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Abstract. We investigated the cyclic sieving phenomenon for linear extensions of forests of
rooted trees with the cyclic action ‘jeu de taquin’. We have proved many results concering the
orbits of linear extensions for different types of trees. Our investigations also show that these
objects just typically do not cyclicly sieve.

1. Introduction

Let F be a forest of two rooted trees, one a chain of length k and the other a chain of length
n − k, and let X be the set of linear exentsions of F 1. Let X(q) =

[

n
k

]

q
and let C be the group

generated by the ‘jeu-de-taquin’ (jdt) action on X . The triple (X, X(q), C) exhibts the cyclic
sieving phenomenon (CSP) as defined in [1]. It is worth considering whether the set of linear
extensions X of a general forest F of rooted trees exhibits CSP for this cyclic action. A natural
choice for X(q) is

[n]q!
∏

x∈F [hx]q

where hx is the hook length at x in F . X(1) is Knuth’s formula for the number of linear extensions
of F .

2. Orbits

The most successful aspects of our research has been discovering many properties of the orbits
of linear extensions. The following definition is invaluable when working with linear extensions of
forests.

Definition 2.1. Let F be a forest of rooted trees. A n-labeling x of F is an injective map
x : F → [n] such that

v >F w ⇒ x(v) > x(w) ∀ v, w ∈ F,

where ‘>F ’ means greater than in the poset F . We also define the notation xv := x(v). xv is
commonly referred to as the label or label value of v in x.

Note that we do not require n = |F |. An |F |-labeling of F is just a linear extension of F .
There is also natural extension of the action of C on linear extensions F of to n-labelings of F .
n-labelings are useful objects to define because we can view a linear extension x of F as a set of
|F |-labelings of all of F ’s component trees. In other words, finding the orbit of a linear extension
can be broken up into sub problems of finding the orbit of the |F |-labeling for each component of
F and then taking the least common multipule of these orbit sizes.

This work was carried out during an REU in summer 2005 at the University of Minnesota, supervised by V. Reiner
and D. Stanton, and supported by their NSF grants, DMS-0245379 and DMS-0503660, respectively.
1Throughout this paper we will identify F with the poset whose Hasse diagram is the graph of F . This identification
blurs the distinction between F and the vertex set V of F . Unless explicitly stated otherwise, when we say “|F |”
and “∈ F” we mean “|V |” and “∈ V ”.
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Figure 1. The orbit of a particular 3t-labeling under jdt. The letters a,b,c are
vertex names. The different shades are label names.

Definition 2.2. Let F be a forest of rooted trees.
On(F ) is the set of orbit sizes of the n-labelings of F under the action of C.

Theorem 2.3. Let ct be a chain of length t.

On(ct) = {n/d : d|n, d|t}

Most of our results concerning orbits of linear extensions concern special classes of trees. The
following definition will be used frequently to classify trees.

Definition 2.4. Let T be a rooted tree. A branching point is any vertex of degree at least 3 or
a root of degree at least 2. T is said to be stemless if its root is a branching point.

Conjecture 2.5. Let T be a stemless single branching rooted tree with root r and let ct be a chain

of length t.

On(ct) = O|T |−1(T − r) · On(c|T |)

where A · B := {ab : a ∈ A, b ∈ B}.

Conjecture 2.6. Let F := {T1, T2, T3, . . . Ts} be a forest of rooted trees where each Ti is a stemless

single branching rooted tree or a chain. Let n := |F |.

On(F ) = {lcm(t1, t2, . . . ts) : ti ∈ On(Ti)}

Note this is a very non-trivial statement about On(F ). We know given a linear extension x the
orbit size of x is the least common multipule of the orbits sizes for each component’s |F |-labeling.
What this conjecture states however is that we may take the least common multipule of orbits
sizes from any choice of |F |-labelings for each component to get On(F ) (even though for any two
components there will be many pairs of |F |-labelings which cannot arise from the same linear
extensions). We can show this conjecture is true in the case that each tree is a chain and in the
case that there is exactly one stemless single branching tree whose size is relatively prime to n.

