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Abstract

In [6], McNamara proved that two skew shapes can have the same Schur
support only if they have the same number of k x £ rectangles as subdiagrams.
This implies that two connected ribbons can have the same Schur support
only if one is obtained by permuting row lengths of the other. We present
substantial progress towards classifying when a permutation © € S, of row
lengths of a connected ribbon « produces a ribbon a, with the same Schur
support as «; when this occurs for all m € S,,,, we say that « has full equivalence
class. Our main results include a sufficient condition for a connected ribbon
« to have full equivalence class. Additionally, we prove a separate necessary
condition, which we conjecture to be sufficient. Finally, we show that our
separate necessary and sufficient conditions fully classify when ribbons with at
most 4 rows have full equivalence class.

Introduction

The question of when two skew diagrams yield equal skew Schur functions has been
studied in detail; for instance, see [1], [8], and [9]. However, the related question
of when two skew diagrams have the same Schur support (see Definition 0.2) has
received less attention, with the most substantial progress occurring in [6] (2007)
and in [7] (2011). Similarly, the question of when two skew diagrams have equal
monomial support (see Definition 0.4) has not been addressed to our knowledge.

In [6], P. R. W. McNamara proves that any two skew diagrams with the same
Schur support necessarily contain the same number of k x ¢ rectangles, for every
k, ¢ > 1. In [7], P. R. W. McNamara and S. van Willigenburg explicitly determine
the Schur support for a special class of skew shapes called equitable ribbons.



In this paper, we expand on the results presented in [6] and [7] by working to
classify which connected ribbons have the same Schur support under all permutations
of their row lengths; we say these ribbons have full equivalence class (see Definition
0.8).

In the next section, we provide preliminary information to aid the understanding
of the rest of the paper. In Section 1 (resp. Section 2), we provide a sufficient (resp.
necessary) condition for a connected ribbon to have full equivalence class. Then in
Section 3 we show that the sufficient condition from Section 1 and the necessary
condition from Section 2 completely classify which ribbons with 3 or 4 rows have full
equivalence class.

In the Appendix, we present miscellaneous results pertaining to the equality of
skew Schur support, classify the equality of monomial support among skew shapes,
and include sample code used to test Conjecture 2.4.

Preliminaries

We begin by establishing some preliminary information regarding Schur functions,
ribbons, Yamanouchi words, Littlewood-Richardson fillings, and R-matrices. In ad-
dition, we will present preliminary results regarding certain edge cases for which we
can easily classify which ribbons have full equivalence class.

Schur Functions

The Young diagram corresponding to a partition A = (A1, Ag,..., Ay) of an integer
n is a collection of boxes arranged in left-aligned rows, where the i-th row from the
top has A; boxes. A filling of a Young diagram with integers is called semistandard if
the integers increase weakly across rows and strictly down columns. Such a filled-in
Young diagram is called a semistandard Young tableau (SSYT).

Example 0.1. The following is an example of a semistandard Young tableau:

11111
21213/3/4[5]|5
31415

—_
[\
[\]

4]

We use weight or content to refer to multi-set of integers in the filling of a tableau.
The weight or content is denoted as a tuple v = (v, 15,...,1%), where v; is the



number of ¢’s in the filling of the tableau. For example, the content of the tableau
from Example 0.1 is v = (5,4, 3, 3, 3).

Schur functions are often considered to be the most important basis for the ring
of symmetric functions. Schur functions are indexed by integer partitions, where the
Schur function s, corresponding to a partition A is defined as

_ T t1 to t3
S,\(SEl,.IQ,Qfg,,...)— E T = E Ty Xy Ty (1)
T : SSYT of T : SSYT of
shape A shape A
where ¢; is the number of occurrences of ¢ in 7. The Schur function corresponding
to A can also be written as a linear combination of monomial symmetric functions:

Sy — E K,\”m#.
m

Here, K, denotes a Kostka number, which is equal to the number of semistandard
Young tableau of shape A and weight p, and m,, is the sum of all monomials '
where 1/ ranges over all distinct permutations of the parts of u.

We can generalize this notion of Schur functions to apply to skew shapes, which
are obtained by removing the Young diagram corresponding to the partition p from
the top-left corner of a larger Young diagram corresponding to the partition . Here,
we require that the diagram for y is contained in the diagram for A\, and we write the
resulting skew shape as A/u. When g is the empty partition, we call A\/u “straight.”
Skew Schur functions have an analogous definition to that of straight Schur functions,
where the sum in Equation 1 is instead over semistandard Young tableau of shape
A .

Skew Schur functions have the nice property that they are Schur-positive, mean-
ing that for any skew shape A\/pu,

_ A
Sx/p = CpSu

v

where 1/ denotes a straight partition, and where all coefficients c>‘ > 0. The coeffi-
cients c ,, are called Littlewood-Richardson coefficients, and will play an important
role in the Littlewood-Richardson rule (which we introduce in Theorem 0.10). This
relationship between skew Schur functions and straight Schur functions motivates
the following definition:

Definition 0.2. The Schur support of a skew shape A/u, denoted [A\/pu], is defined
as

Mul={v: ¢, > 0}



In other words, the support of a skew shape is the set of straight shapes v such that
s, appears with nonzero coefficient in the expansion of s/, into a linear combination
of straight Schur functions.

Remark 0.3. It is well known [10, Exer. 7.56(a)] that [a°] = [a], where a° is the
antipodal (180°) rotation of a ribbon a.

Since each skew Schur function can be written as a linear combination of straight
Schur functions, and since each straight Schur function can be written as a linear
combination of monomial symmetric functions, it follows that each skew Schur func-
tion can be written as a linear combination of monomial symmetric functions.

Definition 0.4. The monomial support of a skew shape A/, denoted mSupp(A/p),
is the set of straight shapes v such that m, appears with positive coefficient in the
expansion of s/, into a linear combination of monomial symmetric functions.

Until the Appendix, when we say “support,” we mean Schur support.

Ribbons

A ribbon is a skew shape which does not contain a 2 x 2 block as a subdiagram.
A skew shape is said to be connected if there exists a path between any two boxes
of the diagram using only north, east, south, and west steps such that the path is
contained in the diagram.

In this paper, we consider connected ribbons (i.e. skew shapes in which each pair
of consecutive rows overlaps in exactly one column). As such, any composition «
of an integer n determines a unique connected ribbon. We will use the notation
a = (a,9,...,q,) to denote a connected ribbon with m rows, where row 1 is at
the top of the ribbon, where row 7 has length «;, and where a; # 0 for all 1 < i < m.
For the remainder of the paper, when we say “ribbon,” we mean “connected ribbon.”

Definition 0.5. Let o = (a1, ag, ..., ) and ax = (Qz-1(1), r-1(2), - - -, Ax-1(m)) be
connected ribbons, where m € S,,, is a permutation written in cycle notation. We say
a; is a permutation of a.

Example 0.6. Below are all the permutations of the ribbon o = (4, 3,2):

Oé:‘ 06(23):‘ ‘ 04(12):‘



05(132):‘ ‘ ‘ CY(123):‘ ‘ 05(13):‘ ‘ ‘

In [6], McNamara proves that two skew shapes have the same Schur support only
if they have the same number of k x ¢ rectangles for all k£, ¢ > 1. This result has the
following implication for connected ribbons:

Proposition 0.7. Let a and 5 be connected ribbons such that [o] = [B]. Then
B = a, for some permutation ™ € S,,.

Proof. By [6], @ and (8 contain the same number of 2 x 1 rectangles as subdiagrams,
and therefore have the same number of rows — let’s say m rows. Label the row
lengths of «, indexing so that the row lengths weakly decrease as the index increases
(ie. oy > ay > -+ > a,,). Label the row lengths of 8 in the same way. It suffices
to show that o; = §; for all 1 <7 < m.

Suppose for the sake of contradiction that there exists an i € {1,2,...,m} for
which a; # ;. Choose the minimal such ¢ and assume, without loss of generality,
that «; > B;. It follows that a has more 1 X q; rectangles than g, contradicting
McNamara’s necessary condition for Schur support equality. Therefore, oy = [3; for
all 1 <1 < m, completing the proof. ]

We define a relation ~ between connected ribbons « and [, where a ~  when
[a] = [B]. It is clear that ~ is an equivalence relation. Then by Proposition 0.7,
a ~ [ only if § is a permutation of a.

Definition 0.8. A ribbon o = (g, g, . .., auy,) is said to have full equivalence class
if for any permutation 7 € S,,, we have a ~ «.

For instance, the ribbon o = (4,3,2) from Example 0.6 has full equivalence
class, since all of its permutations have support {(5,3,1),(5,4),(4,4,1),(5,2,2),
(4,3,2),(6,3),(7,1,1),(6,2,1),(7,2) }.

Yamanouchi Words and Tableaux

We now introduce the concepts of Yamanouchi words and Yamanouchi tableauz,
which will be essential for using and defining our main tool for proving equality of
support — the Littlewood-Richardson rule.

A Yamanouchi word is a word with the property that all of its initial subwords
contain no more i+ 1’s than i’s, for all integers i. For our purposes, we are concerned



with the reverse reading word of a tableau, which reads right-to-left across rows and
top-to-bottom from one row to the next. A Yamanouchi tableau is a tableau whose
reverse reading word is Yamanouchi.

Example 0.9. The following tableau is Yamanouchi because at any point along its
reverse reading word, 112213321, the number of 2’s is never greater than the number
of 1’s, and the number of 3’s is never greater than the number of 2’s.

1]1]

11233

Littlewood-Richardson Fillings

Littlewood-Richardson fillings (which we often abbreviate as LR-fillings) are fillings
which are both semistandard and Yamanouchi. These fillings play an important role
in the Littlewood-Richardson rule, which we are now ready to state.

