. If r is a positive

integer, and P has only finitely many elements of each rank, then

P is r-differential if and only if DU − UD = rI.

A prototypical example of a 1-differential poset is Young’s lattice, denoted by
Y . This is the set of all partitions P , ordered by inclusion of Young diagrams. We
illustrate this poset in Figure 1.

The main focus of this paper is on the Smith normal form, abbreviated Snf, of
DU and UD maps in r-differential posets. Because of this, we now go over some
basic theory and language of the subject.

This work was the result of an REU at the University of Minnesota School of Mathematics in
Summer 2006, mentored by V. Reiner and D. Stanton, and supported by NSF grants DMS-0601010
and DMS-0503660.

1



2 ALEXANDER MILLER

∅

Figure 1. Young’s lattice.

Definition 4. A unimodular matrix is a square integral matrix that has an integral
inverse.

It is a standard exercise to show that an integral matrix is unimodular if and
only if it has determinant ±1, the units of Z.

Definition 5. A (possibly rectangular) diagonal matrix D is a diagonal form for
a matrix A if there exist unimodular matrices R and C such that D = RAC. It
is called the Smith normal form of A if the diagonal entries d11, d22, . . . of D are
non-negative and dii | djj for all i ≤ j; in this case, we say the Smith entries of A
are si = dii.

For an integral matrix A, let di(A) be the greatest common divisor of the deter-
minants of all the i × i minors of A, where di(A) = 0 if all such i × i determinants
are zero. The number dk(A) is called the kth determinantal divisor of A. The
following is quite useful when studying the Snf.

Theorem 6. The Smith normal form entries (s1, s2, . . .) of a matrix A are given

by the equation

sj(A) =
dj(A)

dj−1(A)
,

where d0(A) is taken to be 1.

The following new definition is central to our conjectures.

Definition 7. Let M be a nonsingular integral n×n matrix, and E be the multiset
of eigenvalues for M . Define E0 to be the largest subset of E that is not a multiset,
and Ei to be the largest subset of E − E0 − . . . − Ei−1 that is not a multiset, for
i ≥ 1.

We say M possesses the ι-λ relation, or is of ι-λ-type, if its Smith normal form
entries {si} are given by

sn−k =
∏

e∈Ek

e,

where 0 ≤ k ≤ n − 1, and we take sn−j to be 1 if Ej = Ø.

Example 8. A matrix with eigenvalues (superscripts denoting multiplicity)

{18, 27, 34, 44, 52, 62, 71, 81, 101}

and invariant factors
{123, 23, 242, 7201, 4032001}
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is of ι-λ-type. Using the notation of Definition 7,

E0 = {1, 2, . . . , 8, 10}, E1 = {1, . . . , 6}, E2 = E3 = {1, . . . , 4}, E4 = E5 = E6 = {1, 2},

and Ei = {1} for remaining i.

We are now in a position to state the main conjectures of our paper. For a
graded poset P and nonnegative integer n, we denote the set of all elements of rank
n by Pn, and the cardinality of this set by pn.

Conjecture 9 (D Conjecture). If P is an r-differential poset, the linear map

D : CPn → CPn−1 has rank pn−1, and its Snf contains only 1’s and 0’s.

Conjecture 10 (UD Conjecture). If P is an r-differential poset, the linear map

UD : CPn → CPn has rank pn−1, and its Snf contains only 1’s and 0’s.

Conjecture 11 (DU Conjecture). If P is an r-differential poset, the linear map

DU : CPn → CPn possesses the ι-λ relation for each n ≥ 0.

One should note that the rank assertions in Conjectures 9 and 10 follow from
the injectivity of U [S1].

In general, the eigenvalues of the DU map in an r-differential poset are very
nice, which conjecturally make the Smith invariants nice and easy to compute. Let
Ch(A) denote the characteristic polynomial of A in variable λ.

Theorem 12. [S1] Let P be an r-differential poset and let n ∈ N. Then

Ch(DUn) =

n
∏

i=0

(λ − r(i + 1))∆pn−i ,

where ∆pn = pn − pn−1.

