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Abstract. Bipartite, periodic, planar graphs known as brane tilings can be asso-
ciated to a large class of quivers. This paper will explore new algebraic properties
of the well-studied del Pezzo 3 quiver and geometric properties of its corresponding
brane tiling. In particular, a factorization formula for the cluster variables arising
from a large class of mutation sequences (called τ−mutation sequences) is proven;
this factorization also gives a recursion on the cluster variables produced by such
sequences. We can realize these sequences as walks in a triangular lattice using a
correspondence between the generators of the affine symmetric group Ã2 and the
mutations which generate τ−mutation sequences. Using this bijection, we obtain
explicit formulae for the cluster that corresponds to a specific alcove in the lattice.
With this lattice visualization in mind, we then express each cluster variable pro-
duced in a τ -mutation sequence as the sum of weighted perfect matchings of a new
family of subgraphs of the dP3 brane tiling, which we call Aztec castles. Our main
result generalizes previous work on a certain mutation sequence on the dP3 quiver
in [Zha12], and forms part of the emerging story in combinatorics and theoretical
high energy physics relating cluster variables to subgraphs of the associated brane
tiling.
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1. Introduction

First introduced and pioneered by Fomin and Zelevinsky in [FZ] to study total
positivity and dual canonical bases in semisimple Lie groups, cluster algebras have
found a wealth of applications in many branches of mathematics including combina-
torics, tropical geometry [SW], Teichmuller theory [FG], and representation theory
[Kel08]. Cluster algebras are classes of commutative rings whose generators, known
as cluster variables, are partitioned into subsets known as clusters. An iterative
process called seed mutation provides a link between clusters and can be used to
recover the complete set of generators given an initial seed [Zel07].

Meanwhile, theoretical physics has made intriguing advancements into the study
of doubly-periodic, bipartite, planar graphs, known as brane tilings. These appear
physically in string theory through the intersections of NS5 and D5-branes which
are dual to a configuration of D3-branes probing the singularity of a toric Calabi-
Yau threefold [FHK+]. Brane tilings are inherently connected to the geometry of
the threefold as well as the (3 + 1) dimensional supersymmetric gauge field the-
ory that lives on the worldvolume of the D3-brane, which can be represented by a
directed graph known as a quiver. There is significant interest in giving combina-
torial interpretations for cluster variables arising from such quivers, see for example
[MS],[LS],[Mus]. Recent research has related a single mutation sequence on the
quiver associated to the third del Pezzo surface to a class of subgraphs of its brane
tiling known as Aztec dragons [Zha12],[CY10]. This paper generalizes the work in
[Zha12] by relating an infinite class of mutation sequences to a new, broader class
of subgraphs of the brane tiling which we call Aztec castles.

1.1. Quivers and Brane Tilings. A quiver Q is a directed finite graph with a
set of vertices V and a set of edges E connecting them whose direction is denoted
by an arrow. For our purposes Q may have multiple edges connecting two vertices
but may not contain any loops or 2−cycles. We can relate a cluster algebra with
initial seed {x1, x2, . . . , xn} to Q by associating a cluster variable xi to every vertex
labeled i in Q where |V | = n. The cluster is the union of the cluster variables at
each vertex.

Definition 1. Quiver Mutation: Mutating at a vertex i in Q is denoted by µi
and corresponds to the following actions on the quiver:

• For every 2-path through i (e.g. j → i→ k), add an edge from j to k.
• Reverse the directions of the arrows incident to i
• Delete any 2-cycles created from the previous two steps.

When we mutate at a vertex i, the cluster variable at this vertex is updated and all
other cluster variables remain unchanged [JMZ13]. The action of µi on the cluster
leads to the following binomial exchange relation:

x′ixi =
∏

i→j in Q

x
ai→j

j +
∏

j→i in Q

x
bj→i

j
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where x′i is the new cluster variable at vertex i, ai→j denotes the number of edges
from i to j, and bj→i denotes the number of edges from j to i.

Quivers describing gauge theories on the worldvolume of D3-branes probing toric
Calabi-Yau singularities are also intimately connected to another planar graph
known as a brane tiling (or dimer model). Unfolding the quiver onto the plane
while maintaining the same edge connections leads to an infinite planar graph. The
dual of this graph is the brane tiling; a bipartite, doubly-periodic, planar graph.

Our main object of study is the quiver Q associated to the third del Pezzo sur-
face (dP3), illustrated in Figure 1 with its associated brane tiling [FHK+], [HS].
Note that later on, we will refer to a hexagon in the brane tiling consisting of the
quadrilaterals (given in clockwise order) 5− 3− 1− 4− 2− 0 as a 6-cycle.
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Figure 1. The dP3 quiver Q [Left] and its associated brane tiling
[Right], a doubly periodic, bipartite graph that is the planar dual to the
unfolded quiver.

We can describe in more detail the unfolding process for this specific quiver in
the manner of [JMZ13] (a description for generic quivers can be found where the
procedure was first introduced in [FHK+]). Denote by Eij the boundary edge from
vertex i to j in our labeling of Q. The dP3 brane tiling is associated to the following
formal linear combination of closed cycles of the quiver, known as a superpotential
(W ) in a supersymmetric gauge theory where each edge in the unit cell of the brane
tiling appears exactly twice, once for clockwise (positive) orientation and once for
counter-clockwise (negative) orientation.

W = E31E14E42E20E05E53 + E34E40E03 + E12E25E51

−E14E40E05E51 − E34E42E25E53 − E31E12E20E03

We can now unfold Q into a planar digraph Q̃ composed of the given cycles such
that the local configuration about vertex i is the same in Q̃ and Q , exhibited in
Figure 2. The brane tiling illustrated in Figure 1 is exactly the dual graph to Q̃,
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where bipartiteness is created by placing white vertices in positively oriented cycles
and black vertices in negatively oriented cycles.
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Figure 2. A section of the unfolded dP3 quiver Q̃.