Theorem 2.7. Let F be a forest of t rooted trees, each consisting of a root vertex, two leaf vertices,

and no other vertices. The action of C on the set of linear extensions of F consists of 2tt!
2t orbits
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Figure 2. The orbit of states for a 3t-labeling.

of size 2t and
(3t)!/3t−2tt!

6t orbits of size 6t.

Proof: |F | = 3t. Let T be one component of the forest F . We want to show each 3t-labeling
of T either has orbit size 2t or 6t. This implies each linear extension of F either has orbit size 2t
or 6t. Knuth’s formula tells us there are (3t)!/3t linear extensions of F , so to prove the theorem
it will suffice to show there are 2tt! linear extensions whose orbit is of size 2t.

Let x be a 3t-labeling of T . We can view each operation of jdt on x as a cyclic permutation of
the label values followed by some reordering of the ‘label names’ of F (we think of the reordering
of the label names as representing the sliding part of jdt). See figure 1 for an example.

In the example there are a total of 6 ‘states’ (that is, ordering of the label names) as jdt acts
on the 6-labeling 12 times. It is useful to think of the underlying orbit of states as depicted in
figure 2. It is easy to see that as jdt acts on any 3t-labeling 6t times the label positions will go
through these 6 states in either the same order or reverse order depending on which of the two
leaf vertices has a larger label.

Fix a 3t-labeling x of T such that xb > xa. The states will then cycle as shown in figure 2. A
state advances to the next state each time a label is ‘demoted’ from 3t back to 1 by jdt. Therefore
if jdt is applied 6t times the labeling will be at its original state. Since 6t is divisible by 3t, each
label will have cycled back to its original value. In other words, we have returned to the original
labeling:

jdt6t(x) = x ∀ 3t–labelings x of T.

Suppose the orbit of x is not of size 6t. i.e., let jdtn(x) = x, where 0 < n < 6t. We are
interested in the state of jdtn(x). Notice that the state of x must change at least once before x
can return to itself under the action of jdt. Hence jdtn(x) cannot have state 1. In the 2nd, 4th
and 6th states it is not difficult to see that the bottom left label will be smaller than the bottom
right label. Therefore the only possible states of jdtn(x) are the 3rd and 5th states.

Lemma 2.8. jdtn(x) = x, 0 < n < 6t, and jdtn(x) is in the state 3 iff

n = xa − xc and xa − xb ≡ xb − xc ≡ xc − xa mod 3t.

Note the last set of equalities imply n = 2t.
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Proof of Lemma: jdtxa−xc will bring x to the 3rd state and (jdtxa−xc(x))a = xa. If n 6=
xa − xc then (jdtxa−xcx)a 6= xa.

jdtxa−xc(x) = x ⇔ xv = (jdtxa−xc(x))v ∀ v ∈ F.

Hence,

xb = (jdtxa−xc(x))b ⇔

xb ≡ xa + (xa − xc) mod 3t ⇔

xc − xa ≡ xa − xb mod 3t,

and,

xc = (jdtxa−xc(x))c ⇔

xc ≡ xb + (xa − xc) mod 3t ⇔

xc − xa ≡ xb − xc mod 3t.

This proves the Lemma. 2

If jdtn(x) is in 5th state the argument is similar and it turns out that the conditions on x are
identical to the 3rd state case.

Lemma 2.9. jdtn(x) = x, 0 < n < 6t, and jdtn(x) is in the 5th state iff

n = xa − xb + 3t and xa − xb ≡ xb − xc ≡ xc − xa mod 3t.

Note the last set of equalities imply n = 4t. In the case xb < xa, the lemmas are similar.

Corollary 2.10. Let x be any 3t-labeling of T . If the orbit of x is not of size 6t then it has size

2t and xa − xb ≡ xb − xc ≡ xc − xa mod 3t.

The orbit of a linear extension x of F will be of size 2t iff the orbit of every 3t-labeling of the
component trees of F are of size 2t. In that case there are t! ways to choose xa for each component
of F . Once xa is chosen for each component it determines xb and xc up to a left-right orientation.
Therefore we have 2tt! linear extensions of F whose orbit is of size 2t.

This proves the Theorem. 2

We wish to define a new operation, js, which acts on n-labelings and linear extensions. First
we need a definition.