Theorem 0.10. (Littlewood-Richardson rule) [5] If
S/\/;U« = Z C,l)\,L,I/SV’

then cfh is the number of Littlewood-Richardson fillings of A/ of content v.

v

The following corollary follows immediately from Theorem 0.10 and the definition
of Schur support (Definition 0.2), and will be more directly applicable to the proofs
in the remainder of the paper.

Corollary 0.11. For any straight shape v and skew shape N/, v € [N/ p] if and only
if there exists a Littlewood-Richardson filling of N/ with content v.

Example 0.9 continued. Notice that the filling in this example is semistandard
and has content v = (4,3,2). It follows from Theorem 0.11 that the straight shape
(4,3,2) is in the support of the ribbon with row lengths (2,3, 4).

In proofs throughout the remainder of the paper, we frequently utilize Corollary
0.11 by constructing Littlewood-Richardson fillings of tableaux. In proving sufficient
conditions for same support, the approach will be to show that if x is in the support
of a ribbon «, then we can find a LR filling of o/ with content x given an LR filling
of a with the same content. To prove necessary conditions for equal support, we
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will show that if « satisfies the conditions (%) and o' doesn’t, then there exists a
content for an LR filling of o (or ) that cannot be a content for a filling of o (or
a respectively).

Notation. We represent the filling of a row by the numbers that appear from left

to right in that row. We denote a string of k i’s in a row by i*. We will use the

notation "™ to mean we use all remaining i’s in that location, while i will mean
we write exactly the number of i’s which will fill the row (after having accounted for
what else is in the row). Finally, we may want to fill a row with 4’s, but then finish
filling the row with j’s in the event that the ¢’s run out before the row is full. We

denote this by writing i and (5.

R-Matrices

We will now introduce an algorithm which will be instrumental in proving our suffi-
cient condition for a connected ribbon to have full equivalence class. The R-matriz
algorithm, described in [3, Section 2.2.3], provides a way to swap two consecutive row
lengths in an arbitrary ribbon with a semistandard filling so that the filling within the
two rows remains semistandard and has the same content as before. Note, however,
that semistandardness of the ribbon as a whole is not necessarily preserved.

Let @ = (a1, ..., ) be a connected ribbon with filling F, and let «; and a4,
be the two row lengths we wish to swap. Observe that we can assume a; > ojq:
if a; = a1, we're done; if a; < «j41, we can consider the antipodal rotation of
a (by Remark 0.3). The R-matrix algorithm will utilize this fact and assume that
o > ajq1. The algorithm proceeds as follows:

1. Convert the filling of rows j and j + 1 to a box-ball system with the boxes
corresponding to the j* row on the left and the boxes corresponding to the
(7 + 1)* row on the right.

2. For each ball on the right (in an arbitrary order), connect it to the unconnected
ball on the left above it which is lowest. If there is no such ball on the left,
connect it to the lowest unconnected ball on the left.

3. Shift all unconnected balls on the left horizontally to the right.

4. Convert this box-ball system back into rows of a ribbon.

Example 0.12. [3, Sect. 2.2.3] Suppose we have a ribbon whose j* and (j + 1)*
rows are as follows.



11313147

11]3]5

Figure 1: Rows before swapping

Steps 1-3 of the R-matrix algorithm as applied to this partial tableau are depicted
below. Notice that the only ball movement is two balls in the third box from the top
shifting from the left to the right, as these were the only two unconnected balls on

the left.
% k %
1

Figure 2: Application of R-matrix algorithm

After applying step 4 of the R-matrix algorithm, we obtain the following partial
tableau:

104]7]
1113/3[3]5

Figure 3: Rows after swapping

Notice that the row lengths have swapped, while the content and semistandard-
ness of the filling has been preserved, as promised.

Edge Cases

Recall that we wish to determine when a connected ribbon has full equivalence class.
In certain edge cases, the answer to this question is straightforward.

Proposition 0.13. Any connected ribbon o with fewer than three rows has full equiv-
alence class.

Proof. In the case that « has only one row, the proposition follows trivially. Assume
that a has two rows. Then for any 7 € Sy, either o, = a or a,; = a°. In this case,
the proposition follows from Remark 0.3. O



As previously mentioned, we will frequently construct Littlewood-Richardson fill-
ings as a method of proving that two connected ribbons have equal or unequal Schur
support. Fortunately, it is often possible to make these fillings quite simple.

Definition 0.14. We call a filling of a tableau which uses only 1’s and 2’s a 1-2
filling.

Proposition 0.15. A ribbon o = (ay, e, ..., ) has a 1-2 Littlewood-Richardson
filling if and only if a; > 2 for 2 <i<m — 1.

Proof. Observe that if row ¢ has length 1 for some 2 < ¢ < m — 1, then any semis-
tandard filling of & contains a 3. On the other hand, if a; > 2 for 2 <i <m —1, we
can fill the first row with 1%, the last row with 1%, and all other rows with 12 to
obtain a 1-2 LR-filling. O

With the help of Proposition 0.15, we can classify when any connected ribbon
with at least one row of length 1 has full equivalence class.

Proposition 0.16. Let a = (ay, o, ..., ) be a ribbon with k > 0 rows of length
1. Then « has full equivalence class if and only if kK = m.

Proof. We will split this proof into three cases.

Case 1: k = 1. Consider any permutation a, of o such that the the first row has
length 1, and any permutation «, of « such that neither the first nor last row has
length 1. Then by Proposition 0.15, o, has a 1-2 LR-filling and «,, does not. There-
fore, by the Littlewood-Richardson rule (specifically Corollary 0.11), there exists a
straight shape of the form A = (A1, A2) in the support of a; that is not in the support
of .

Case 2: 2 <k <m — 1. We will split this case into two subcases:

Subcase 1: k = 2. Consider the ribbon o = (1,1, a3, au, . . . , ;) and the permutation
a@m) = (1,am, 03,04, ..., 0p1,1) of o, where a; > 2 for i € {3,4,...,m}. Then
by Proposition 0.15, o does not have a 1-2 LR-filling, while o3 ,,,) does. The result
follows from the Littlewood-Richardson rule.

Subcase 2: 3 < k <m — 1. Consider the ribbon

a= 1,00, 1,1, ., 1,1, o (k1) Qmies - - - > Q)5

k—1



and the permutation

a12) = (a27 17 17 SR ]-7 17 Am—(k+1)s Xm—k,y - - - 7O~/m)
k
of a. In the event that & = m — 1, omit au,—(k41); ¥m—k; - - -,y from the ribbons.

Then any content of a semistandard filling of a(; 9y contains a &, while it is easy to
see that there exists a content of an LR-filling of o that does not contain a k, so the
result again follows from the Littlewood-Richardson rule.

Case 3: k= m. In this case, a, = « for any 7 € S,,. It follows trivially that a has
full equivalence class. [

Remark 0.17. Having covered ribbons with fewer than three rows (Proposition
0.13) and with any number of rows of length 1 (Proposition 0.16), as we proceed we
only consider connected ribbons with at least three rows and no rows of length 1.

Now that we have established the necessary preliminary information and have
excluded edge cases from our consideration, we are ready to present our main results.

1 A Sufficient Condition

In this section, we prove a sufficient condition for a ribbon to have full equivalence
class (Corollary 1.5).

We begin with two lemmas, each of which establishes a property about the R-
matrix algorithm (introduced in the Preliminaries), which will be essential for the
proof of Theorem 1.3 (which implies Corollary 1.5). In Lemma 1.1, we prove that
the R-matrix algorithm preserves the Yamanouchi property of a ribbon with a LR-
filling. In Lemma 1.2, we prove that the bottom-left entry in the (j + 1)* row of
a ribbon with a LR-filling is not increased by the R-matrix algorithm — a step
towards showing that for certain ribbons, two rows can be swapped while preserving
semistandness of the filling.

We use the results of these two lemmas, in addition to some casework, to show in
Theorem 1.3 that under a certain condition on three adjacent row lengths of a ribbon
with an LR filling, the bottom two of the three adjacent row lengths can be swapped
while preserving the Yamanouchi property and semistandardness. By imposing this
condition on the entire ribbon, we get as a corollary a sufficient condition for a ribbon
to have full equivalence class.

10



Lemma 1.1. Let « = (v, ..., Q) be a ribbon. Leti € {1,2,...,m—1}. For a given
LR-filling & of a, applying the R-matrixz operation to rows i and i + 1 of v produces
a filling F' of a(ii+1) which is Yamanouchi (but not necessarily semistandard).

Proof. Since F is Yamanouchi, we only need to show that the initial reverse reading
words up to the i and (i + 1)** rows of F' are Yamanouchi. Denote the filling of
the i and (i 4 1)* rows of F by R and the filling of the 7" and (i + 1)*! rows of F'
by R'. Fix any j and assume that j and j 4+ 1 appear in R as follows:

G+ 1)

R N L

Let n; and 1,41 denote the number of j’s and (j+1)’s, respectively, in the reverse
reading word of ' by the end of the (i — 1)* row. Let M = n; — n;;1. Since J is
assumed to be Yamanouchi, we have that M > band M > b+ d — a.

Let = be the number of connected j’s on the left when executing the R-matrix
algorithm. Similarly, let y be the number of connected (5 + 1)’s on the left. Notice
that = > min(a, d).

Following the R-matrix algorithm, j and j + 1 occur in R as:

(4 1)Y -

. 'ja+c_x(j + 1)b+d—y -

Define the function 7(n) to be the number of (j + 1)’s minus the number of j’s
which have occurred within the first n elements of the initial reverse reading word
of R'. (For instance, 7(y) = y since the reverse reading word of R’ begins with
(7 + 1)¥.) Clearly r is maximal after a string of (j + 1)’s, so either after the length
y string of (j + 1)’s or after b+ d + z elements have been seen. We only have left to
show that the function r never exceeds M.