1.2. τ-mutation Sequences. Here we define a class of mutation sequences on Q
which we refer to as τ -mutation sequences. The action of each τ mutates at antipo-
dal vertices and has a symmetrical action on the quiver. This symmetry underlies
the proofs of all of our main results.

Definition 2. Define the following pairs of mutations on Q.

τ1 = µ0 ◦ µ1

τ2 = µ2 ◦ µ3

τ3 = µ4 ◦ µ5

One can then check that for all i, j such that 1 ≤ i 6= j ≤ 3

(τi)
2 = id

(τiτj)
3 = id.

We observe that the action of τi on the quiver exchanges the labels on vertices
2i − 2 and 2i − 1. Furthermore, since antipodal vertices share no common edges,
µ2i−1 and µ2i−2 commute for i ∈ {1, 2, 3}.

A τ -mutation sequence is a mutation sequence of the form τa1τa2τa3 . . .. From
now on we will abbreviate such a mutation sequence by its subscripts a1a2a3 . . ..
The cluster variables produced after τan = µi ◦ µi+1 in such a sequence are denoted
by yn and y′n where yn is the variable produced by µi and y′n is the variable produced
by the latter mutation µi+1 in τan . By the symmetry of Q, yn and y′n are related by
the action of the permutation σ = (01)(23)(45) which flips antipodes, i.e. σyn = y′n.
It is also worth noting that σ acts on the brane tiling as a 180◦ rotation.
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1.3. Preliminary Definitions and Aztec Dragons. We will adopt the weighting
scheme on the brane tiling utilized in [Zha12] by Zhang, in [Spe] by Speyer, and in
[GK12] by Goncharov–Kenyon which we will now describe. Associate the weight
1

xixj
to each edge bordering faces labeled i and j in the brane tiling. Let M(G)

denote the set of perfect matchings in a subgraph G of the brane tiling respectively.
We define the weight of a perfect matching in the usual manner as the product of
the weights of the edges included in the matching under the weighting scheme. Then
we define the weight of G as

w(G) =
∑

M∈M(G)

w(M).

Similarly we can define the covering monomial, m(G), of an induced subgraph
G of the brane tiling as the monomial xa00 x

a1
1 x

a2
2 x

a3
3 x

a4
4 x

a5
5 , where aj is the number

of faces labeled j enclosed in or bordering G1. Figure 3 illustrates an example of
the quadrilaterals included in the covering monomial of a small subgraph, outlined
in red.

2!0!

4!

4! 4!

5!

5!

3! 3!

3!

1!

1! 1!

Figure 3. The covering monomial of the subgraph outlined in red in-
cludes the blue quadrilaterals and is given by x0x1x2x3x

3
4x

2
5.

Finally, to make notation more concise in later proofs, it will be useful to define
the product of the covering monomial and weight of a subgraph G as

c(G) = w(G)m(G).

Zhang studied the mutation sequence 123123 . . . in [Zha12] and found that the
cluster variable obtained after each mutation in the sequence can be expressed as the
weighted perfect matchings of a family of subgraphs of the dP3 brane tiling. In fact
these graphs turned out to be the family of Aztec dragons {Dn/2}n∈N introduced
and enumerated in [CY10]. The first few Aztec dragons are exhibited in Figure
4. Specifically in the notation described above, Zhang proved that yn = c(Dn/2)

1The covering monomial has a more general definition suitable for other contexts. See [Jeo11] and
[JMZ].
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(respectively, y′n = c(σDn/2)). Zhang’s findings have provided the starting point for
our main contribution: relating the weighted perfect matchings of subgraphs of the
dP3 brane tiling to cluster variables for all possible τ -mutation sequences.
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Figure 4. Examples of the Aztec dragons Dn/2.

1.4. Main Results. We are now equipped to state our main theorem, which relates
cluster variables produced by τ -mutation sequences to a new family of subgraphs in
the brane tiling. This family, which we call Aztec castles, will be defined later in
Section 4.2 and presents a generalization of the Aztec dragons introduced in [CY10]
and studied in [Zha12].

Theorem 1.1 (Main Theorem). For any τ−mutation sequence on the dP3 quiver
we can associate a subgraph G of the brane tiling to each cluster variable yn (resp.
y′n) produced such that

yn = c(G)

and respectively, y′n = c(σG).

Along the way we also obtain:

• A factorization formula for cluster variables produced in τ -mutation se-
quences on the dP3 quiver (Section 2.1). This combined with the main
result implies that all Aztec castles have 2k perfect matchings.
• A recursion which enables efficient calculation of cluster-variables arising in

any τ -mutation sequence. (Section 2.2)
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• Existence of explicit formulae for the cluster variables produced by any τ -
mutation sequence. (Section 3)

Sections 4 and 5 describe the Aztec castles appearing in the integer and half-
integer cone, respectively. The proof of our main theorem follows from the results
in these sections (Theorems 4.4 and 5.1) and a brief symmetry argument presented
in Section 3. We conclude the introduction with the following construction for
visualizing τ -mutation sequences.

1.5. Coxeter Lattice and Relations. We will now introduce a useful construc-
tion, a triangular lattice associated to the Coxeter group Ã2 which we shall call the
Coxeter lattice [Rou]. This lattice allows for a clear visualization of τ -mutation se-
quences. We will identify two important regions on the Coxeter lattice: the integer
and half-integer cones. Finally, we place coordinates on these regions in terms of
what we call canonical paths. These constructions will be pivotal in later sections.

The relations observed amongst the τj’s (introduced directly after Definition 2)

coincide with the relations amongst the generators of the affine symmetric group Ã2.
In Section 3 we verify that indeed these are the only relations amongst the τj’s; this
result also follows as an easy corollary of our main theorem. Then we can view any
mutation sequence (word in the τj’s), as a gallery of alcoves (faces in the triangular

lattice) associated to Ã2. Hence there is a bijection between clusters produced by
τ -mutation sequences and alcoves in the lattice.