Definition 2.11. Let F be a forest of rooted trees, m := |F |. Let X be the set of n-labelings
of F , and let Y be the set of linear extensions of F . Each x ∈ X defines an m-subset of [n]
called [x] := {xv ∈ [n] : v ∈ F}, i.e. [x] is the image of x. Furthermore, there is a unique map
Px : [x] → [m] compatible with ‘>’ (namely the map where the smallest element of [x] gets sent
to 1, the second smallest element of [x] gets sent to 2, etc.) Define a map Rx : X → Y by

(Rx(x))v = Px(xv) ∀ v ∈ F.

Definition 2.12. Let F be a forest of rooted trees and let X be the set of n-labelings of F . Define
a map js : X → X by:

(js(x))v = R−1
x ( (jdt · Rx(xv) ).

In other words, we relabel F with [m], apply jdt, then revert to the old labels to get js(x).
With the above definition we can define a cyclic group S genereated by js which acts on X . We
think of js as a ‘standardized’ jeu de taquin action on X since one label gets demoted for every
application of js. js is a useful tool for calculating jdtn of n-labelings.
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Theorem 2.13. Let T be a stemless single branching rooted tree with with root r and let x be a

n-labeling of T . Then

jdtn(x) = js(x).

Proof: The set of labels of jdtn(x) is set the of labels of x, only they will be in different
positions. In the language of Theorem 2.7 let ρv refer to the label name2 which has label value
xv in x. Let {c1, c2, ...} be the set of components of T − r. Let v be any vertex of T . When
jdt is applied n times the label xv will be demoted exactly once, and hence the component ci

containing ρv will only change once (when a label name moves to the top position we consider it
to be in its previous component, and by convention ρr is considered to initially be in c1). Define
“c(v) in jdtm(x)” to be the component ci containg ρv in jdtm(x). The rules of jdt imply

c(v) in jdtn(x) = c(w) in x, where xw < xv and no other vertex u

satisfies xw < xu < xv

= c(w) in x, where Rx(xw) = Rx(xv) − 1.

The last equation is precisely the component containg ρv in js(x). For stemless single branching
trees each ci is a chain. There is only one way to arrange a set of labels within a chain so that the
result gives a proper labeling, so in fact the position of ρv in jdtn(x) is the position of ρv in js(x).

This proves the Theorem. 2

For an arbitrary stemless tree T the argument of the previous theorem is valid up to the last
step. In other words, js(x) will give jdtn(x) up to some reordering of the vertices within each
component of T − r. We will prove an analagous statement for general trees.

Definition 2.14. Let T be a rooted tree and let v, w ∈ T . d(v, w) := the length of the unique
v, w path in T .

Definition 2.15. Let T be a rooted tree and let x be a n-labeling of T .

x<v := the restriction of x to an n-labeling of T <v := {w ∈ T : w <T v}.

We make analagous definitions for >,≥,≤.

x<v,>w := the restriction of x to an n-labeling of T <v,>w := (T <v)>w.

Again, with analagous definitions for other combinations of relation operators.

Theorem 2.16. Let T be a single branching rooted tree with root r and branching point b. Let x
be a n-labeling of T . Then

jdtn(x) = jsd(b,r)+1(x).

Proof: Trivally (jdtn(x))v = (jsd(b,r)+1(x))v when v ∈ T≥b since there is only one way to
arrange the largest (d(r, b) + 1) labels within the stem. Let v ∈ T <b. As in the previous theorem
we argue that

c(v) in jdtn(x) = c(w) in x, where Rx(xw) = Rx(xv) − (d(b, r) + 1),

since it is the location of the (d(b, r) + 2)th largest label which determines what component of
T <b the top label is demoted into. For single branching trees each component of T <b is a chain.
There is only one way to arrange the labels within each ci, hence the arrangement of labels of ci

in jdtn(x) is the same as in jsd(b,r)+1(x).

2Just so we are clear about this object, the position of ρv in jdtm(x) would be the vertex of T which is labeled
(xv + m − 1 mod n) + 1 by jdtm(x).
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This proves the Theorem. 2

As before, this argument is valid for an arbitrary tree T up until the last step:

Corollary 2.17. Let T be a rooted tree with root r. Let x be a n-labeling of T .