2. Results in Young’s lattice

With Young’s lattice, we can actually obtain a tight lower bound on the number
of Smith invariants of DUn equal to 1, and say what the last Smith invariant is.
Moreover, in this setting, Conjecture 10 is a theorem. For future reference, we now
rewrite Theorem 12 and Conjecture 11 for the special case of Y being our poset.
We also define an ordering that we will often use.

Theorem 13. For n ≥ 0, the eigenvalues of DUn : CYn → CYn are

eigenvalue multiplicity

n + 1 1
n − k p(k + 1) − p(k),

where 1 ≤ k ≤ n − 1, and p(k) is the number of partitions of k.

Conjecture 14. For an integer n ≥ 1, we have that the Smith normal form entries

of DUn are

entry multiplicity

(n + 1)[(n − 1)!] 1
(n − k)! p(k + 1) − 2p(k) + p(k − 1)

1 p(n) − p(n − 1) + p(n − 2),

where 3 ≤ k ≤ n − 2.

Definition 15. For partitions λ and λ̃, we say λ ≤ λ̃ lexicographically if λ = λ̃ or
the first i for which λi 6= λ̃i has λi < λ̃i.
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In this section, we will assume basic knowledge of the representation theory
of Sn, and its language in terms of symmetric functions. To brush up on such
material, see [S3], [F] or [M]. Here we will also warn the reader of some notational
abuses. Unfortunately, we use s’s for Smith entries and Schur polynomials, and
p’s for ranks, partitions, and power sums. However, in most cases the meaning
should be clear from the context. One additional notation we will mention is that
we bracket linear maps when emphasizing we are thinking in matrix form. We also
place a subscript j on DU and UD maps to make clear Pj is its domain, if it is not
already clear.

It turns out that differential posets in general are associated with towers of
algebras [G-H-J]; in this setting, induction and restriction play the roles of U and
D, respectively. In Young’s lattice, our towers are very nice:

CS0 ⊂ CS1 ⊂ CS2 ⊂ · · · .

In this situation, our poset Y consists of the irreducible characters of symmetric
groups. Instead of λ ∈ Y , as in the previous section, we have the irreducible
character χλ of the Specht module Sλ indexed by λ. Moreover, our covering relation
is defined by

χλ ≻ χλ̃

if Sλ is a summand of ind
Sn+1

Sn
Sλ̃. That is, our up and down operators are induction

and restriction. By the branching rule, it is obvious that our two descriptions of Y
agree.

To help us realize the power of looking at Y through this representation theoretic
lens, we use symmetric functions.

Let Rn
C

be the space of complex class functions on Sn, let

Λn
C = C[x1, . . . , xn]Sn

be the space of symmetric polynomials of degree n, and

RC =
⊕

n≥0

Rn
C and ΛC =

⊕

n≥0

Λn
C

be corresponding graded rings. Likewise, we let Rn be the Z-module generated by
the irreducible characters of Sn and

Λn = Z[x1, . . . , xn]Sn

be the symmetric polynomials of degree n, with corresponding graded rings defined
analogously:

R =
⊕

n≥0

Rn and Λ =
⊕

n≥0

Λn.

One can then endow R with a multiplication, which we omit, to obtain the
following result.

Lemma 16. The characteristic map ch : RC → ΛC, defined by

ch(f) =
1

|Sn|

∑

π∈Sn

f(π)pπ ,

where pπ = pµ and µ ⊢ n is the cycle type of π, is an isometric isomorphism of

graded algebras. Moreover, it restricts to an isometric isomorphism of R onto Λ.
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It is then known [S1] that the up and down maps in R, given by induction and
restriction, correspond to multiplication by the 1st power sum symmetric function

p1 and applying the linear operator ∂/∂p1, respectively, in Λ. With this, along with
Lemma 16 in mind, it is not too hard to see the following important result:

Theorem 17. [S1] The eigenvectors for DU : CYn → CYn are given by

Xµ =
∑

λ⊢n

χλ(µ)λ,

each belonging to the eigenvalue #{parts of µ equal to 1} + 1, where µ is any par-

tition of n.