Notice that r(y) = y and r(b+d+2z) = (y+ (b+d—y)) —x =b+d— =z
Since y < b < M, we have that r(y) < M. For r(b+ d + x), we consider two
cases. If x > d, then r(b+d+2x) =b+d—x < b < M, as desired. On the other
hand, if x < d, then since > min(a,d) (as noted above), we have x > a. Then
rb+d+z)=b+d—2<b+d—a< M. This completes the proof. O

We have just shown that the R-matrix algorithm preserves the Yamanouchi prop-
erty of a ribbon with an LR-filling. Recall from the Preliminaries that the R-matrix
operation as applied to a ribbon with an LR-filling preserves semistandardness of
the filling within the two rows that are swapped; however, semistandardness of the

11



filling of the entire ribbon is not necessarily preserved. With the next lemma, we
prove another property of the R-matrix algorithm so as to work towards establishing
how we might use the R-matrix algorithm while preserving the semistandardness of
the entire ribbon.

Lemma 1.2. Let o = (v, ..., qy,) be a ribbon. Let i € {1,2,...,m — 1}. For a
given LR-filling F of a, applying the R-matrixz algorithm to rows i and i+ 1 to obtain
the filling ¥ does not increase the leftmost entry in the (i + 1) row from the top.

Proof. Suppose x is the entry of the leftmost box in the (i + 1)* row of F. Then by
the R-matrix algorithm, z is also in the (i + 1)** row of F'. Now the result follows
from the fact that the R-matrix operation preserves semistandardness within the two
TOWS. O]

The remaining way in which o; j41) with filling & " may not be semistandard is
for the number in the rightmost box of the i** row of a(; i+1) to be less than or equal
to the leftmost box in the (i — 1)* row (where a and F' are as in Lemma 1.2). This
is the main focus of the following proof.

Theorem 1.3. Let a = (ay, ag, ..., qy,) be a ribbon. Let a; < a1 + ayq for some
1 <i<(m—1), where ag = 0o. Then [a] C [0y i1y

Proof. Let F be an LR-filling of o with content p. Since antipodal rotation preserves
Schur support (Remark 0.3), we can assume without loss of generality that a; > ;1.
Perform the R-matrix algorithm on rows 7 and i+ 1 of a to obtain the ribbon oy j41)
with filling . We will refer to the labeling of boxes of « as shown in Figure 4,
where the top row shown in the diagram is the (i — 1)** row of a.

AL LTI 11
B

SQ

Figure 4: Labeled boxes of a

We denote the corresponding boxes of a; ;1) as A’, B', ", and D’. By Lemma
1.1, F' satisfies the Yamanouchi property. By Lemma 1.2, if i = 1 (the top row is
swapped), then we have achieved an LR-filling and we are done. So, assume i > 1
and we will now ensure semistandardness in the filling of boxes A" and B’ of a; j11).
Let the integers in boxes A" and B’ be a and b, respectively. If a < b, we are done.
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If b < a, simply swap a and b to obtain an LR-filling of c;11), and we are done.
Now, assume a = b.

Notice that if there is an entry w > b in the (i — 1)** row which is not rightmost,
then we may select the minimal such w and swap the b in box B’ with the leftmost
occurrence of w in the (i — 1) row to obtain an LR-filling with content p. Thus
we may assume that all entries except the rightmost entry of the (i — 1) row are b.
Since F was semistandard, the element in box B of F must have been strictly greater
than b. Then since that entry is clearly not in the i row of F', it must have been
taken to the (i + 1)** row by the R-matrix algorithm. Hence, there must be some
entry of F' in the (i + 1)*! row of av; ;41) Which is greater than b.

Now, if any entry z (besides the leftmost) of the (i+ 1) row is less than b, we can
select the maximal such x and swap the b in box A’ with the rightmost occurrence
of x to obtain a valid LR-filling. Therefore we can assume that all entries except the
leftmost of the (i + 1)* row are greater than or equal to b.

Additionally, if any entry (besides the leftmost) of the i row is less than b, we
can choose the rightmost such entry and exchange it with the b in box A’ to obtain
a valid LR-filling. Thus we can assume that all entries except the leftmost entry are
equal to b.

Now, let y denote the leftmost entry of the i** row, and consider the case where
y # b. In this case, y < b by the preservation of semistandardness within the two
rows swapped. It follows that we can swap y with the b in box A’ and be done,
since we know that the rightmost entry in the (i + 1)% row is strictly greater than b.
Therefore we may assume that y = b.

By the above arguments, we may assume the entries shown in Figure 5, where
g and z are unknown. (In case the notation is unclear, in the (i + 1) row, we are
attempting to convey that all but possibly the leftmost entry is at least b; additionally,
recall that the rightmost entry is strictly greater than b.)

blb[-[-1-1b]b]b]z]
b[o[-[-|b

gl-|-[>]b]-

Figure 5: Assumed entries of F'
We finish the proof by looking at two cases. In order to distinguish between

the two cases, we need to set up some additional notation. Let s be value of the
leftmost entry in the (i 4+ 1) row which is greater than b. Let R be the filling of
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the subdiagram of ' consisting exactly of the (i — 1), i* and (i + 1)** rows, except
excluding the rightmost box of the (i — 1)* row and all boxes to the left of the
leftmost entry with values less than or equal to b in the (i + 1) row.

Let V. be the initial partial tableau of £ which ends immediately after the z.
For every integer n, let M, be the number of n’s which occur in the initial reverse
reading word of V..

Case 1: M, > M,,,. In this case, we argue we can swap the b in box B’ with an
appropriate entry from the row below.

Consider the leftmost box in the (i+ 1) row with entry s. If this is the rightmost
box of row i + 1, then the i and (i + 1) rows together contain at most two entries
not equal to b: ¢ and s, where ¢ < b < s. Since s is the lone entry greater than b in
rows i and i +1 of F', in order for F to have been semistandard in rows i — 1 and 4,
the s must have been in box B of F. Now, looking at the 2 x 1 box overlap between
rows ¢ and i + 1, we see ¢ must have been the leftmost entry of the i** row of F.

However, the R-matrix algorithm would have kept ¢ in the i row; more specifi-
cally, having no other numbers smaller than b on the left, a b on the right would be
connected to ¢ on the left. This contradicts the filling F'. We therefore conclude
that the leftmost s cannot be in the rightmost box of the (i+1)* row of F'. It follows
that swapping the leftmost s with the b in box B’ of " will produce a semistandard
Young tableau. We will call the filling after this swap L.

We now argue that £ will also be Yamanouchi. If s # b+ 1, then the filling clearly
retains its Yamanouchi property — this would mean that there are no occurrences
of either b+ 1 or s — 1 in the i or (i +1)* rows and so making s appear earlier and
b appear later in this segment will not violate the Yamanouchi property.

Thus we may assume that s = b+ 1 (but we will still write s for formatting
purposes). Then £ has the entries shown in Figure 6, where we indicate that the
(i+1)* row, to the right of its leftmost entry, has a string of b’s, followed by a string
of numbers at least s.

blol-[-[-[o]b]b]z]
bl-1-]bls

q|bl-[b]>]s

Figure 6: Assumed entries of £

Let r(n) be the number of b’s that occur in the first n elements of the initial

14



reverse reading word of R, minus the number of s’s that occur in the same string.
Since M, > M, by assumption, in order to show that £ is Yamanouchi, it will be
sufficient to show that r(n) is never less than —1.

The reverse reading word of R is b®-171gh®+171 x ... x s where the *’s are all
at least s. Clearly the function r is minimal when all the *’s are equal to s, so we
may assume that we have b%-171sp%+171s* where k < a; — 1. To see that r(n) is at
least —1 everywhere, we want to show that o;_; —1 > 1 (which is clear) and that
(io1—1+ a1 —1)—(k+1) > —1. It will be helpful to notice that a; < ;1 + 11
can be rewritten as a; +1 < ;1 + ;1. We then get that

kﬁai—lz(ai—|—1)—2§04i71+042-+1—2.

Finally, £ < a;_1 + 11 — 2 implies that (o1 — 1+ a;41 — 1) — (k+ 1) > —1. This
completes Case 1.

Case 2: M, = My,1. Let u = b+ 1 for notational simplicity. First we argue that
z # b by proving the following claim.

Claim 1: In the reverse reading word of V,, the last v must occur after the last b.

Proof of Claim 1. Suppose for the sake of contradiction that the last u occurs before
the last b in the reverse reading word of V,. Then the initial reverse reading word
of V., ending immediately before the last b contains M, u’s and M, —1 = M, — 1
b’s, meaning this initial reverse reading word is not Yamanouchi. This contradiction
completes the proof. ]

In particular, this implies that z # b. Now, let ¢ denote the entry immediately
above z in F'. If t # b, then the b in box B’ can be swapped with one of z or ¢ to
obtain a valid LR-filling. We can therefore assume ¢ = . Then by Claim 1, we must
have z = u. So, we can update our assumed entries of F'.

bib[-[-[-[o[b]blu
blbl-|-]b

g |- [>]b]

Figure 7: Updated assumed entries of F'

Now scan the tableau corresponding to ' from the (i — 2)" row upwards. First

suppose we reach a row which contains multiple entries greater than . Then we can
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easily swap the leftmost such entry with the b in box B’ to obtain an LR-filling. As
a result, we may assume that we do not encounter a row with more than one entry
greater than b. In particular, we may assume that any u appearing above the (i —1)*
row must be in the rightmost box of its row, by the semistandardness of F'. We will
use the following claim to complete the proof of this theorem.

Claim 2: There exists a u in the rightmost box of some row above the (i — 1)* such
that the entry immediately above the w is less than b.

Proof of Claim 2. First we argue that there exists a u in a row above the (i — 1)
row. Suppose that the v in the (i —1) row is the topmost u in the tableau. Consider
what is immediately to the right of the b in the leftmost box of the (i — 2)"¢ row.
This entry cannot be b by the assumption that M, = M,; however, it also cannot
be greater than u since the tableau is Yamanouchi. Thus we conclude that there
exists a u in a row above the (i —1)* row. Additionally, by the paragraph above the
statement of Claim 2, any such « must be in the rightmost box of its row.