Each triangle in the lattice has edges labeled with a permutation of {1, 2, 3}. We
fix the shaded (purple) triangle as the origin and label its edges as shown in Figure
5. Then we label the rest of the edges in the lattice according to the following
rule: given a labeled triangle, we label any triangle that shares an edge with the
labeled triangle by reflecting the labels over the shared edge. This gives a well-
defined labeling on the entire lattice after choosing an initial labeling of the origin.
Beginning at the origin (initial cluster), mutation by τi corresponds to moving to
the adjacent alcove that shares the edge labeled i with the origin. Figure 5 exhibits
the lattice, with marked mutation sequences drawn as paths that split the lattice
into twelve disjoint regions.

The region labeled I (light blue), which we dub the integer cone, consists of:

(1) All alcoves intersected by the path 123123 . . . after an even number of steps,
including the original alcove containing the initial cluster.

(2) All alcoves intersected by the path 12131213 . . . after its second step.
(3) All alcoves between those listed in the previous two bullets.

The region labeled XII (orange), which we dub the half-integer cone, is defined
similarly to include:

(1) All alcoves intersected by the path 123123 . . . after an odd number of steps.
(2) All alcoves intersected by the path 12321232 . . . after its second step.
(3) All alcoves between those listed in the previous two bullets.

Now we put a coordinate system on the integer cone and half-integer cone. First
fix the purple alcove in Figure 5 to be the initial cluster.
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I
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VV I
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XI XII
123 . . .
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1232 . . .
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3! 1! 3!
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3!
2! 1!3!
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1!2!
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3!
2!
1! 1!2!
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Figure 5. The lattice associated to the affine symmetric group Ã2 which
provides a visualization of τ -mutation sequences as walks. Blue paths rep-
resent 123123 . . . sequences and permutations thereof, while red and green
paths correspond to 12131213 . . . and 12321232 . . . type sequences respec-
tively.

A canonical path in the integer cone consists of two components. The first
includes crossing j horizontal lines after 2j steps on the blue path 123123 . . .. We
label the alcoves met by this first component as (0, j). At some height j, a canonical
path may turn horizontal. This turning point is indicated by a vertical line |. In
this notation, the canonical paths in the integer cone have the following form based
on the value of j mod 3. Let β = 123.

(1) β
1
3
(2j−1)1|(321321 . . .) if j ≡ 2 mod 3

(2) β
2
3
j|(213213 . . .) if j ≡ 0 mod 3

(3) β
2
3
(j−1)12|(132132 . . .) if j ≡ 1 mod 3

A path whose turning point is at height j can continue horizontally for at most
2j steps (after this, the path would leave the integer cone). Note that the last
four horizontal steps possible intersect the path 1213 . . ., the other boundary of the
integer cone.
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Now we can label the entire integer cone with coordinates. An alcove A in the
integer cone has coordinates (i, j) if the canonical path to A crosses j horizontal
lines before the turning point marked by | and crosses i edges after the turning point.
This is illustrated in Figure 6 with a canonical path to the alcove labeled (3, 3).

2!2!3!

2!

1!

1!

1!

3!

3!

3!

3! 3!2! 2!1!

2!

2!

3!

1!

1!

2!

2!

1! 3! 3! 2!1!

1!
(0, 3)

(3, 3)

(0, 2)

(0, 1)

1!

3!

2!

1!

3!

Figure 6. The canonical path to alcove labelled (i, j) which is in this
example is (3, 3). The blue path corresponds to the mutation sequence
{τ1, τ2, τ3, . . .} and the orange horizontal path corresponds to {τ2, τ1, τ3 . . . }
and leads to the desired alcove.

Now we describe canonical paths and coordinates on the half-integer cone. The
first component of a canonical path begins at the previously marked initial cluster
and consists of crossing j + 1 horizontal lines after 2j + 1 steps on the 123123 . . .
mutation sequence path. We label the alcoves met by this first component as (0, j).
These paths continue after the turning point, indicated by | as before, for at most
2j steps. In terms of j mod 3, canonical paths have the following form:

(1) β
1
3
(2j+1)|(213213 . . .) if j ≡ 1 mod 3

(2) β
1
3
(2j−1)12|(132132 . . .) if j ≡ 2 mod 3

(3) β
2
3
j1|(321321 . . .) if j ≡ 0 mod 3

Note that, after the turning point, the final four steps possible in the path intersect
the sequence 12321232 . . .. We say that an alcove A in the half-integer cone has
coordinates (i, j) if the canonical path to A crosses j + 1 horizontal lines before the
turning point marked by | and crosses i edges after the turning point. For example,
the alcove traced by the path 12312|(132) has coordinates (3, 2) as exhibited in
Figure 7.

Coordinates and canonical paths in the remaining regions II −XI are defined in
an analogous way, using a permuted 123 . . . path as the vertical axis.
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Figure 7. The canonical path to alcove labeled (i, j) in the half integer
cone which in this example is (3, 2).

2. The Factorization Phenomenon

We first prove a general factorization theorem for clusters arising from τ -mutation
sequences. As a corollary to this factorization theorem we obtain a recursion on the
cluster variables, an explicit formula for the clusters in the 123123 . . . sequence, an
explicit formula for the 12131213 . . . sequence, and a generating function for the
dragons studied in [Zha12] and [CY10].

2.1. Factorization of cluster variables. First we introduce some convenient no-
tation. Suppose that we have a τ -mutation sequence S = a1a2a3a4 . . .. Denote by
η(n, i) the number of times we have mutated at vertex i in the first n terms (2n total
mutations) of S. Furthermore, let Cn(Q) denote the ordered cluster obtained after
applying n terms of S. Let A = x2x4+x3x5

x0x1
, B = x1x4+x0x5

x2x3
, C = x0x2+x1x3

x4x5
. Finally,

define the following six functions. For i = 0, 2, 4, we set

fi(n) =

{
i if η(n, i) = 0 mod 2

i+ 1 else

and for i = 1, 3, 5, we set

fi(n) =

{
i if η(n, i) = 0 mod 2

i− 1 else

.
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Theorem 2.1. Fix S = a1a2a3a4 . . . to be any τ−mutation sequence on Q. The
cluster Cn(Q) has the following form:

Cn(Q) = {xf0(n)Aa1Bb1Cc1 , xf1(n)A
a1Bb1Cc1 , xf2(n)A

a2Bb2Cc2 ,

xf3(n)A
a2Bb2Cc2 , xf4(n)A

a3Bb3Cc3 , xf5(n)A
a3Bb3Cc3}.