We are now able to prove a tight lower bound for the number of 1’s in the Snf
of DUn : CYn → CYn, which is conjectured to be p(n) − p(n − 1) + p(n − 2).

Theorem 18. There are at least p(n) − p(n − 1) + p(n − 2) invariant factors of

DUn : CYn → CYn equal to 1.

Proof. Recall that the complete symmetric polynomials {hλ}λ⊢n form a Z-basis of
Λn. Letting λ = (λ1, . . . , λℓ) ⊢ n, we have

DU(hλ) =
∂

∂p1
p1hλ

=
∂

∂p1
h(λ,1)

= hλ + h1

ℓ
∑

i=1

h(λ1,...,λi−1,...,λℓ)

= hλ +

ℓ
∑

i=1

h(λ1,...,λi−1,...,λℓ,1),(1)

where in the last step we are using p1 = h1 and ∂/∂p1hn = hn−1.
Let [DUn]h denote the matrix of DUn in the h basis, with rows and columns

indexed by the partitions of n.
For λ1, λ2 ⊢ n, we define λ1 <h λ2 if

#{1-parts in λ1} < #{1-parts in λ2}

or

#{1-parts in λ1} = #{1-parts in λ2} and λ1 > λ2 in lexicographic order.

Order the indexing λ’s of [DUn]h from left to right, top to bottom, in increasing
order with <h. One can then see [DUn]h is given by

(2)





Ip(n)−p(n−1) 0

∗ [DUn−1] + I



 .

Thus, it suffices to show there are at least p(n − 2) invariant factors of DUn−1 + I
equal to 1.

Let [DUn−1+I]s be in the usual basis, indexed by the partitions from left to right,
top to bottom, in decreasing lexicographical order. Consider now the submatrix of
[DUn−1 + I]s whose columns are indexed by

{λ ⊢ n − 1 | λ has a 1-part},
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and whose rows are indexed by the conjugate set

{λ ⊢ n − 1 | λ has exactly 1 largest part}.

One can then see this submatrix is lower triangular, with 1’s down its diagonal. �

Example 19. Consider the map DU5 : CY5 → CY5. We have [DU5]s and [DU5]h
are given by





















5 41 32 312 221 213 15

5 2 1 0 0 0 0 0
41 1 3 1 1 0 0 0
32 0 1 3 1 1 0 0
312 0 1 1 3 1 1 0
221 0 0 1 1 3 1 0
213 0 0 0 1 1 3 1
15 0 0 0 0 0 1 2





















and





















5 32 41 221 312 213 15

5 1
32 0 1
41 1 0 2
221 0 1 0 2
312 0 1 1 0 3
213 0 0 0 2 1 4
15 0 0 0 0 0 1 6





















,

respectively.

We can also determine the last Smith entry sp(n) of DUn, which matches the
conjecture. In the proof, we will use the fact that if A is a nonsingular matrix, its
largest Smith entry is the smallest integer m such that

mA−1

is an integral matrix; this simply follows from Theorem 6 together with Cramer’s
rule. For a partition λ, we let

z(λ) =
∏

r≥1

rmrmr!,

where mr is the number of times r occurs in λ. We will also use χλ
µ and χλ(µ)

interchangeably.

Theorem 20. The largest Smith entry of DUn : CYn → CYn is (n − 1)!(n + 1).

Proof. Let λ1, . . . , λp(n) be the partitions of n, and define

d(µ) = 1 + #{1-parts of µ}.

Letting M be the matrix (χλi

λj
), Theorem 17 says

(M−1[DUn]sM)ij =

{

0 if i 6= j;

d(λi) if i = j.