Notice that by the Yamanouchi condition, no u can appear in the first row (since
u > b), so each u necessarily has a box immediately above it. Assume for the sake of
contradiction that every u above the (i —1)% row has a b immediately above it. Then
since M, = M,,, we have that all of the b’s in the first (i — 2) rows are immediately
above a u. Now, consider the topmost b. Since it is immediately above a u, it must
be the leftmost box in its row. Since all rows are at least 2 boxes in length (Remark
0.17), there is an entry immediately to the right of this topmost b. This entry must
be at least b by semistandardness. However, if it is b, it contradicts the assumption
that M, = M,; if it is greater than b, it contradicts the fact that our tableau is
Yamanouchi. In either case, we reach a contradiction, so we conclude that there
exists a u in the first (i — 2) rows with an entry not equal to b immediately above it.
By semistandardness, this entry must be less than b. ]

It is easy to see that swapping the u given by Claim 2 with the b in box B’
produces an LR-filling. This completes the proof of Theorem 1.3.
O

Since adjacent transpositions generate the symmetric group, the above theorem
gives the following sufficient condition for a connected ribbon to have full equivalence
class. Before stating this corollary, we give a quick definition.

Definition 1.4. We say integers © < y < z satisfy the strict triangle inequality if
z < x +y. In this case, we may also say that {z,y, 2z} satisfies the strict triangle
inequality.
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Corollary 1.5. Let a = (aq,a9,...,ay,) be a ribbon. If all 3-subsets of {oy;}™,
satisfy the strict triangle inequality, then o has full equivalence class.

Proof. Let i € {1,2,...,m — 1} be arbitrary. As noted above, it will be sufficient to
show that [a] = [0y i41)]. If a; = @41, this result follows trivially. Then by Remark
0.3, we can assume without loss of generality that «; > «a;,1. By assumption,
a; < i1 + 0441, so Theorem 1.3 implies that [o] C [0y i41)]-

To show containment the other way, consider the antipodal rotation a® = (v, -1,
...,oq) of a, with ap, ; = 0 for convenience. Let j = m + 1 — i, so that o] = o
and A = Qg1 Note that 7 > 2 since © < m. Thus we want to show that
[O‘(()jfl,j)] C [e].

Since ; > 41, we have that o > a7 _; and by assumption, o < ai ; + a;_,.
Since swapping o and aj_; in ;-1 4 8ives us a° back, Theorem 1.3 gives us that
[af;_1 ] € [@°], completing the proof. O

Having proven a sufficient condition for a ribbon to have full equivalence class,
we now prove a separate necessary condition.

2 A Necessary Condition

Theorem 2.1. Let a = (ay, (g, ..., (v) be a ribbon, where ap > g > -+ > Q. If
a has full equivalence class, then N; < ZZ]‘H a;—(m—7—2) foralll <j<m-2,
where

Ny =max{k| >  (k—a;)<m-—j—2}.

i<j: a; <k

Although this condition may appear a bit convoluted, the following remark and
lemma may help motivate it.

Remark 2.2. We will always have o; < N; < a; +m —j —2. In particular, N; = «;
whenever j = m—2, while N; = aj+m—j—2 if and only if o; < a1 — (m—j —2).

Lemma 2.3. Let a = (a1, 9, ..., Q) be a ribbon, where a; > g > -+ > oy, If
Nj >3 0 ai—(m—j—2) for some j € {1,2,...,m — 2}, then aj > ajy1.

Proof. Assume that N; > 37" a; — (m —j —2) for some j € {1,2,...,m—2}. It
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follows that

ajs1 S Nj+(m—j—2)— Z Q;
i=j+2

<a;j+2(m—j—2)— E o
i=j+2
<C¥j,

where the second inequality follows from the upper bound on N; given in Remark
2.2 and the third inequality follows from Remark 0.17. [

Additionally, our proof of Theorem 2.1 should make the condition more intuitive.

Proof of Theorem 2.1. We prove by contrapositive. Fix j € {1,2,...,m — 2} such
that N; > >3 a; — (m —j — 2). We will give an LRilling of a; j;1) of content
i such that o has no LR filling of content pu.

Fill a; j11) as follows (we'll call this filling &F). Fill the i row entirely with i’s
for i < j. Put a1 (j 4+ 1)’s in the rightmost boxes of the (j + 1)* row and fill the
remaining boxes in this row with j’s. Note that by Lemma 2.3, the leftmost entry of
the (j+1)* row in this filling is a j (meaning this row is longer than «; in length).

We now fill the remaining m — j — 1 rows with as many (5 + 1)’s as possible;
put (5 + 1)’s in all but the leftmost box of the next m — j — 2 rows, as well as in
every box in the last row. Now the only empty boxes are the leftmost boxes in rows
Jj+2,....,m—1. We will call these remaining boxes critical bozres. Fill the critical
boxes from top to bottom according to the following algorithm: in each box, put
the largest integer < j such that the initial reverse reading word through that box
remains Yamanouchi. In practice, we will use exclusively j’s until the number of
j’s in the tableau equals the number of (7 — 1)’s. Then, we will alternate between
(j — 1)’s and j’s until the number of (j — 1)’s equals the number of (j — 2)’s. At
this point, we rotate between placing j’s, (j — 1)’s, and (j — 2)’s until the number of
(7 — 2)’s equals the number of (5 — 3)’s. We continue in this manner until all boxes
have been filled. In order to prove this algorithm gives an LR-filling, we will show
that this filling has exactly N; j’s.

First we define a “round”. Consider the sequence of numbers ¢y, ¢z, ..., Cpn_j_2
written into the critical boxes from top to bottom. Let J = {¢; : ¢; = j}. Now
partition ¢y, ..., cy—j_2 into rounds, where each round is a consecutive subsequence
of ¢1,...,¢m_j_2 whose last element is in J but with no other elements in J (i.e. a
round ends if and only if a j is encountered).
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Claim: If r rounds can be completed before reaching the bottom, then at the end of
the 7" round, we have filled exactly

Z (o +1 — )

1<j: a;<aj+r

critical boxes. In particular, each number ¢ < j such that o; < o; + r has occurred
in exactly o +r — o critical boxes.

Proof of Claim. We will use induction on r. The claim trivially holds when r = 0.
Now consider an arbitrary r > 0 (such that r rounds can be completed before reaching
the bottom) and assume the claim holds for 7—1. In the 7 round, we will write every
number that was used in the (r — 1)** round one more time, as well as any number
¢ satisfying ay = a; +r — 1. Therefore, the latter numbers will each fill exactly 1
critical box after r rounds, as appropriate since, by choice of ¢, a; +r —a, = 1. All
numbers which appeared in the (r — 1)* round have now occurred in a critical box
one more time than before. For a fixed number ¢, by the induction hypothesis, this
isaj+(r—1)—o;+1=a; +7— «; times. This completes the proof of the Claim.

O

Clearly the number of j’s in F is «; plus the number of rounds executed before
running out of critical boxes. That is,

pj = o + max{r | Z aj+r—o; <m-—j—2}

1<j:a; <o +r

= max{k : Z (k—a;) <m—j—2}=Nj.

i<jra;<k

In particular, p; = Nj.

By construction, p; < pj—1 < --- < p;. Semistandardness is also clear by
construction, so we all that is left to check is that p; > p;y1. Indeed, pj11 =
D iejp @i — (m — j —2), so this condition follows by our assumption that N; >
> imjp @i — (m—j—2), which gives that p; = N; > > 7" oy — (m—j —2) = pjp.

We now show that o does not have an LR-filling of content p. By the Yamanouchi
property and semistandardness, there cannot be any (j+1)’s above the (54 1) row.
It follows that the maximum number of (j+1)’sis > 7" @i — (m —j — 1) < p141.
Therefore there is no LR-filling of o with content p and by Corollary 0.11, u is in
the support of a; j+1) but not of a. O

Conjecture 2.4. Let « = (o1 > g > ... > ) be a ribbon with each a; > 2 and
m > 3. Then, o has full equivalence class if and only if N; < szﬂ a;—(m—j—2)
foralll <753 <m-—2.
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We have proven that the condition in Theorem 2.1 is necessary for a ribbon to
have full equivalence class, and have just conjectured it to be sufficient. We now
show that this condition is in fact sufficient for m = 3 and m = 4. We have also
verified by computation that this condition is sufficient for m =5, m =6, and m =7
for certain n (see Appendix for sample code).

3 General Results Applied to Small Cases

In this section, we support Conjecture 2.4 by proving that the condition it mentions
is both necessary and sufficient for m = 3 and m = 4.

3.1 Ribbons With 3 Rows

Let us first consider what the condition from Conjecture 2.4 is in the m = 3 case.
This condition requires that 1 < 7 < m — 2 = 1, meaning that we only need to
consider j = 1. Then by Remark 2.2, N; = a; = a;. The conjectured necessary and
sufficient condition from Conjecture 2.4 therefore amounts to

3
N1:a1<Zai—(m—j—2):a2+a3—(3—1—2):a2—|—a3
=2

Y

As we see, Conjecture 2.4 would imply that when m = 3, having row lengths
which satisfy the strict triangle inequality is both necessary and sufficient for having
full equivalence class. Before proving in Theorem 3.4 that this is in fact the case, we
state the lemmas that we need for the proof of Theorem 3.4 and a definition needed
for the lemmas. Since the proofs of these lemmas are long and technical, we will
defer their proofs until later.

Definition 3.1. In a ribbon o = (a1, @, ..., ), a row j is considered to be long
if 1 <j<manda; >3 a;—2(j—2),orif j=mand a; > 371 a; —2(j - 2).
Lemma 3.2. Let «; be the longest length of a row in the connected ribbon o. Then

no long rows occur beneath the first occurrence of a row of length a;.