Proof. Call the above form for the cluster variables a τ−presentation, and the xfi(n)
term in each factorization the leading term. We induct on the cluster Cn(Q). After
applying any initial τi the cluster has the above form, so this is our base case. Assume
that Cn(Q) has a τ -presentation and mutate at vertex 0. Denote the cluster variable
at vertex i in Cn(Q) by Xi. It suffices to show that X ′0, the variable produced
at vertex 0 after applying τ1, has τ−presentation xf0(n+1)A

a′1Bb′1Cc′1 ; the cases of
mutating at other vertices are analogous.

Note that by the symmetry of the quiver, σ(Xi) = Xσ(i). Each τi has action on
the quiver that simply relabels the vertices by switching vertex 2i − 1 with vertex
2i − 2. Moreover, when we mutate by τi, η(n, 2i − 1) and η(n, 2i − 2) increase by
1, which by inductive assumption flips the leading terms of the cluster variables at
vertices 2i−1 and 2i−2. Since each vertex i has leading term xi in the initial cluster,
for the purposes of the exchange at vertex 0, we can assume WLOG each cluster
variable in Cn(Q) has fi(n) = i, and that the quiver has the original labeling. This
is because the two vertices with arrows pointing to vertex 0 always have leading
terms x2 and x4, the two vertices that vertex 0 points to have leading terms x3 and
x5, and this property is invariant under a τ−mutation. Now let

X5 = x5

(
x2x4 + x3x5

x0x1

)a1 (x1x4 + x0x5
x2x3

)b1 (x0x2 + x1x3
x4x5

)c1
,

then

X4 = σ(X5) = x4

(
x2x4 + x3x5

x0x1

)a1 (x1x4 + x0x5
x2x3

)b1 (x0x2 + x1x3
x4x5

)c1
,

let

X3 = x3

(
x2x4 + x3x5

x0x1

)a2 (x1x4 + x0x5
x2x3

)a2 (x0x2 + x1x3
x4x5

)c2
,

so

X2 = x2

(
x2x4 + x3x5

x0x1

)a2 (x1x4 + x0x5
x2x3

)b2 (x0x2 + x1x3
x4x5

)c2
,

and let

X0 = x0

(
x2x4 + x3x5

x0x1

)a3 (x1x4 + x0x5
x2x3

)b3 (x0x2 + x1x3
x4x5

)c3
.
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Mutating at vertex 0, we compute the exchange relation:

X0X
′
0 = X2X4 +X3X5 =⇒

X ′0X0 =

(
x2x4 + x3x5

x0x1

)a1+a2 (x1x4 + x0x5
x2x3

)b1+b2 (x0x2 + x1x3
x4x5

)c1+c2
(x2x4 + x3x5) =⇒

X ′0 = x1

(
x2x4 + x3x5

x0x1

)a1+a2−a3+1(
x1x4 + x0x5

x2x3

)b1+b2−b3 (x0x2 + x1x3
x4x5

)c1+c2−c3
.

So X ′0 has τ−presentation with leading term xf0(n+1) = x1, as desired. This com-
pletes the induction. Finally, note that all exponents in the τ -presentation are
non-negative by the Laurent phenomenon [FZ]. �

Now that we have exhibited a factorization formula for any cluster variable, we
can analyze any sequence of mutations by looking at the corresponding sequence
of exponents {a, b, c} associated to the cluster variables. In Section 2.2 we give a
recursive solution for these exponents for any mutation sequence and then solve for
them explicitly in the case of the 123 . . . and 1213 . . . sequences.

2.2. Recursion on exponents for τ-mutation sequences. The construction in
the previous section allows for recursive computation of the exponents of cluster
variables for any sequence of τ ’s. By Theorem 2.1, the ordered cluster Cn(Q) has
the following form in general:

Cn(Q) = {xf0(n)Aa1Bb1Cc1 , xf1(n)A
a1Bb1Cc1 , xf2(n)A

a2Bb2Cc2 ,

xf3(n)A
a2Bb2Cc2 , xf4(n)A

a3Bb3Cc3 , xf5(n)A
a3Bb3Cc3}.

For the time being, we abuse notation and represent each factor A·B··C ··· by an
exponent vector (·, ··, · · · ) so Cn(Q) becomes:

Cn(Q) = {xf0(n)(a1, b1, c1), xf1(n)(a1, b1, c1), xf2(n)(a2, b2, c2),
xf3(n)(a2, b2, c2), xf4(n)(a3, b3, c3), xf5(n)(a3, b3, c3)}.

Using the exchange relation, we can express the action of any τ−mutation in
terms of the previous exponents. In particular, we have a recursive method for
computing each of the sequences aj, bj, cj. For the dP3 quiver, this yields a much
faster algorithm for computing cluster variables than using the exchange relation.
The three cases make up the following corollary to the proof of the factorization
phenomenon.

Corollary 2.2. (1) Apply τ1.

Cn+1(Q) = τ1 ◦ Cn(Q) = {xf1(n)(a2 + a3 − a1 + 1, b2 + b3 − b1, c2 + c3 − c1),
xf0(n)(a2 + a3 − a1 + 1, b2 + b3 − b1, c2 + c3 − c1),
xf2(n)(a2, b2, c2), xf3(n)(a2, b2, c2), xf4(n)(a3, b3, c3),

xf5(n)(a3, b3, c3)}
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(2) Apply τ2.