Since

sλ =
∑

µ

1

z(µ)
χλ

µpµ,

we know

M−1 =

(

χ
λj

λi

z(λi)

)

.
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Abusing notation, we let D denote the diagonal matrix of [DUn]. Multiplying
the above out, we have

([DUn]−1
s )ij = MD−1M−1

=
∑

i1

χλi

λi1

1

z(λi1)
χ

λj

λi1
d−1

i1i1

=
∑

µ

1

z(µ)d(µ)
χλi

µ χλj
µ

=
1

|Sn|

∑

π∈Sn

χλi
π χλj

π

1

d(π)

=

〈

χλiχλj ,
1

d(·)

〉

Sn

,

where d(π) = d(cycle type of π).
Let f be the class function on Sn defined by

f(π) =
(n − 1)!(n + 1)

d(π)
.

For an upper bound on Smith entry sp(n), we want to show

〈χλχλ̃, f〉Sn

is an integer for all λ, λ̃ ⊢ n. Thus, we want to show that f is a virtual character
of Sn, i.e. ch(f) is an element of Λ.

We have

ch(f) =
(n − 1)!(n + 1)

n!

∑

π∈Sn

pπ

d(π)

=
n + 1

n

∑

π∈Sn

(

1

p1

∫

pπ dp1

)

=
(n − 1)!(n + 1)

p1

∫

hn dp1.

Letting H(t) =
∑

r≥0 hrt
r, it is straightforward to see

∑

r≥1

pr

tr

r
= log H(t).

Thus,
∫

H(t) dpq =

∫

e
P

r≥1
pr

tr

r dp1

=
H(t)

t
+ C.

Plugging in 0 for p1 to determine the constant of integration C, we find

C = −
H(t)

tep1t
.
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This gives, since h1 = p1,

∑

n≥0

(∫

hn dp1

)

tn =
H(t)

t
(1 − e−h1t)

= (1 + h1t + h2t
2 + . . .)(h1 −

h2
1

2!
t +

h3
1

3!
t2 − . . .),

so we have
∫

hn dp1 =
hnh1

1
−

hn−1h
2
1

2!
+

hn−2h
3
1

3!
− . . . ±

h2h
n−1
1

(n − 1)!
∓

h1h
n
1

n!
±

hn+1
1

(n + 1)!

=
hnh1

1
−

hn−1h
2
1

2!
+

hn−2h
3
1

3!
− . . . ±

h2h
n−1
1

(n − 1)!
∓ hn+1

1

n

(n + 1)!
.

Thus, we see

(n − 1)!(n + 1)

p1

∫

hn dp1 =
(n − 1)!(n + 1)

1!
hn −

(n − 1)!(n + 1)

2!
hn−1h1

+ . . . ± (n + 1)h2h
n−2
1 ∓ hn

1 ,

(3)

which is surely in Λ.
Having proved (n− 1)!(n + 1)[DUn]−1 is an integral matrix, if we can point out

an entry that is ±1, then (n − 1)!(n + 1) is indeed the largest Smith invariant, as
claimed.

We will use (3) for the image of our virtual character f under the characteristic
map. Since

sλ · sµ =
∑

ν

cν
λµsν ,

it is clear that when hk · hℓ
1 is written as a sum of sλ’s, for k > 1, that s(1k+ℓ) does

not appear. Moreover, s(1ℓ) occurs only once in such an expansion of hℓ
1. Thus,

by (3), we see s(1n) occurs in ch(f) with coefficient ±1. That is, the irreducible
character of the alternating representation

χ(1n)

appears in our virtual character f with coefficient ±1. Therefore, the entry of

(n − 1)!(n + 1)([DU ]−1
s )

indexed by (1n) and (n) is

〈χ(1n)χ(n), f〉Sn
= ±1,

since χ(n) is the trivial character, finishing the proof. �

We also have Conjectures 10 and 9 hold in Young’s lattice. This follows from
the fact that they hold for Cartesian products of Y , a fact we prove in the next
section.