Lemma 3.3. Let o = (ay, o, . .., i) be a Tibbon. Let j be the largest row index such
that row j is long; if o has no long rows, let j = 1. Let { = max(o; +m — 2, [n/2])
if j =1 o0rj=m, and let { = max(a; + m —3,[n/2]) if 1 < j < m. Then there
exists a 1-2 LR-filling with p 1’s if and only if

(<p<n—(m-—1).
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Now we can state and prove the theorem we wanted:

Theorem 3.4. Any ribbon of the form o = (aq, s, a3) where a; > ay > ag, has full
equivalence class if and only if oy, as, ag satisfy the strict triangle inequality.

Proof. If aq, s, ag satisfy the strict triangle inequality, we have by Corollary 1.5 that
« has full equivalence class. Conversely, assume that a; > as + ag. It follows that
a; +m —3=a; > [n/2] and that ay > ay. Therefore Lemmas 3.2 and 3.3 imply
that there exists a 1-2 LR-filling of o129y = (a2, oy, a3). However, the same lemmas
also imply that any 1-2 LR-filling of « requires at least a; +m —2 =a; +1 1’s. So
(a1, a2 + a3) € [aq,2)], but (a1, as + as) ¢ [af. O

3.2 Ribbons With 4 Rows

This subsection will proceed analogously to Subsection 3.1, but will also include
some additional general results (such as Corollary 3.7) and results specific to m = 4
(such as parts of Theorem 3.5), which are not strictly necessary for proving that
Conjecture 2.4 holds for m = 4.

As in the previous subsection, let us first consider what Conjecture 2.4 implies in
the case of m = 4. Since 1 < j <m —2=4—2 =2 in the statement of Conjecture
2.4, we need only consider j = 1 and 7 = 2. In the case of j = 1, we get that
Ny = max{k| k — oy <4 —1—2 =1}, which implies that N; = a; + 1. Therefore,
we get the condition

N1:a1+1<a2+a3+0z4—(m—j—2):a2+a3+a4—1
= o <qp+ag+ag—2

In the case that j = 2, we have from Remark 2.2 that Ny = «s, which implies the
condition
No=as<az+as—(m—7—2)=a3+ ay.

We will soon prove, in Theorem 3.6, that these conditions classify exactly when
ribbons with 4 rows have full equivalence class. Before we do that, we state Theorem
3.5, which will be helpful in proving Theorem 3.6. Similar to Subsection 3.1, we will
defer the long and technical proof of Theorem 3.5 until after we have proved the
more significant result of Theorem 3.6.

Hypothesis 1. Let a = (aq, oo, a3, ) be a ribbon where aq + as + a3+ ay = n and
the following inequalities are satisfied:

(a) oy > e > a3 > ay
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(b) a1 > as + a3
(c) as < az+ ay

(d) o < Qg+ (g + Oy

Theorem 3.5. Suppose we have a ribbon o = (o, s, a3, ay) satisfying the condi-
tions of Hypothesis 1. Then the following hold:

1. « has mazimal support equivalence class if and only if oy < [n/2] — 1.

2. Forn even, ifa; = n/2—1, then (n/2,n/2) & [(a1, e, a3, a4)], but (n/2,n/2) €
[(062, aq, (g, @4)] .

3. Forn odd, if oy = [n/2] — 1, then (|n/2],|n/2],1) and ([n/2], |n/2]) are in
the support of (ag, ay, sz, ay), but not in the support of (o, g, arg, ary).

Theorem 3.6. Let o = (v, g, a3, aq) be a ribbon where iy > ag > a3 > ay. Then
a has full equivalence class if and only if

(1) an < ag + g+ ay — 2, and

(ZZ) O < (g + Ouy.

Proof. As explained at the beginning of the section, conditions (i) and (ii) are nec-
essary for a connected ribbon « to have full equivalence class (by Theorem 2.1).
Conversely, if a1 < as + ag, then it follows from Corollary 1.5 that « has full
equivalence class. So, assume that a; > as + as. Notice that by (i), 204 < n — 2,
meaning oy < [n/2] — 1. In this case, we have from Theorem 3.5 (1) that « has full
equivalence class. O

We now turn our attention to proving the auxiliary results we used above: Lem-
mas 3.2, 3.3, and Theorem 3.5. We are ready to prove the two lemmas, but Theorem
3.5 takes more work to prove; we finally do so at the end of this section.

Lemma 3.2. Let o be the longest length of a row in the connected ribbon . Then
no long rows occur beneath the first occurrence of a row of length a;.

Proof. Assume, for the sake of contradiction, that there exists a long row, k, occur-
ring beneath a row of length «;. Then

k—1
ak>2a2—2kz 2) = o + [Zaz > ai—2(k—2)| >y,

i=j+1
where we have used our assumption from Remark 0.17. However, this is a contra-
diction, since oy, < o; by assumption. O
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We will now prove Lemma 3.3, which classifies exactly which contents are possible
for 1-2 LR-fillings of a connected ribbon with four rows. This classification, as well
as being helpful for proving Theorems 3.4 and 3.6 above, will be an essential tool in
proofs throughout the remainder of the subsection.

Lemma 3.3. Let a« = (o, o, . .., i) be a Tibbon. Let j be the largest row index such
that row j is long; if o has no long rows, let j = 1. Let £ = max(o; +m — 2, [n/2])
if j =1 o0rj=m, and let { = max(a; + m —3,[n/2]) if 1 < j < m. Then there
exists a 1-2 LR-filling with p 1’s if and only if

(<p<n—(m-—1).

Proof. For any value of j, we can obtain a 1-2 filling with n — (m — 1) 1’s by filling
all boxes with 1’s except the boxes which are the bottom box of a 2 x 1 rectangle,
which we will fill with 2’s. Since each row has length at least 2 (by our assumption
stated in Remark 0.17), we obtain a LR-filling.

To obtain a LR-filling with exactly ¢ 1’s, we will split the proof into three cases:
j=1,7=m,and 1 < j < m. Once we have obtained such a filling, we can
replace some 2’s with 1’s until we reach n — (m — 1) 1’s to obtain a filling with
(<p<n—(m-—1) s

Case 1 (j = 1): We show that in both subcases (i.e. £ =a;+m—2and £ = [n/2]),
there exists a 1-2 LR-filling with ¢ 1’s.

Subcase 1 ([n/2] < a; +m — 2): Fill the first row of o with 1’s. Proceed to put
I’s in the top box of the remaining 2 x 1 rectangles (of which there are m — 2).
Thus we have used (a; + m — 2) 1’s. Fill the remaining boxes with 2’s. Since
[n/2] < a;+m —2, we know that this filling has more 1’s than 2’s. Assume, for the
sake of contradiction, that we have violated the Yamanouchi property. Then there
exists some row k in which the number of 2’s surpasses the number of 1’s for the first
time. We have by assumption (Remark 0.17) that every row has length at least 2.
Therefore, since each remaining row has at most one 1 (and since row m is all 2’s),
the number of 2’s that will be added below row k is greater than the number of 1’s
to be added below row k. This contradicts the fact that there are ultimately more
1’s than 2’s in the filling. Therefore, our filling is a LR-filling.

Subcase 2 ([n/2] > a; + m — 2): Begin with the filling described in Subcase 1 (which
now has fewer 1’s than 2’s). Starting in the second row and reading left to right across
rows, replace every 2 that is not part of a 2 x 1 rectangle with a 1 until there are
[n/2] 1’s. Suppose this process terminates at row k. It is clear that we do not
violate the Yamanouchi property in any row higher than k. Assume, for the sake of
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contradiction, that we violate the Yamanouchi property in the row k. If there are x
2’s in this row, we get

x+(k5—2)>iai—(k—2).

This implies that z > Ef:_ll a; — 2(k — 2), contrary to the assumption that j = 1
(i.e. that no row past row 1 is long). It is clear that in the rows after we have placed
[n/2] 1’s, we do not violate the Yamanouchi property.

Case 2 (j = m): We have that n = 327, o; and that a,, > 327" o — 2(m — 2).
It follows that

/2] = {am + 22:::1 OCZW < [am + (am + 2(m — 2))

=a, 2
9 —‘a—l—m

Therefore, ¢ = a,,, + m — 2. Begin by filling the first row of a with 1’s. Put 2’s in
the rightmost box of each of the rows 2 through m — 1. Fill the remaining boxes
of rows 2 through m — 1 with 1’s. The number of 1’s used in the filling so far is
S o —(m—2), while the number of 2’s used so far is m—2. Now, fill the rightmost
portion of row m with 37" ; — 2(m — 2) 2’s (bringing the total number of 2’s to
Sy — (m — 2)). Next, fill the rest of row m with oy, — (30" oy — 2(m — 2))

1’s, bringing the total number of 1’s to

m—1

am—Zai+2(m—2)+(2ai—(m—2)):am+(m—2).

i=1
It is clear that we have not violated the Yamanouchi property.

Case 3 (1 < j < m): We will consider both the subcase where [n/2| < a; +m —3
and the subcase where [n/2] > a; +m — 3.

Subcase 1 ([n/2] < aj +m — 3): Fill the first j rows with o; + (j — 2) 1’s and
S i —(j—2) 25, as in Case 2. Since j < m, we have a;; > >°7_! a;—2(j —2) (the
number of 2’s in row j), meaning there is at least one 1 in row j. To fill the remaining
m— j rows, place a 1 in the top box of each remaining 2 x 1 rectangles (of which there
are m—j—1); this brings the total number of 1’s to a;;+(j—2)+(m—j—1) = a;+m—3.
Finally, we will use 3 3"\ a; — (m — j — 1) 2’s to fill the remaining boxes.
Assume, for the sake of contradiction, that we have violated the Yamanouchi
property. It is clear that we do not violate the Yamanouchi property above or in row
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J. Then there exists some row k > j in which the number of 2’s surpasses the number
of 1’s for the first time. However, by the same argument as in Case 1: Subcase 1, this
would contradict the fact that there are ultimately more 1’s than 2’s in the filling.
Therefore, our filling is a LR-filling.