Cn+1(Q) = τ2 ◦ Cn(Q) = {xf0(n)(a1, b1, c1), xf1(n)(a1, b1, c1),
xf3(n)(a1 + a3 − a2, b1 + b3 − b2 + 1, c1 + c3 − c2),
xf2(n)(a1 + a3 − a2, b1 + b3 − b2 + 1, c1 + c3 − c2),
xf4(n)(a3, b3, c3), xf5(n)(a3, b3, c3)}

(3) Apply τ3.

Cn+1(Q) = τ3 ◦ Cn(Q) = {xf0(n)(a1, b1, c1), xf1(n)(a1, b1, c1),
xf2(n)(a2, b2, c2), xf3(n)(a2, b2, c2),

xf5(n)(a1 + a2 − a3, b1 + b2 − b3, c1 + c2 − c3 + 1),

xf4(n)(a1 + a2 − a3, b1 + b2 − b3, c1 + c2 − c3 + 1)}
This description may be summarized as follows. To compute the next cluster

after applying τi, flip the leading terms for the cluster variables at vertices position
2i− 1 and 2i− 2 and apply the above recursion to get the exponents.

Next, using the τ−presentation of cluster variables we are able to guess the form of
cluster variables appearing in the mutation sequences 123 . . . and 1213 . . .. Verifying
these formulas hold is a simple application of the recursion and induction on Cn(Q).
Then by the result for the 123 . . . sequence and the main result in [Zha12], we have
obtained a closed form for the generating function for perfect matchings of Aztec
dragons under the weighting scheme of [Spe]. The explicit formula for the 1213 . . .
sequence will be utilized later in the proof of Theorem 4.1.

Corollary 2.3. Recall that βn = (123)n, and denote the ordered cluster obtained
after n applications of β by βn(Q). By ordered, we mean that the ith term of βn(Q)
is the variable at the vertex i of Q. We have two cases:

(a) If n is even,

βn(Q) = C3n(Q) = {x0A
3n2

4 B
3n2−2n

4 C
3n2−4n

4 , x1A
3n2

4 B
3n2−2n

4 C
3n2−4n

4 ,

x2A
3n2+2n

4 B
3n2

4 C
3n2−2n

4 , x3A
3n2+2n

4 B
3n2

4 C
3n2−2n

4 ,

x4A
3n2+4n

4 B
3n2+2n

4 C
3n2

4 , x5A
3n2+4n

4 B
3n2+2n

4 C
3n2

4 }

(2.1)

(b) If n is odd,

βn(Q) = C3n(Q) = {x1A
3n2+1

4 B
3n2−2n−1

4 C
3n2−4n+1

4 , x0A
3n2+1

4 B
3n2−2n−1

4 C
3n2−4n+1

4 ,

x3A
3n2+2n−1

4 B
3n2+1

4 C
3n2−2n−1

4 , x2A
3n2+2n−1

4 B
3n2+1

4 C
3n2−2n−1

4 ,

x5A
3n2+4n+1

4 B
3n2+2n−1

4 C
3n2+1

4 , x4A
3n2+4n+1

4 B
3n2+2n−1

4 C
3n2+1

4 }.

(2.2)

These expressions allow us to deduce the entire sequence of clusters for the sequence
123123 . . ..
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Corollary 2.4. Let φn = (1213)n, and denote the ordered cluster obtained after n
applications of φ by φn(Q). Then:

φn(Q) = C4n(Q) = {x0An(n+1)+1Bn+1Cn2

, x1A
n(n+1)+1Bn+1Cn2

,

x2A
(n+1)2B(n+1)2Cn(n+1), x3A

(n+1)2B(n+1)2Cn(n+1),

x4A
(n+2)(n+1)B(n+1)(n+2)C(n+1)2 , x5A

(n+2)(n+1)B(n+1)(n+2)C(n+1)2}
Comparing Corollary 2.3 with the main result of [Zha12], we obtain that the

generating function (times covering monomial) for DN/2 is given by one of the terms
in the ordered clusters presented in Equation 2.1 or 2.2.

Corollary 2.5. Let aN be the N th term of the 123123 . . . sequence. Let n ∈
{1, 2, 3}, n ≡ N (mod 3). The expression c(DN/2) is given by the (2n− 1)th term of

the cluster βd
N
3
e(Q).

3. Existence of explicit formula for τ -mutation sequences

We can compute an explicit formula for the exponents of the cluster produced
by a mutation sequence ending in alcove (i, j) of the integer or half-integer cone.
By symmetry this is sufficient to obtain a formula for the cluster associated to
any alcove. To do so, we first use the results of the previous section to compute
the clusters produced by permutations of the original sequence 123 . . . studied in
[Zha12].

Simple symmetry arguments take care of the case where we apply a permutation
θ : {1, 2, 3} → {1, 2, 3} to Zhang’s original sequence 123 . . ., as permuting the order
of the τj’s constitutes a relabeling of the quiver. Let y123...n be the cluster variable
produced after n steps (2n total mutations) in the 123 . . . sequence. Table 1 gives
the corresponding permutation α on the quiver for each permuted sequence such
that for any yn obtained after n steps in the permuted sequence, yn = α(y123...n ).
Importantly, the action of α on a subgraph produces a new subgraph of the brane
tiling. Therefore, each cluster variable produced in one of the sequences below can
be expressed as the weighted matchings of a rotated or reflected Aztec dragon.

Table 1. Permutations of 123 . . . and Corresponding α

Sequence α Action on the brane tiling

231231 . . . (350241) 60◦ rotation

213213 . . . (02)(13)(45) reflection over a line of slope
√

3

132132 . . . (25)(34) reflection over a line of slope
√
3
3

312312 . . . (043)(152) 120◦ rotation
321321 . . . (04)(15) reflection over a vertical line

Using this table, we recover the following lemma which is integral to the proof of
our main theorem, Theorem 1.1.
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Lemma 3.1. If we can write the cluster variables produced as yn = c(G) (respec-
tively, y′n = c(σG)) for some subgraph G of the brane tiling for all canonical paths
in the integer (I) and half-integer (XII) cones, then we may do the same for any
path in regions II-XI by applying the appropriate permutation α to G.