If b is the first branching point of T then jsd(b,r)+1(x) will give jdtn(x) correctly for the stem

T≥b and correct up to some reordering of the vertices within each component of T <b.

3. Sieving

We have taken a lot of data concerning cyclic sieving. In a few cases described below we believe
the linear extensions of forests will exhibit CSP.

Conjecture 3.1. Let F be a forest of rooted trees, where each tree is a chain. Let X be the set

of linear extensions of F . Let X(q) be as defined in the introduction, then (X, X(q), C) exhibits

CSP.

Theorem 3.2. Let F := {T0, T1, T2, . . . Ts} be a forest of s rooted trees where T0 is a stemless

single branching rooted tree with root r and Ti is a chain for i ≥ 1. Let {c1, c2, ...cr} be the com-

ponents of T0 − r. Define n := |F |, k := |T0| − 1, d := gcd(n, |T1|, |T2|, ...), e := gcd(n, |T0|), and

H := the cyclic group generated by jdtk

If gcd(k, |c1|, |c2|...|cr|) = 1, eithere = 1or(d = 1andgcd(k, n) = 1), and X(q)/[n]q is a poly-

nomial in q, then the action of H on the set of linear extenesions X of F consists of only free

orbits, and (X, X(q), H) exhibts CSP.

Conjecture 3.3. The converse of Theorem 3.2 is true.

Included below is a table of data describing when cyclic sieving occurs. ‘n’ is the size of the
forest. ‘Partition of n’ is the partition of n given by the component sizes of the forest F (used
merely as a way to sort results). ‘Shape’ is a coding for describing precisely what each forest looks.
Each number in ‘Shape’ is the number of children of each vertex (where the number of children
of a vertex is the number of vertices below that vertex which it is connected to). Colons seperate
vertices vertically within the same tree, commas seperate several vertices on the same vertical line
in the same tree, and slashes begin a new tree. For example 1:0/1:0 consists of a two trees, each
having code 1:0. 1:0 means the root has 1 child and that vertex has no children, so it is a chain of
length 2. 2:1,0:0 is one tree. The root vertex has two children, one of which has no children and
the other has 1 child. The child in the 3rd line has no children; it is a leaf vertex. So the tree is a
chain of length 3 and a chain of length 2 fused together with their root vertices overlapping.
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n Partition
of n

Shape Number
of Linear
Exten-
tions

Orbit
sizes
under jdt

q-Polynomial q-Polynomial
mod(qm − 1)

Sieving
Value
(m)

1 1 0 1 1 1 1 1
2 2 1 : 0 1 1 1 1 1
2 11 0/0 2 2 1 + q 1 + q 2
3 3 1 : 1 : 0 1 1 1 1 1
3 3 2 : 0, 0 2 2 1 + q 1 + q 2
3 21 1 : 0/0 3 3 1 + q + q2 1 + q + q2 3
3 111 0/0/0 6 32 1 + 2q + 2q2 + q3 2 + 2q + 2q2 3
4 4 1 : 1 : 1 : 0 1 1 1 1 1
4 4 2 : 1, 0 : 0 3 3 1 + q + q2 1 + q + q2 3
4 4 1 : 2 : 0, 0 2 2 1 + q 1 + q 2
4 4 3 : 0, 0, 0 6 32 1 + 2q + 2q2 + q3 2 + 2q + 2q2 3
4 31 1 : 1 : 0/0 4 4 1 + q + q2 + q3 1 + q + q2 + q3 4
4 31 2 : 0, 0/0 8 8 1+2q+2q2+2q3+q4

4 22 1 : 0/1 : 0 6 4, 2 1+ q +2q2 + q3 + q4 2 + q + 2q2 + q3 4
4 211 1 : 0/0/0 12 43 1+2q +3q2 +3q3 +