Subcase 2 ([n/2] > a; +m — 3): Start with the filling described in Subcase 1, which

now, by assumption, has strictly fewer than [n/2] 1’s. Starting from the j* row and
reading left-to-right across rows, change all 2’s that are not part of a 2 x 1 rectangle
to 1’s until there are [n/2] 1’s. Tt is clear that we do not violate the Yamanouchi
property in all of the rows above where we stop changing 2’s to 1’s (since each such
row has at most one 2). If we stop changing 2’s to 1’s in the j** row, it is again clear
that we do not violate the Yamanouchi property (since we have by the construction
in Case 2 that first j rows comply with the Yamanouchi property). Assume, for the
sake of contradiction, that we violate the Yamanouchi property in a row k& > 7 where
we place the ([n/2])"? 1. Then the number of 1’s in the first k — 1 rows is

k-1

S - (k—2) (2)

i=1
and the number of 2’s in the first k rows is

k-1

(k=2) + o — ([n/2] = )i+ (k= 2))]. (3)

i=1

Since, by assumption, we violate the Yamanouchi property, it must be the case that
(3) > (2), which gives
ag > [n/2] — (k — 2).

Additionally, we know that there are fewer than [n/2]| 1’s in the first & — 1 rows,
meaning

(n/2] > Zai — (k—2).

Combining these inequalities yields

k—1
ak>Za,~—2(l€—2), (4)

but we let j be the last row such that «; satisfies (4). Therefore, we have a con-
tradiction, meaning we do not violate the Yamanouchi property in the row we stop
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placing 1’s. Below this row, we clearly do not violate the rule, since we already have
[n/2] 1s.

Converse: We now show that if p < £ or p > n — (m — 1), then there does not exist
a 1-2 LR-filling with p 1’s. Clearly there is no way to fill with more than n — (m —1)
1’s because that would require some 2 x 1 rectangle to contain two 1’s, which violates
semistandardness. Additionally, regardless of j, if £ = [n/2], there is clearly no 1-2
LR-filling with p < ¢ 1’s. Since [n/2] = a;;, +m — 2 in Case 2, the converse of Case
2 has been shown, and we only have Case 1: Subcase 1 and Case 3: Subcase 1 left
to consider.

It is clear by construction that the filling in Case 1: Subcase 1 uses the minimum
number of 1’s, since using fewer 1’s necessarily violates either the Yamanouchi prop-
erty or semistandardness. In Case 3: Subcase 1 (where { = a; +m — 3), note that
the number of 2’s in the first j rows is at most the number of 1’s in the first j — 1
rows. Moreover, the number of 1’s in the first j — 1 rows is at most Y27_1 a; — (j — 2).
Thus the number of 1’s in the first j rows is at least

J Jj—1

=D ai—jt+2)=a;+j-2

=1 =1

Since there are m — j rows below the j-th row, there are m —j —1 further occurrences
of 2 x 1 rectangles, so the number of total 1’s is at least a; +j -2+ (m —j—1) =
aj +m—3 =1L O

We now present a corollary of Lemma 3.3, which is another necessary condition
for a ribbon to have full equivalence class. Although the necessary condition in this
corollary is strictly weaker than the necessary condition from Theorem 2.1, it is much
more easily understood.

Corollary 3.7. Let « = (a1, qa, ..., ay,) be a ribbon of size n with a full equivalence
class. Then there exists an m-gon with side lengths being the row lengths of c.

Proof. To prove the contrapositive, we assume that there does not exist an m-gon
with side lengths equal to the row lengths of a. Then there exists some «; >
7j—1 m
Doict @+ Zi:j—l-l Q.
Consider a permutation «, of a where 7(j) = 1. Let us show that a, has no
long rows beneath a1y = a;. Assume, for the sake of contradiction, that a1y
is long for some k£ > 1. Then we have

k—1 k—1 m
Qr=1(k) > Zaﬂ—l(i)—2<k—2) = Oéﬂ.—l(l)—l-(z Oéﬂ-—l(i)—Q(k—Z)) > Qr=1(1) > ZOéﬂ—l(i) > Qr—1(k) »
i=1 =2 i=2
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a contradiction; here, we have used our assumptions from Remark 0.17.

Notice that since m > 3 and a; > [n/2], we have that o; +m—2 > a;+m—3 >
[n/2]. Therefore, we have from the j = 1 case of Lemma 3.3 that there does not
exist a 1-2 LR-filling of o, with fewer than o; +m — 2 1’s.

Now, consider a permutation «, of @ where o(j) = 2. By a similar argument as
before, there does not exist an a,-1) with k # 2 such that a,-1¢) > Zf;ll Qg—1(i) —
2(k — 2). Therefore, applying the 1 < j < m case of Lemma 3.3, we get that there
exists a 1-2 LRfilling with o; +m — 3 1’s.

Therefore, (a;+m—3,n—(a;j+m—3)) € [a,], but (aj+m—3,n—(a;+m—3)) &
[a;], meaning « does not have full support equivalence class. ]

Now that we have established Lemma 3.3 (our main tool for the remaining proofs
in this section), we establish a set of conditions that will help us classify the ribbons
a = (aq, ag, ag, ayy) which have full equivalence class but do not satisfy the condition
of Corollary 1.5 (the strict triangle inequality). (These ribbons are the subject of
Theorem 3.5.)

Remark 3.8. Let 5 = (1, B2, B3, 84) be a ribbon such that 8, > B > 5 > B4 and
such that every size 3 subset of {1, 2, 83, 4} satisfies the strict triangle inequality.
Notice that [ then satisfies conditions (a), (c¢), and (d) of Hypothesis 1. However,
for the proofs in this subsection, it is often convenient to assume condition (b) of
Hypothesis 1. As a result, we use Corollary 1.5 to classify ribbons of the same form
as [, and will not include such ribbons in Hypothesis 1.

We now establish two lemmas which are also used to prove the main result of
this subsection, Theorem 3.5.

Lemma 3.9. Let o = (aq,as,a3,aq) be a ribbon which satisfies the conditions of
Hypothesis 1. Let A be the set of permutations o of a, where w(1) = 1. Then for
any oy, a5 € A, (o] = [ov).

Proof. Let o, a5 € A. Let v1, 72, 73, and 74 be the lengths of the first, second,
third and fourth rows of «.,, respectively, and define 9, analogously. Thus, we have
7 = 0 = o and {72,73,74} = {52,53,54} = {0427043,044}. Let p = (M17M27,U37,M4),
where p; indicates the number of i’s in the content. In the following cases, we show
that for any content p, there is an LR-filling of a, with content y if and only if there
is an LR-filling of ay with content pu. More specifically, for each possible type of p,
we give an algorithm for constructing an LR-filling of a., with content y; since this
algorithm does not depend on the order of the last three rows of c., this functions
to show that [a,] = [as].
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Case 1: p3 = 0. By Lemma 3.2, the second, third, and fourth rows of both a., and
as are not long. It follows from Lemma 3.3 that there is an LR-filling of ., with
content p if and only if there is an LR-filling of s with the same content.

Case 2: p4 > 0. Within this case, we examine two subcases.

Subcase 2a: o > .

Row Filling
1
1ﬁll (2ﬁll)2,u3
1rem.2ﬁll3,u3
grem. 4 ju4

=W N

We fill the first row entirely with 1’s. The rightmost portion of the second row
is filled with as many 2’s as there are 3’s in the whole filling; the leftmost portion
of the second row is then filled with 1’s, and is finished with 2’s if we run out of
1’s. (Notice we can’t run out of both 1’s and 2’s in the second row because there
are at least o of each and there are only oy + v, boxes in the first two rows.) We
next fill the rightmost portion of the third row with all of the 3’s. Then we fill the
leftmost portion with the remaining 1’s, using 2’s if we run out of 1’s. The last row
has all of the 4’s, in addition to the remaining 2’s. To show that this algorithm gives
a valid LR-filling of o, we check that (i) we have a SSYT, (ii) the number of 1’s,
2’s, 3’s, and 4’s is consistent with the case we're examining and with the shape of
the tableau, and (iii) the number of x + 1’s never overtakes the number of z’s in the
reverse reading word, for z € {1,2,3}.

(i) We clearly have a SSYT since the last number in each row increases every time,
and since we never decrease across rows.

(ii) By construction, we have the correct number of 3’s and 4’s in this filling (x5 and
pq respectively). Moreover, the 3’s and 4’s each occupy less than one row since
we have at least 2aq boxes with a 1 or a 2, leaving n—2a; < n—ag —(ae+agz) =
oy boxes containing a 3 or a 4. We now argue that the 1’s must expire within
the first three rows. Suppose for the sake of contradiction that we have 1’s
remaining after the third row. Then the second row must contain exactly pus
2’s, meaning the third row would contain no 2’s. However, the fourth row must
then have po — 3 > oy — ay > as 2’s, which clearly cannot fit in the fourth
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row. It follows by contradiction that the 1’s fit in the first three rows. Since
the 2’s are simply used as row fillers when there are unfilled boxes, the 2’s must
fit by the assumption that |u| = n.

(iii) Clearly the 4’s never overtake the 3’s and the 3’s never overtake the 2’s. Finally,
the 2’s cannot overtake the 1’s before the last row since there are o 1’s in the
first row, which is more boxes than there are in the second and third rows
combined. Since all of the 1’s appear before the last row, this implies that the
2’s never overtake the 1’s.

For the remaining cases and subcases, we will not justify the algorithms in detail,
having now demonstrated what needs to be checked.

Subcase 2b: s < ag.