Proof. Given an alcove A in region k ∈ {I, . . . , XII}, first find the permuted Zhang
sequence (θ(1)θ(2)θ(3) . . .) bounding region k. Construct the canonical path P to
A in region k. Then θ−1(P ) lies in either the integer or half-integer cone. To recover
the cluster at A, apply the permutation α that corresponds to the permuted Zhang
sequence (θ(1)θ(2)θ(3) . . .) in Table 1 to the cluster produced at the end of the
canonical path θ−1(P ). Applying α to the graphs that correspond to the cluster at
the end of θ−1(P ) proves the lemma. �

Theorem 3.2. For any alcove (i, j) we can compute an explicit formula for the
cluster in terms of i, j.

At the end of the proof we compute this explicit formula for the cluster variable
at vertex 0 corresponding to the alcove (i, j) where i ≡ j ≡ 0 (mod 3), i ≡ 0
(mod 2), i, j ≥ 0.

Proof. If we can find a sequence of mutations ending in alcove (i, j) (in the integer
cone I or the half-integer cone XII) which is a concatenation of subsequences of the
form in the table, we can then compose the formulae for the cluster variables in
Section 2 to obtain the exponents explicitly for these alcoves. Such concatenations
are given by the canonical paths first described in Section 1.5 in regions I or XII.
Then by the above lemma, this is sufficient to give the explicit formula for any alcove.

Now let us calculate the variable at vertex 0 corresponding to the alcove (i, j)
where i ≡ j ≡ 0 (mod 3), i ≡ 0 (mod 2), i, j ≥ 0. The canonical path corresponding

to alcove (i, j) is (123)
2j
3 (213)

i
3 . The cluster variable at vertex 0 after (213)

i
3 is

α(x2A
3 i
3
2
+2 i

3
4 B

3 i
3
2

4 C
3 i
3
2−2 i

3
4 ) = x0A

i2

12B
i2

12
− i

2C
i2

12
− i

3

where α is the permutation (02)(13)(45) obtained from Table 1. We read the cluster

after (123)
2j
3 from Section 2.3. Denote the cluster variables by {X0, X1, X2, X3, X4, X5}.

Then we have:

X0 = x0A
j2

3 B
j2−j

3 C
j2−2j

3

X1 = x1A
j2

3 B
j2−j

3 C
j2−2j

3

X2 = x2A
j2+j

3 B
j2

3 C
j2−j

3

X3 = x3A
j2+j

3 B
j2

3 C
j2−j

3

X4 = x4A
j2+2j

3 B
j2+j

3 C
j2

3

X5 = x5A
j2+2j

3 B
j2+j

3 C
j2

3
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Substituting these expressions into the formula for the cluster variable at vertex 0,
we obtain the cluster variable at the end of the given canonical path is the following:

X ′0 = x0A
j2

3
+ i2

12
+

j(i)
3 B

j2+j
3

+ i2

12
− i

2
+

j(i)
3 C

j2−j
3

+
j(i)
3

+ i2

12
− i

3

�

The next corollary illustrates that there are no relations among the τ ’s other than
those stated in Section 1.2. The explicit computation for a specific case is also given
in the proof.

Corollary 3.3. < τ1, τ2, τ3 > ∼= Ã2

Proof. Because we can calculate the cluster corresponding to each alcove explicitly,
we can set the exponents for each cluster variable equal to 0 and determine when
we return to the original cluster. By examination of these explicit formulae it
follows that the cluster returns to {x0, x1, x2, x3, x4, x5} at alcove (i, j) if and only
if (i, j) = (0, 0). Thus the only relations amongst τ1, τ2, and τ3 are those encoded in
the lattice, i.e. the relations given by Ã2. We perform this computation in the case
i ≡ j ≡ 0 (mod 3), i ≡ 0 (mod 2), i, j ≥ 0. By the computation in Theorem 3.2,
the cluster variable produced entering alcove (i, j) is:

X ′0 = x0A
j2

3
+ i2

12
+

j(i)
3 B

j2+j
3

+ i2

12
− i

2
+

j(i)
3 C

j2−j
3

+
j(i)
3

+ i2

12
− i

3 .

Note that if X ′0 = x0 =⇒ j2

3
+ i2

12
+ j(i)

3
= j2+j

3
+ i2

12
− i

2
+ j(i)

3
= 0, subtracting

these two equations we get 2j = 3i, which substituting into the exponent of A gives
j2

3
+ 4j2

108
+ 2j2

9
= 0 =⇒ j = 0 =⇒ (i, j) = (0, 0). So by simply examining the

first cluster variable in the cluster when i ≡ j (mod 3), i ≡ 0 (mod 2) we see that
the cluster returns to the initial cluster at alcove (i, j) if and only if (i, j) = (0, 0).
Cases for different values of i, j (mod 3) and i (mod 2) follow similarly. �

4. The Integer Cone

Now we return to the original problem of relating cluster variables produced by
τ -mutation sequences to subgraphs of the brane tiling, starting with the integer
cone of the Coxeter lattice first introduced in Section 1.5. We will first describe
a shorthand method for drawing Aztec castles and provide several examples. We
will then proceed to prove a recursion on the weights of perfect matchings of these
subgraphs utilizing a technique known as graphical condensation first introduced
in [Kuo] and further generalized in [Spe]. Finally we will prove a recursion on the
covering monomials of the castles, allowing us to complete the proof of the Integer
Cone Theorem (Theorem 4.4).

4.1. Hexagonal Notation. In this section we introduce convenient notation that
allows us to define the graphs of interest. Given a six-tuple (a, b, c, d, e, f), we
associate the following hexagon illustrated in Figure 8.

In turn, this six-tuple defines a subgraph G of the brane tiling. We use the tuple
to define the boundary of the planar graph G in terms of a path in the brane tiling.
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a
b

c

d
e

f

Figure 8. The hexagonal notation for a general castle, the sides of which
are identified by the tuple (a, b, c, d, e, f).