2q4 + q5
3 + 3q + 3q2 + 3q3 4

4 1111 0/0/0/0 24 46 1+3q +5q2 +6q3 +
5q4 + 3q5 + q6

6 + 6q + 6q2 + 6q3 4

5 5 1 : 1 : 1 : 1 :
0

1 1 1 1 1

5 5 2 : 1, 0 : 1 : 0 4 4 1 + q + q2 + q3 1 + q + q2 + q3 4
5 5 1 : 2 : 0, 1 : 0 3 3 1 + q + q2 1 + q + q2 3
5 5 1 : 1 : 2 : 0, 0 2 2 1 + q 1 + q 2
5 5 1 : 3 : 0, 0, 0 6 32 1 + 2q + 2q2 + q3 2 + 2q + 2q2 3
5 5 2 : 1, 1 : 0, 0 6 4, 2 1+ q +2q2 + q3 + q4 2 + q + 2q2 + q3 4
5 5 2 : 0, 2 : 0, 0 8 8 1+2q+2q2+2q3+q4

5 5 3 : 1, 0, 0 : 0 12 43 1+2q +3q2 +3q3 +
2q4 + q5

3 + 3q + 3q2 + 3q3 4

5 5 4 : 0, 0, 0, 0 24 46 1+3q +5q2 +6q3 +
5q4 + 3q5 + q6

6 + 6q + 6q2 + 6q3 4

5 41 1 : 1 : 1 : 0/0 5 5 1 + q + q2 + q3 + q4 1 + q + q2 + q3 + q4 5
5 41 2 : 1, 0 : 0/0 15 15 1+2q +3q2 +3q3 +