3. Cartesian products of Young’s lattice

In this section, we obtain some results on the Smith invariants of DUn in

Y r = Y × · · · × Y.
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Definition 21. If P and Q are posets, we define their Cartesian product to be the
poset P × Q on the set

{(p, q) : p ∈ P and q ∈ Q}

such that (p, q) ≤ (p′, q′) if p ≤ p′ in P and q ≤ q′ in Q.

It is a standard exercise to prove the following.

Proposition 22. [S1] If P is an r-differential poset and Q is an s-differential

poset, then P × Q is an (r + s)-differential poset.

In particular, Y r is an r-differential poset. Conjecture 11 then claims

DUn : CY r
n → CY r

n

has exactly pn−1 Smith invariants equal to 1 when r ≥ 2. We now prove this is
indeed a lower bound on the number of 1’s.

Theorem 23. Let r ≥ 1. Then DUn : CY r
n → CY r

n has at least pn−1 invariant

factors equal to 1.

Proof. The elements of Y r
n are the r-tuples whose parts partition integers summing

to n. Define a natural double lexicographic order on Y r as follows:
(λ1, . . . , λr) ≤ (λ̃1, . . . , λ̃r) if they are equal or the first coordinate i they differ in

has λi < λ̃i in the usual lexicographic ordering of Y .
Now order the rows and columns of [DUn], decreasing from left to right and top to
bottom. Consider the set

P = {(λ1, . . . , λr) ∈ Y r
n : λr has a 1-part},

and its conjugate set

P conj = {(λ1, . . . , λr) ∈ Y r
n : λ1 has exactly one largest part}.

Now one can easily check the submatrix of [DUn] whose columns and rows are
indexed by P and P conj, respectively, is lower triangular with 1’s down its diagonal.

�

One can then follow this proof, almost verbatim, to prove Conjecture 10 in the
case of Y r.

Theorem 24. For r ≥ 1, the map UDn in Y r has rank pn−1 and pn−1 1’s in its

Smith normal form.

Proof. See the proof of Theorem 23. �

Moreover, we also see Conjecture 9 holds in Y r.

Theorem 25. For r ≥ 1, the map Dn in Y r has rank pn−1 and pn−1 1’s in its

Smith normal form.

Proof. Using the set P defined in the proof of Theorem 23, one observes that the
pn−1 × pn−1 submatrix of [Dn] whose columns are indexed by P is lower triangular
with 1’s down its diagonal. �

It should be mentioned that we expect our results in Young’s lattice Y to natu-
rally extend to Y r through methods similar to those used in the previous section.
However, we have not yet explored this thoroughly.
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4. The Fibonacci poset

As a set, the Fibonacci poset Z consists of all finite words using alphabet {1, 2}.
For two words w, w′ ∈ Z, we define w to cover w′ if either

(1) w′ is obtained from w by changing a 2 to a 1, as long as only 2’s occur to
its left, or

(2) w′ is obtained from w by deleting its first 1.

It is an easy exercise to show Z is a 1-differential poset [S1]. It is also easy to
see why it has such a name: its jth rank has size fj , the jth Fibonacci number.

In this section, we will prove Conjectures 9, 10, and 11 for the Fibonacci poset Z.
Because our work is largely computational, for this section we will do away with our
previous convention of bracketing linear maps to represent a matrix representation.

Whenever dealing with the matrix forms of D, U , and compositions thereof,
acting on a rank of Z, we will index the rows and columns in decreasing lexico-
graphic order, from left to right, top to bottom. One can then observe how DUn is
recursively defined. First, one observes

(4) Dn =
(

Un−2 Ifn−1

)

,

which is not too hard to verify; the Ifn−1
is clear, and one simply checks D(2v) =

U(v) for v ∈ Z. From this, one can then obtain

(5) DUn =





DUn−2 + Ifn−2
Un−3 Ifn−2

Dn−2 2Ifn−3
0

Ifn−2
0 2Ifn−2



 .

Now (4) and (5) together with the fact DU − UD = I immediately prove Con-
jectures 9 and 10, respectively, in the case of Z.