Begin the boundary path P at some point p, called the basepoint of G, in the
brane tiling which is the white vertex in the center of a 6-cycle (see Section 1.1 for
terminology). The boundary path consists of six subpaths, each of which will be
defined in terms of the cardinal directions naturally associated to the edges of the
brane tiling.

For notational convention, if P = (p1, p2, p3, . . .) and Q = (q1, q2, q3, . . .) are
paths in the brane tiling represented by cardinal directions p1, p2, p3, . . . , pn and
q1, q2, q3, . . . , qm, respectively, denote the left-to-right concatenation of the two paths
by PQ = (p1, p2, p3, . . . , pn, q1, . . . , qm). Likewise, P i denotes the path P concate-
nated with itself i times. Furthermore, define the following four-step subpaths illus-
trated in Figure 9.

3!
0!

0!

0!
1!

2! 2!
3!

2!
1!

0!

1!

1!
3! 3!

2!

P2 = (NW, SW, NW, SW )

P3 = (NW, NE, N,E)

P4 = (SW, SE, S, E)

P5 = (SE, NE, SE, NE)

P6 = (SE, SW, S, W )

P1 = (NE,NW,N,W )

Figure 9. The six four-step subpaths that trace out a boundary path
P, placed around a castle in hexagonal notation to signify their position in
the brane tiling. The subgraph induced by all of the vertices of P is an
Aztec castle in the integer cone.
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Now, the tuple (a, b, c, d, e, f) corresponds to the following path. Choose p as
described above and trace the path

P = P e
1P

f
2 P

a
3 P

b
4P

c
5P

d
6 .

Provided that P is a simple closed curve, we define G to be the subgraph induced
by all vertices on the boundary path P and in the interior region of P .

The integer order Aztec dragons introduced in [Zha12] fit into this framework
with a slight modification. In the hexagonal notation, the nth order Aztec dragon,
Dn (n ∈ N), would have the form exhibited in Figure 10. The x in the left-hand
corner signifies that the left-most vertex should be removed from the graph formed
by the process defined above. In the six-tuple notation, this removal is denoted by:
x(n, n− 1, 0, n, n− 1, 0).

x!

n

n
n − 1

n − 1

Figure 10. An Aztec dragon Dn drawn in hexagonal notation, with a
small modification denoted by the red x in the left-hand corner.

Furthermore, observe that if G = (a, b, c, d, e, f), then σG = (d, e, f, a, b, c). In
the special case of the Aztec dragon, σDn = (n, n − 1, 0, n, n − 1, 0)x, where the x
on the right–hand side of the tuple signifies that the rightmost vertex in the graph
(n, n− 1, 0, n, n− 1, 0) should be deleted.

4.2. Graphs in the Integer Cone. Utilizing this hexagonal notation, we now
define a new family of subgraphs of the brane tiling called Aztec castles of integer
order. The motivation for this terminology stems from the fact that these castles
include the integer order Aztec dragons as a special case. Later we will prove that
this family consists of all of the subgraphs of the brane tiling contained in the integer
cone.2

Definition 3 (Aztec Castle of Integer Order). Define the (`, k)–Aztec castle of
integer order γ`k for ` ∈ Z≥0 and −3 ≤ k ≤ `− 1 as follows. Note that addition and
scalar multiplication in this case correspond to the standard operations on Z6.

γ`k =

{
(2`+ 3, `+ 1, `+ 1, 2`+ 2, `, `+ 2)− (k + 3)(1, 0, 1, 1, 0, 1) if − 3 ≤ k < `− 1

σD`+1 = (`+ 1, `, 0, `+ 1, `, 0)x if k = `− 1

2A brief discussion on how these graphs were first computed can be found in Problem 6.5 where
we utilised a method detailed in [EF].
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Note that γ`−3 = ρ γ`+1
−1 , where ρ is the permutation (03)(12), whose action is

exhibited in Figure 11.

a

b
c

d

e
f

ρ
a

b
c

def

Figure 11. The action of the permutation ρ on a subgraph G in hexag-
onal notation.

Two examples of Aztec castles, γ10 = σD2 and γ2−2 are illustrated with their
associated hexagonal notation in Figures 12 and 13 respectively.

2

2

1

1

x!
5!

3!
1!

0! 2!

3!
1!
4!0! 2! 0!

0!

1!

1!
3!

2!

Figure 12. The castle σγ10 , also known as the Aztec dragon D2.

2!

2!

3!

3!

5!

6!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

5! 3! 1!
4!0! 2!

3! 1!
4!0! 2!

3! 1!
4!0! 2!

3! 1!
4!0! 2!

3! 1!
4!0! 2!

3! 1!
4!0! 2!

5! 3! 1!
0! 2!

5! 3! 1!
0! 2!

5! 3! 1!
0! 2!

5! 3! 1!
0! 2!

1!

1!

1!
3!3!3!3!

2! 2! 2!0!

0!

0!

0!

Figure 13. The castle γ2−2 as a subgraph of the dP3 brane tiling with
its corresponding hexagonal notation.
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4.3. The Integer Cone Theorem. Recall the canonical paths and coordinates
defined in the integer cone introduced previously in Section 1.5. Denote by xi,j the
first cluster variable produced after entering the alcove (i, j) by a canonical path
(e.g. if the last step in a canonical path is τ2 = µ2 ◦µ3, xi,j is the variable produced
by µ2).

Theorem 4.1. For all alcoves (i, j) in the integer cone, xi,j is equal to c(G), where
G is either an Aztec castle of integer order or a 180◦ rotation of an Aztec castle of
integer order.