3q4 + 2q5 + q6

5 41 1 : 2 : 0, 0/0 10 52 1+2q +2q2 +2q3 +
2q4 + q5

2+2q +2q2 +2q3 +
2q4

5

5 41 3 : 0, 0, 0/0 30 152 1+3q +5q2 +6q3 +
6q4 + 5q5 + 3q6 + q7

5 32 1 : 1 : 0/1 : 0 10 52 1 + q + 2q2 + 2q3 +
2q4 + q5 + q6

2+2q +2q2 +2q3 +
2q4

5

5 32 2 : 0, 0/1 : 0 20 102 1+2q +3q2 +4q3 +
4q4 + 3q5 + 2q6 + q7

5 311 1 : 1 : 0/0/0 20 54 1+2q +3q2 +4q3 +
4q4 + 3q5 + 2q6 + q7

4+4q +4q2 +4q3 +
4q4

5

5 311 2 : 0, 0/0/0 40 104 1+3q +5q2 +7q3 +
8q4 + 7q5 + 5q6 +
3q7 + q8

5 221 1 : 0, 1 : 0/0 30 56 1+2q +4q2 +5q3 +
6q4 + 5q5 + 4q6 +
2q7 + q8

6+6q +6q2 +6q3 +
6q4

5

5 2111 1 : 0/0/0/0 60 512 1+3q +6q2 +9q3 +
11q4 + 11q5 + 9q6 +
6q7 + 3q8 + q9

12 + 12q + 12q2 +
12q3 + 12q4

5

5 11111 0/0/0/0/0 120 524 1+4q+9q2+15q3+
20q4+22q5+20q6+
15q7+9q8+4q9+q10

24 + 24q + 24q2 +
24q3 + 24q4

5

6 6 1 : 1 : 1 : 1 :
1 : 0

1 1 1 1 1

6 6 1 : 1 : 1 :
2/0, 0

2 2 1 + q 1 + q 2

6 6 1 : 1 : 2 :
1, 0 : 0

3 3 1 + q + q2 1 + q + q2 3

6 6 1 : 2 : 1, 0 :
1 : 0

4 4 1 + q + q2 + q3 1 + q + q2 + q3 4

6 6 2 : 1, 0 : 1 :
1 : 0

5 5 1 + q + q2 + q3 + q4 1 + q + q2 + q3 + q4 5

6 6 1 : 1 : 3 :
0, 0, 0

6 32 1 + 2q + 2q2 + q3 2 + 2q + 2q2 3

6 6 1 : 2 : 1, 1 :
0, 0

6 4, 2 1+ q +2q2 + q3 + q4 2 + q + 2q2 + q3 4

6 6 2 : 1, 1 : 1, 0 :
0

10 52 1 + q + 2q2 + 2q3 +
2q4 + q5 + q6

2+2q +2q2 +2q3 +
2q4

5

6 6 2 : 1, 0 : 2 :
0, 0

10 52 1+2q +2q2 +2q3 +
2q4 + q5

2+2q +2q2 +2q3 +
2q4

5

6 6 3 : 1, 0, 0 : 1 :
0

20 54 1+2q +3q2 +4q3 +
4q4 + 3q5 + 2q6 + q7

4+4q +4q2 +4q3 +
4q4

5

6 6 3 : 1, 1, 0 :
0, 0

30 56 1+2q +4q2 +5q3 +
6q4 + 5q5 + 4q6 +
2q7 + q8

6+6q +6q2 +6q3 +
6q4

5

6 6 4 : 1, 0, 0, 0 :
0

60 512 1+3q +6q2 +9q3 +
11q4 + 11q5 + 9q6 +
6q7 + 3q8 + q9

12 + 12q + 12q2 +
12q3 + 12q4

5

6 6 5 : 0, 0, 0, 0, 0 120 524 1+4q+9q2+15q3+
20q4+22q5+20q6+
15q7+9q8+4q9+q10

24 + 24q + 24q2 +
24q3 + 24q4

5

6 6 1 : 2 : 2, 0 :
0, 0

8 8 1+2q+2q2+2q3+q4

6 6 1 : 3 : 1, 0, 0 :
0

12 43 1+2q +3q2 +3q3 +
2q4 + q5

3 + 3q + 3q2 + 3q3 4

6 6 1 : 4 :
0, 0, 0, 0

24 46 1+3q +5q2 +6q3 +
5q4 + 3q5 + q6

6 + 6q + 6q2 + 6q3 4
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6 6 2 : 2, 1 :
0, 0, 0

20 102 1+2q +3q2 +4q3 +
4q4 + 3q5 + 2q6 + q7

6 6 3 : 2, 0, 0 :
0, 0

40 104 1+3q +5q2 +7q3 +
8q4 + 7q5 + 5q6 +
3q7 + q8

6 6 2 : 2, 0 : 1, 0 :
0

15 15 1+2q +3q2 +3q3 +
3q4 + 2q5 + q6

6 6 2 : 3, 0 :
0, 0, 0

30 152 1+3q +5q2 +6q3 +
6q4 + 5q5 + 3q6 + q7

6 51 1 : 1 : 1 : 1 :
0/0

6 6 1+q+q2+q3+q4+
q5

1+q+q2+q3+q4+
q5

6

6 51 1 : 1 : 2 :
0, 0/0

12 12 1+2q +2q2 +2q3 +
2q4 + 2q5 + q6

6 51 1 : 2 : 1, 0 :
0/0

18 18 1+2q +3q2 +3q3 +
3q4 + 3q5 + 2q6 + q7

6 51 2 : 1, 0 : 1 :
0/0

24 24 1+2q +3q2 +4q3 +
4q4 + 4q5 + 3q6 +
2q7 + q8

6 51 1 : 3 :
0, 0, 0/0

36 182 1+3q +5q2 +6q3 +
6q4 + 6q5 + 5q6 +
3q7 + q8

6 51 2 : 1, 1 :
0, 0/0

36 24, 12 1+2q +4q2 +5q3 +
6q4 + 6q5 + 5q6 +
4q7 + 2q8 + q9

6 51 3 : 1, 0, 0 :
0/0

72 243 1+3q +6q2 +9q3 +
11q4+12q5+11q6+
9q7+6q8+3q9+q10

6 51 4 : 0, 0, 0, 0/0 144 246 1+4q+9q2+15q3+
20q4+23q5+23q6+
20q7 + 15q8 + 9q9 +
4q10 + q11