Theorem 26. The rank of Dn : CZn → CZn is fn−1, with exactly this many 1’s
in its Smith normal form.

Theorem 27. The rank of UDn : CZn → CZn is fn−1, with exactly this many 1’s
in its Smith normal form.

We now look to our second objective: prove Conjecture 11 in the case of Z. To
do this, we start with a lemma that is an instrumental tool in the proof.

Lemma 28. In the Fibonacci lattice Z, for n ≥ 1 we have

(

aIfn
−(a − 1)Dn+1

−aUn −bIfn+1

)

∼





Ifn
0 0

0 bIfn−1
−a(a − 1)Dn

0 −bUn−1 −a(a + b − 1)Ifn



 .



INVARIANT FACTORS AND DIFFERENTIAL POSETS 11

Proof. We simply use row and column operations together with (4). We have

(

aIfn
−(a − 1)Dn+1

−aUn −bIfn+1

)

∼





aIfn
−(a − 1)Un−1 −(a − 1)Ifn

−aDn −bIfn−1
0

−aIfn
0 −bIfn





∼





Ifn
−(a − 1)Un−1 −(a − 1)Ifn

−aDn −bIfn−1
0

−(a + b)Ifn
0 −bIfn





∼





Ifn
0 0

0 −a(a − 1)DUn−1 − bIfn−1
−a(a − 1)Dn

0 −(a + b)(a − 1)Un−1 −(a + b)(a − 1)Ifn
− bIfn





∼





Ifn
0 0

0 bIfn−1
−a(a − 1)Dn

0 −bUn−1 −a(a + b − 1)Ifn



 .

�

Lemma 29.

DUn ∼ Ifn−2
⊕ Ifn−3

⊕ Ifn−4
⊕ 2!Ifn−5

⊕ 3!Ifn−6
⊕ · · · ⊕ (k − 4)!Ifn−k+1

⊕ (k − 3)!





Ifn−k
0 0

0 k(k − 2)Ifn−k−1
−(k − 1)(k − 2)Dn−k

0 −k(k − 2)Un−k−1 −(k + 1)(k − 1)(k − 2)Ifn−k



 ,

for 3 ≤ k ≤ n − 1, taking (−1)! and 0! to be 1.

Proof. We simply induct on k. Working to show the base case holds, we have

DUn =





DUn−2 + Ifn−2
Un−3 Ifn−2

Dn−2 2Ifn−3
0

Ifn−2
0 2Ifn−2



 ∼





DUn−2 + Ifn−2
Un−3 Ifn−2

Dn−2 2Ifn−3
0

−DUn−2 −Un−3 Ifn−2





∼





2DUn−2 + Ifn−2
2Un−3 0

Dn−2 2Ifn−3
0

0 0 Ifn−2



 ∼





2DUn−2 − 2UDn−2 + Ifn−2
−2Un−3 0

Dn−2 2Ifn−3
0

0 0 Ifn−2





∼





3Ifn−2
−2Un−3 0

Dn−2 2Ifn−3
0

0 0 Ifn−2



 ∼





Ifn−2
0 0

0 2Ifn−3
−Dn−2

0 −2Un−3 −3Ifn−2



 .

Now a single application of Lemma 28 yields the base case:

DUn ∼





Ifn−2
0 0

0 2Ifn−3
−Dn−2

0 −2Un−3 −3Ifn−2



 ∼ Ifn−2
⊕





Ifn−3
0 0

0 3Ifn−4
−2Dn−3

0 −3Un−4 −4 · 2Ifn−3



 .