Row Filling
1 19t
92 ( 1ﬁll ) 2ﬁll
3 (1ﬁ11)2ﬁ113u4
4 rem.grem. grem. 4 p4

Case 3: pu3 > 0; py = 0. Within this case, there are three subcases:

Row Subcase 3a: pg > | 3b: e < aq; puzs <n—2aq | 3¢ pe < aq; pz >n—2ap > 1
I i i i
2 1ﬁll(2ﬁll)2,u3 1ﬁ11(2ﬁ11)2 (1ﬁll)2ﬁll
3 1rem.2ﬁll (1ﬁ11)2ﬁ11 (1ﬁll)2ﬁ113max(l,u37(§4)
4 grem. 33 {rem.grem. 3pu3 {rem.grem. grem.

[

Corollary 3.10. Let a = (o, as, as,aq) be a ribbon which satisfies the conditions of
Hypothesis 1. Let o be a permutation of a, where m(1) = 4. Then [a,] = [a].

Proof. This corollary follows immediately from the proof of Lemma 3.9 and the fact
that rotating a skew shape antipodally preserves its support (Remark 0.3). [

The next lemma and corollary demonstrate an analogous result for the cases
where 7(1) =2 or (1) = 3.
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Lemma 3.11. Let a = (ay, ag, ag, aq) be a ribbon which satisfies the conditions of
Hypothesis 1. Let A be the set permutations o, of a, where w(1) = 2. Then for any
ay, a5 € A, [o,] = [as).

Proof. We proceed as in the proof of Lemma 3.9 and use the variables as defined in
this proof.

Case 1: pu3 = 0.

Row | Filling
m
191—79M
1 rem. 2ﬁ11

W N =

2rem.

Case 2: 4 > 0.

Subcase
Row 2a: g > oy 2b: s < oy

1M 1
1ar—m9m 1fillomin(pz,71)
1rem. 2ﬁll3u4 (1ﬁll)2ﬁ113u4
Qrem.grem.fj4 | rem.orem.Jrem. /| fiq

=W N =

Notice that if v; < g4, then there is in fact no permutation of the first, third and
fourth rows for which there is an LR-filling of content p.

Case 3: 3 > 0;uq = 0.

Row Subcase 3a: g > g | 3b: pe < aq; pz < ay | 3c e < ag; s > oy
1 17 1 1"
2 1o1=719m 1ﬁ112min(u2—1,'yl) 1ﬁ112min(u2,'yl)
3 1rem.2ﬁll 1ﬁll(2ﬁll)2 (1ﬁ11)2ﬁ113max(1,,u3—'y4)
4 2rem.3u3 1rem.2rem.3,u3 1rem.2rem,3rem.

[

Corollary 3.12. Let a = (aq, o, a3, q) be a ribbon which satisfies the conditions
of Hypothesis 1. Let o, be a permutation of a, where w(1) = 3. Then [a,] = [a].
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Proof. This corollary follows immediately from the proof of Lemma 3.11 and the fact
that rotating a skew shape antipodally preserves its support (Remark 0.3). ]

We now apply the previous two lemmas to finally prove Theorem 3.5, which, as
we saw in the proof of Theorem 3.6, serves in conjunction with Corollary 1.5 as a
necessary and sufficient condition for ribbons with four rows to have full equivalence
class.

Theorem 3.5. Suppose we have a ribbon o = (o, s, a3, ay) satisfying the condi-
tions of Hypothesis 1. Then the following hold:

1. « has mazimal support equivalence class if and only if oy < [n/2] — 1.

2. Forn even, if a; = n/2—1, then (n/2,n/2) & [(a1, g, ag, ay)], but (n/2,n/2) €
[(Oég, ap, a3, 064)] .

3. Forn odd, if a; = [n/2] — 1, then (|n/2],|n/2]|,1) and ([n/2],|n/2]) are in

the support of (ag, ay, as, ay), but not in the support of (ay, g, g, auy).

Proof. We will prove the three statements individually.

Proof of (1): Note that oy < as + a3 + a4 implies that a; < [n/2] — 1. Thus,
(2) and (3) prove the converse of this statement. For the forward direction, let
a; < [n/2] —1. We will first use Lemma 3.3 to argue that a and a(; 2y have the
same 1-2 LR-fillings.

Notice that by Lemma 3.2, there are no long rows occurring below the row of
length oy in either o or a(; ). Moreover, it is clear that the row of length «a; is a
long row in both o and «ay; ). Note that since a; < [n/2] — 1, we have

ap+m—2=a1+2<[n/2|+1 = a1 +m—2<[n/2]

and that
ap+m—3=a;+1<[n/2].

Therefore, by Lemma 3.3, both o and ay; 9) have 1-2 LR-fillings with p 1’s for any p
such that [n/2] <p<n-—(m-—1).

We now show that any filling of « the form pu = (1, po, 3, pta), where pz > 0 and
pg > 0, is also a filling of aq 9). It is clear that pu; > ;. Additionally, for 2’s and
3’s to satisfy the Yamanouchi property and semistandardness, the first box in which
a 3 can be placed is the rightmost box of the third row. It follows that the first two
rows of a must be filled with exclusively 1’s and 2’s. Let v = (1, 1) be the filling
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of the first two rows of a. We can fill the first two rows of a9y with v; 1’s and 15
2’s as follows:

Fill the first row of a(; 2y with ap 1’s. Then, fill the second row of oy 9 (starting
from the right) with the second row of @ and a; — ap 1’s to its left. Since the second
row of « is of length ai, we have that vy < s, meaning this construction will satisfy
the Yamanouchi property. As previously established, a; — ap > 0, meaning the
leftmost box in the second row is a 1. Since the rightmost box of the third row of «
is at least 2, we can fill the third and fourth rows of a; 9) with exactly the content of
the third and fourth rows of a. Therefore, any LR-filling i of «v is also an LR-filling
of o761 2)-

We now show that any LR-filling of o 9 of the form p = (pu1, pio, i3, p14), where
pz > 0 and py > 0 is also an LR-filling of a. Note that since the first row of a9
must consist of ay 1’s, the second row of o 9) contains at most ap 2’s and at least
a1 — ap 1’s. Thus, using v as previously defined, v; > «a, so we can begin by filling
the first row of @ with oy 1’s (taken from the first row of o 2) and the left side of
the second row of a(; 2)). Place the remaining ay 1’s or 2’s from the second row of
a(1 2y in the second row of a.

If the leftmost box of the second row of « is a 1, then any filling of the third and
fourth rows of o 9) can be directly transfered to a.

Consider the case where all of the second row of « is now 2’s. Transfer the filling
of the third and fourth rows of «; 5 directly to the third and fourth rows of o, and we
will describe how to adjust the filling to obtain a filling which is both semistandard
and Yamanouchi. Throughout the remainder of the proof we will reference the
following digram of a.

—_

Lafaf- [ Jafaf1f1]

\)

2]2]-[-]-[2]2]2

B
Dl-[-]-]C

If Box A contains a 3, we are done. So, assume that Box C has a 3, and Box A
has a 2. Now, notice that

n—(ag+1l)=n—ag—1>n—([n/2]-1)—1
=n—[n/2] =|n/2] > a.
Therefore, pu # (a1, n— (a1 +1), 1), as this would imply that po > 1, a contradiction.

It follows that there is either at least one 1 or at least two 3’s remaining in p after
filling the first two rows. We will consider these cases separately.
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If there is a 1 remaining in pu, then by semistandardness, there is a 1 in either
Box B or Box D (or both). We can then apply the following process:

1. If there is a 1 in Box B, swap the leftmost 3 in the fourth row with the 2 in
Box A. This step is valid since we know there to be at least one 3 in the fourth
row (namely, in Box C'); moreover, since as > 2, there are at least two 2’s in
the second row, so moving this 3 preserves the Yamanouchi property.

2. If there is a 1 in Box D but not in Box B, swap the rightmost 1 in row 4 with
the 2 in Box B; this clearly does not violate the Yamanouchi property. Then

apply step 1.

On the other hand, if p has at least two remaining 3’s, we know that at least the
two rightmost boxes of row 4 contain 3’s. In this case, swap the leftmost 3 in row 4
with the 2 in Box A. Again, since ap > 2, the tableau remains Yamanouchi.

It now follows from Lemmas 3.9 and 3.11 that « has full support equivalence
class if oy < [n/2] — 1.

Proof of (2): Let ; = n/2 —1. Then a; +m —2 = a; +2 > n/2 and
ag+m—3 =1 +1 =mn/2. As argued in the proof of (1), there are no long
rows occurring after the row of length a; in either a or a(g). It follows from the
j = 1 case of Lemma 3.3 that (n/2,n/2) ¢ [a]. Additionally, it follows from the
1 < ay < 'm case of Lemma 3.3 that (n/2,n/2) € [o 2)].

Proof of (3): Let us first show that ([n/2], [n/2],1) € [aq 2)]. Since ay = [n/2] —
1 = [n/2], we show that there is an LR-filling of o 9y with a; 1’s, o 2’s, and one
3. Begin by filling the first row with ay 1’s. Proceed to fill the second row with
ag 2's and oy — ap 1’s (with the 1’s to the left of the 2’s). Notice that conditions
(a) and (b) of Hypothesis 1 imply that a; > a9, meaning that there is at least one
1 in the second row of a. Thus, we can fill the third row with a3 2’s. The filling
thus far is Yamanouchi since a; > s + a3. Finally, fill the fourth row of a with
one 3 and (ay — 1) 2’s. Thus, we have an LR-filling with a; = |n/2] 1’s, one 3, and
n—|n/2] —1=|n/2] 2’s, as desired.