6 51 2 : 2, 0 :
0, 0/0

48 48 1+3q +5q2 +7q3 +
8q4 + 8q5 + 7q6 +
5q7 + 3q8 + q9

6 42 1 : 1 : 1 :
0/1 : 0

15 62, 3 1 + q + 2q2 + 2q3 +
3q4+2q5+2q6+q7+
q8

3+2q +3q2 +2q3 +
3q4 + 2q5

6

6 42 2 : 1, 0 : 0/1 :
0

45 182, 9 1+2q +4q2 +5q3 +
7q4 + 7q5 + 7q6 +
5q7+4q8+2q9+q10

6 42 1 : 2 : 0, 0/1 :
0

30 64, 32 1+2q +3q2 +4q3 +
5q4 + 5q5 + 4q6 +
3q7 + 2q8 + q9

6 42 3 : 0, 0, 0/1 :
0

90 184, 92 1+3q +6q2 +9q3 +
12q4+14q5+14q6+
12q7 + 9q8 + 6q9 +
3q10 + q11

6 411 1 : 1 : 1 :
0/0/0

30 65 1+2q +3q2 +4q3 +
5q4 + 5q5 + 4q6 +
3q7 + 2q8 + q9

5+5q +5q2 +5q3 +
5q4 + 5q5

6

6 411 2 : 1, 0 :
0/0/0

90 185 1+3q +6q2 +9q3 +
12q4+14q5+14q6+
12q7 + 9q8 + 6q9 +
3q10 + q11

6 411 1 : 2 :
0, 0/0/0

60 610 1+3q +5q2 +7q3 +
9q4 + 10q5 + 9q6 +
7q7+5q8+3q9+q10

10 + 10q + 10q2 +
10q3 + 10q4 + 10q5

6

6 411 3 :
0, 0, 0/0/0

180 1810 1+4q+9q2+15q3+
21q4+26q5+28q6+
26q7+21q8+15q9+
9q10 + 4q11 + q12

6 33 1 : 1 : 0/1 :
1 : 0

20 63, 2 1 + q + 2q2 + 3q3 +
3q4 + 3q5 + 3q6 +
2q7 + q8 + q9

4+3q +3q2 +4q3 +
3q4 + 3q5

6

6 33 1 : 1 : 0/2 :
0, 0

40 123, 4 1+2q +3q2 +5q3 +
6q4 + 6q5 + 6q6 +
5q7+3q8+2q9+q10

6 33 2 : 0, 0/2 :
0, 0

80 124, 42 1+3q +5q2 +8q3 +
11q4+12q5+12q6+
11q7 + 8q8 + 5q9 +
3q10 + q11

6 321 1 : 1 : 0/1 :
0/0

60 610 1+2q +4q2 +6q3 +
8q4 + 9q5 + 9q6 +
8q7 + 6q8 + 4q9 +
2q10 + q11

10 + 10q + 10q2 +
10q3 + 10q4 + 10q5

6

6 321 2 : 0, 0/1 :
0/0

120 1210 1+3q+6q2+10q3+
14q4+17q5+18q6+
17q7+14q8+10q9+
6q10 + 3q11 + q12

6 222 1 : 0/1 :
0/1 : 0

90 614, 32 1+2q +5q2 +7q3 +
11q4+12q5+14q6+
12q7 + 11q8 + 7q9 +
5q10 + 2q11 + q12

16 + 14q + 16q2 +
14q3 + 16q4 + 14q5

6

6 2211 1 : 0/1 :
0/0/0

180 630 1+3q+7q2+12q3+
18q4+23q5+26q6+
26q7+23q8+18q9+
12q10+7q11+3q12+
q13

30 + 30q + 30q2 +
30q3 + 30q4 + 30q5

6

6 21111 1 :
0/0/0/0/0

360 660 1+4q+10q2+19q3+
30q4+41q5+49q6+
52q7+49q8+41q9+
30q10 + 19q11 +
10q12 + 4q13 + q14

60 + 60q + 60q2 +
60q3 + 60q4 + 60q5

6

6 111111 0/0/0/0/0/0 720 6120 1+5q+14q2+29q3+
49q4+71q5+90q6+
101q7 + 101q8 +
90q9 + 71q10 +
49q11 + 29q12 +
14q13 + 5q14 + q15

120+120q+120q2+
120q3 + 120q4 +
120q5

6



JEU DE TAQUIN AND CYCLIC SIEVING FOR FORESTS OF ROOTED TREES 9

4. Conclusion

Although our investigations have produced many results concerning the orbits of linear exten-
sions it appears that cyclic sieving is not a common occurance for general forests of rooted trees.
Since statements about CSP for a general forest seems unlikely, any further investigation should
probably focus on special classes of forests in the hope that there are other classes of forests besides
two chains which always exhibt CSP.
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