For the induction step, assume 3 ≤ k ≤ n − 2. Then Lemma 28 says
(

k(k − 2)Ifn−k−1
−(k − 1)(k − 2)Dn−k

−k(k − 2)Un−k−1 −(k + 1)(k − 1)(k − 2)Ifn−k

)

∼ (k − 2)





Ifn−k−1
0 0

0 (k + 1)(k − 1)Ifn−k−2
−k(k − 1)Dn−k−1

0 −(k + 1)(k − 1)Un−k−2 −(k + 2)(k)(k − 1)Ifn−k−1



 ,

completing the induction. �

Theorem 30. The map DUn in the Fibonacci poset Z possesses the ι-λ relation.
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Proof. In particular, Lemma 29 says

DUn ∼ I2fn−2
⊕2!Ifn−5

⊕3!Ifn−6
⊕· · ·⊕(n−4)!If1

⊕(n−3)!

(

(n − 1) (n − 2)
−(n − 1) n(n − 2)

)

.

Since
(

(n − 1) (n − 2)
−(n − 1) n(n − 2)

)

∼

(

1 0
0 (n + 1)(n − 1)(n − 2)

)

,

we have

DUn ∼ I2fn−2
⊕ 2!Ifn−5

⊕ · · · ⊕ (n − 4)!I1 ⊕ (n − 3)! ⊕ (n + 1)(n − 1)!,

which one can check matches the conjectured Snf of DUn in Z. �

One can also look at the Fibonacci poset in terms of towers of algebras, with
induction and restriction operators. In fact, [O] developed a Z-analogue of the ring
Λ of symmetric functions we used for our study of Young’s lattice. Moreover, his
analogue of the h’s makes our [DU ] matrix lower triangular, just as we had seen in
the case of Young’s lattice.

To be more precise about the work done in [O], the main goal was to answer the
following question posed by Stanley (which we quote verbatim):

[S1, Problem 8] Fix r ∈ P. Is there a “natural” sequence

A0 ⊂ A1 ⊂ · · ·

of semisimple algebras An (over C, say) whose relationship to Z(r)1

is analogous to the relationship between the group algebras

CS0 ⊂ CS1 ⊂ · · ·

of the symmetric groups Sn and Young’s lattice?... The existence
of abstract algebras An with the desired properties is easy to see;
in fact, it follows from the “fundamental construction” of [G-H-J]
that

An+1
∼= (EndAn−1

An) ⊕ A
r
n ,

where EndAn−1
An is defined by a certain embedding An−1 ⊂ An

corresponding to the Brattelli diagram Z(r)n−1,n. What is wanted
is a “natural” combinatorial definition of An.

However, we merely mention these facts for the interested reader.
It should also be mentioned that in the case of the Fibonacci poset, the nice

recursive definition of [DUn] makes it plausible that one can prove Conjecture 11
with a more straightforward and generalizable induction. When looking at possible
induction techniques, a proof of the following would be incredibly useful.

Conjecture 31. If M is of ι-λ-type, then M + 1 is of ι-λ-type.

If true, combined with (2), it would immediately prove Conjecture 11 in the case
of Young’s lattice, a particularly interesting case.

1
Z(r) simply generalizes Z by having r “colors” of 1, instead of just one. See [S1] for more

information.
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5. Computation & natural questions

In this section, we begin by telling the reader what computations have been done
to justify making Conjectures 11 and 10. We will also give the answers to some
questions about generalizing this phenomenon.

In the case of Young’s lattice, we have tested the DUn map for the ι-λ relation
up to n = 20. We have also tested various reflection extensions [S1] starting at
ranks of Y , Z(1), Z(2), Z(3), and some Cartesian products, all going up to ranks
of at least 10.

A natural question to ask is does, say, Dn−1 ◦Dn ◦Un ◦Un−1 always possess the
ι-λ relation? The answer to this is no. For example, one can easily check that

D4D5U4U3 : CY3 → CY3

is given by the matrix




7 6 1
6 14 6
1 6 7



 ,

which is not of ι-λ-type.
Another natural question is whether or not we have this phenomenon in sequen-

tially differential posets [S2], a generalization of r-differential posets. Again, the
answer is no. The Boolean algebra is known to be such a poset, and one can easily
show the DU maps are not in general of ι-λ-type (where nonsingular, of course).
Morover, we do not know of an analogues phenomenon for these generalized differ-
ential posets.
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