We now show that (|n/2], |n/2],1) € [a] by showing that an LR-filling with only
one 3 requires at least [n/2| + 1 1’s. Clearly, we must fill the first row with a; 1’s,
and the rightmost box of the second row must be a 2. There are two remaining 2 x 1
rectangles, which we must fill in one of the following ways, where z € {1,2}:

(a) (b)
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Moreover, we can only use the filling depicted in (b) once, since our content has
only one 3. Therefore, we must use at least oy +1 = |n/2] + 1 1’s. It is therefore
clear that (|n/2], |n/2],1) € [a].

We will now show that ([n/2],[n/2]|) € [oq2)] but that ([n/2], [n/2]) € [of.
As argued in the proof of (1), there are no long rows below the row of length ay,
and the row of length «; is long. Since oy + m —3 = oy + 1 = [n/2], we have
by Lemma 3.3 that there exists a 1-2 LR-filling of o o) with [n/2] 1’s, meaning
([n/2],|n/2]) € [@q 2)]. Now, since oy +m —2 =y +2 = [n/2] +1 > [n/2], we
have by Lemma 3.3 that there does not exist a 1-2 LR-filling of a with fewer than
[n/2] + 1 1’s. It follows that ([n/2], |n/2]) & |o. O

We are now ready to prove that Conjecture 2.4 holds in the case of m = 4, which
amounts to proving Theorem 3.6, which is restated here.

4 Conclusion and Future Directions

4.1 Summary

In this paper, we examined which connected ribbons have full equivalence class. This
is easy to determine if the ribbon has a part of length 1 or fewer than 3 rows, so
we restricted our focus for most of the paper to ribbons with at least 3 rows, all of
length at least 2.

We proved a sufficient condition and a separate necessary condition, and we
conjecture that our necessary condition is sufficient in general. We prove that this
condition is indeed both necessary and sufficient for m = 3 and m = 4. If this can
be proven to hold in general, this condition would give an easy way to test whether
an arbitrary connected ribbon has full equivalence class.

4.2 Open Questions

After our substantial progress towards classifying equality of Schur support among
ribbons, several open questions remain. Firstly, to complete the near classification
of full Schur support equivalence classes among ribbons, we’d like to answer the
following question:

Question 1. Is the condition that was proven in Theorem 2.1 to be necessary for a
connected ribbon to have full equivalence class in fact also a sufficient condition (as
conjectured in Conjecture 2.4)7
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These results could then be extended so as to completely classify Schur support
equality among ribbons:

Question 2. For a connected ribbon without full equivalence class, which permuta-
tions of the row lengths of the ribbon preserve Schur support?

Beyond equality of Schur supports, we can also ask when we have Schur support
containment:

Question 3. What does the poset (ordered by containment) of Schur support look
like for connected ribbons?

Finally, we would like to be able to extend these results beyond connected ribbons:

Question 4. Besides connected ribbons, when do two skew shapes have equal Schur
support?

5 Appendix

5.1 Miscellaneous Results about Support Equality

The following result pertains to the support of skew shapes that are composed with
ribbons, where this composition is as defined in [9].

Proposition 5.1. For any skew shapes D, D" with [D] = [D’] and any ribbon «,
[Doal=[D oal.

Proof. Tt is known [9, Prop. 7.5] that the map — o sp is an algebra map and that
SDoa = Sp © Sq. It follows that if X = [D] = [D’], then

[Doal= [(Z CD,A3A> o sa] =1 CD,)\S)\oa] = [Z CD’,)\S)\oa]

AEX [ AeX AEX
/
= (E CD/)\S)\) osa] = [D'oq]
L \ex

]

In addition, we have the following result regarding the supports of skew shapes
that have been multiplied by a scalar. Here, scalar multiplication of a skew shape D
by m indicates that all row lengths of D are increased by a factor of m.
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Proposition 5.2. For any skew shapes D, D', if [mD] = [mD'] for some m > 1,
then also [D] = [D'].

Proof. Say D = A/pand D' = V/’7 Then [mD] = [mD'] implies that ) 5 > 0 if and
only if ;¥ 5 > 0. In partlcular, cm# mp > 0if and only if 7> > 0, so by saturation
([4]), we conclude that ¢} , > 0 if and only if ¢ , > 0. Hence, [D] = [D']. O

5.2 Equality of Monomial Support for Skew Shapes

As opposed to the question of the equality of Schur supports, the question of equality
among monomial supports of skew shapes is quite easily answered. For any skew
shape D, recall that mSupp(D) denotes the monomial support of D, and let cols(D)
be the column partition (i.e. the partition associated to the sequence whose i’ entry
is the number of boxes in the i column of D).

Proposition 5.3. For any partitions p C X and 6 C v, mSupp(A/p) = mSupp(v/d)
if and only if cols(\/pu) = cols(v/9).

Proof. For any p C A, we can expand

A A A
Sx/u = E CuSy = E Cuw E K, sms = E (E CWJKW;) ms
v v 6 é v
A

where ¢;, , is a Littlewood-Richardson coefficient and K, is a Kostka number. In
partlcular both are nonnegative and K, 5 > 0 if and only if ¥ > ¢ in dominance order.
Also, c , > 0 if and only if there exists an LR-filling of shape \/u and content v.
However among v such that there exists an LR-filling of \/u of content v, there is a
maximal one, namely v = cols(\/u)!, obtained by placing i as the i entry of each
column. Hence, there exists a v such that the product Kyv(gcl)‘w is nonzero if and only
if § < cols(A\/p)! in dominance order. Hence,

mSupp(A/p) = {5: 6 < COlS(/\/M)t}.

In particular, mSupp(A/p) = mSupp(v/4) if and only if cols(\/u) = cols(v/§). O

5.3 Sample Code Used to Test Conjecture 2.4

Recall Conjecture 2.4, repeated here for convenience:
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Conjecture 2.4. Let o = (a1, g, ..., Q) be a ribbon, where a; > g >+ > .
Then, o has full equivalence class if and only if

Nj< Y o= (m—j—2) (5)

i=j+1
forall1 <7 <m — 2, where
N; = max{k| Z (k—a;) <m—j—2}. (6)
1<j: a; <k

The code below will reference this conjecture as well as Equations 5 and 6 labeled
above. This code tests Conjecture 2.4 only for connected ribbons with 6 rows (m =
6), but the functions used to test the conjecture for other values of m are very similar.
This code was written and run using Sage ([2]). The main function, conj_test_six,
requires importing itertools and requires the following helper function, which takes
as input a Python list representing a ribbon « of the form o = (o, o, . .., ag):

def rib_to_support (comp) :
"""Compute the Schur support of a ribbon.

This function takes as input a composition representing
the row lengths of a ribbon, and first converts the
composition to the form of a skew shape (i.e. lambda/mu
where lambda and mu are partitions representing straight
shapes. The function then utlizes the .support() function
from Sage’s SymmetricFunctions class to output the Schur
support of the ribbon.

Input:
comp (list): a list (composition) indicating the
row lengths of a ribbon

Returns the Schur support of the given ribbon.
nnn

1=1ist ()
m=1list ()
n=len (comp)

37



# converts the ribbon from a composition to the form lambda/mu
1.append (comp [0])
m.append (0)
for i in range(1, n):
1.append(comp[i]+1[i-1]-1)
m.append (comp[i-1]+m[i-1]-1)
1l.reverse()
m.reverse ()
s=SymmetricFunctions(QQ).s()
s=s(Partition(l)/Partition(m))

# uses a Sage function to compute the support of the ribbon
return s.support()

The code below is our main function, which takes as input an integer n and tests
Conjecture 2.4 for all ribbons with six rows and n boxes.

def conj_test_six(n):
"""Test Conjecture 2.4.

This function tests Conjecture 2.4 (i.e. the conjectured
necessary and sufficient condition for a connected ribbon
to have full equivalence class). The function iterates
through partitions of length six of the input integer n,
and computes the equivalence classes of the partitions as
interpreted as ribbons (using rib_to_support and itertools).
For each partition/ribbon, the function computes and tests
each N_j (defined in Equation 6) to determine whether the
ribbon should have full equivalence class according to
Conj. 2.4. If the prediction from Conj. 2.4 is ever wrong,
the function returns a counterexample. Otherwise, the
function indicates that the conjecture held for this n.

Input:
n (integer): number of boxes in the ribbons

Returns either a ribbon that is a counterexample to Conj. 2.4
or indicates that the conjecture holds for this n.
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nnn

# initialize an empty set for ribbons Conj. 2.4 would predict to not
# have full equivalence class
not_full = set()

for alpha in Partitions(n):
# The following line assumes distinct parts for convenience.
if len(alpha) == 6 and all(alphal[i] !'= alpha[l] for (i,1) in
(0,1),(1,2),(2,3),(3,4),(4,5)):

# compute the equivalence class of alpha
equiv_class = set()
s = rib_to_support(list(alpha))
for perm in list(itertools.permutations(list(alpha))):
if set(rib_to_support(perm)) == set(s):
equiv_class.add(perm)

# computes N_j from Equation 6
for j in range(4):
N_j = alphalj]

sum = O
while sum <= 4-(j+1):
sum = 0

for i in range(j+1):
if alphali] < N_j:
sum += (N_j-alphali])

N_j += 1
N_j -= 2
# computes the sum from the RHS of Equation 5
ineq_sum = 0
for i in range(j+1,6):

ineq_sum += alphalil

# if the inequality from Equation 5 is not satisfied,
# but alpha has full equivalence class, returns

# alpha as a counterexample

if N_j >= ineq_sum - (4-(j+1)):
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not_full.add(tuple(alpha))
if len(equiv_class) == 720:
return ’counterexample:’, alpha

# if alpha hasn’t been marked as ‘‘not full"
# and alpha does not have full equivalence class,
# returns alpha as a counterexample
if tuple(alpha) not in not_full:
if len(equiv_class) != 720:
return ’counterexample:’, alpha

return ’Conjecture 2.4 holds’

As an example, print (conj_test_six(35)) outputs ’Conjecture 2.4 holds’.
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