The specific pairing of the alcove (i, j) with the appropriate Aztec castle γ`k is
proven at the end of this section and is also summarized by the image of the integer
cone on the following page in Figure 14. To prove Theorem 4.1, we develop recursions
on the weights and covering monomials of Aztec castles.
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(4, 2)

(4, 1)

(4, 1)
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(4,−1)
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(5, 3)

(5, 2)

(5, 2)

(5, 1)

(5, 1)

(5, 0)

(5, 0)

(5,−1)

(5,−1)

(5,−2)

(5,−2)

(4,−3)

(6, 4)

(6, 4)

(6, 3)

(6, 3)

(6, 2)

(6, 2)

(6, 1)

(6, 1)

(6, 0)

(6, 0)

σ

σσ

σ

(2,−2)

(2,−2)

σ

σ σ σ

σ σ σ σ

σ σ σ σ σ

σ

σ

σ σ σ σ

σ σ σ σ

(2, 1)

(1, 0)

(3, 2)

(4, 3)

(5, 4)

D0

D1

D2

D3

D4

D5

D6

D7

D8

(6, 5)

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

Figure 14. The integer cone. Recall that the blue and red paths are 123 . . . and 1213 . . ., respectively. The
alcoves are labeled by (`, k) or σ(`, k), where xi,j = c(γ`k) or c(σ γ`k), respectively.
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4.4. Condensations on Integer-Order Castles. The work of detailing recur-
sions on the weights of integer-order castles will rely on a method known as graphical
condensation which was first introduced by Kuo in [Kuo] and further generalized
by Speyer [Spe]. We will be utilizing Speyer’s reformulation of the condensation
theorem multiple times throughout this section as well as in Section 5, so it is useful
to provide a brief review of the necessary facets.

4.4.1. The Condensation Theorem. The condensation theorem relates the weights
of a graph G to smaller sections of that same graph by dividing G into nine disjoint
sets. This decomposition will form the basis of the recursions on the weights of
Aztec castles.

Partition the vertices of a planar bipartite graph G into nine distinct sets:

V (G) = C tN t S tW t E tNE tNW t SE t SW
and assume the following conditions hold:

• The edge connections between the nine sets agree with those illustrated in
Figure 15. Thus, there cannot be any edge connecting N, S, E, or W to C
and other similar restrictions.
• The boundary vertices must be black in the SW and NE sectors and white

in the SE and NW sectors.
• N, S, W, E, and C contain the same number of black and white vertices. In

SW and NE, the number of black vertices is one more than the number of
white vertices and in SE and NW the number of white vertices is one more
than the number of black vertices.

Then:

w(G)w(C) = w(N ∪NE ∪NW ∪ C)w(S ∪ SE ∪ SW ∪ C)w(E)w(W )

+ w(E ∪NE ∪ SE ∪ C)w(W ∪NW ∪ SW ∪ C)w(N)w(S)

4.4.2. General Weight Relation.

Lemma 4.2. For ` ≥ 0 and −2 ≤ k < `− 1, the following relation holds.

w(γ`k)w(σ γ`−1k ) = (w(σ γ`−1k−1)w(γ`k+1) + w(γ`−1k−1)w(σ γ`k+1))

(
1

x0x1x2x3x4x5

)
.

The proof of Lemma 4.2 requires two general forms of condensations which are
now presented in the next two sections.
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NE

E

SE

C

N

S

SW

NW

W

Figure 15. The possible allowed edge connections between the nine sets
of vertices in a successful application of the condensation theorem. Bound-
ary vertices must be white for the NW and SE sectors and black for the
NE and SW sectors.

4.4.3. First Form of Condensation. SupposeG = (a, b, c, d, e, f) with all a, b, c, d, e, f
positive and basepoint p. We define the components of the decomposition as follows.

• C has basepoint p ′ at the endpoint of the path P1 beginning at p and has
six-tuple representation (a− 3, b− 2, c, d− 1, e, f − 2).
• E and S are empty.
• N consists of the top-most quadrilateral of G, labeled 0, plus the south-

west and southeast edges bordering this quadrilateral. Note that w(N) =
1

x1x2
1

x3x4
1

x0x5
.

• W consists of the left-most quadrilateral in G, which is labeled 3, plus the
north and southeast edges bordering this quadrilateral. Note that w(W ) =

1
x1x2

1
x3x5

1
x0x4

.
• Define B0 to be the first quadrilateral immediately to the right of W which

is labeled 3, plus the north edge bordering this quadrilateral. Then SW
consists of B0 and all vertices bounded by G, B0, and C.
• Define B1 to be the first quadrilateral southwest of N which is labeled 0, plus

the southeast edge bordering the lower black vertex of this quadrilateral.
Then NW consists of B1 and all vertices bounded by G, B1, C, SW , and
W .
• NE consists of all vertices bounded by G, C, N , and NW .
• SE consists of all remaining vertices of G.

These components are also summarized in Figure 16.



AZTEC CASTLES AND THE dP3 QUIVER 25

NW

N

NE

W
SW

C
SE

6 4

1

53
2

2
1

43

3

p

p�

B0

B1

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!
5!

3!
1!

0! 2!

5!
3!

1!
0! 2!

5!
3!

1!
0! 2!

5!
3!

1!
0! 2!

3!
1!
4!0! 2!

3!
1!
4!0! 2!

3!
1!
4!0! 2!

3!
1!
4!0! 2!

3!
1!
4!0! 2!

0!

0!

0!

0!

0! 2! 2!

1!

1!

1!

1!
3!3!3!

Figure 16. Example of the first form of condensation

It is straightforward to verify that all conditions of the condensation theorem are
satisfied. For notational convenience, define the quadrants Qi, i = 1, . . . , 4 of the
decomposition as follows. The rightmost equality demonstrates each quadrant in
six-tuple notation.

Q1 = S ∪ SW ∪ SE ∪ C = (a− 2, b− 2, c+ 1, d, e, f − 1)

Q2 = W ∪ SW ∪NW ∪ C = (a− 1, b− 1, c, d− 1, e− 1, f)

Q3 = N ∪NW ∪NE ∪ C = (a− 1, b, c− 1, d− 1, e, f − 1)

Q4 = E ∪NE ∪ SE ∪ C = (a− 2, b− 1, c, d, e+ 1, f − 2)

Recalling that w(W ) = w(N) = 1
x0x1x2x3x4x5

, we then have the following relation
corresponding to this decomposition:

w(G)w(C) =
1

x0x1x2x3x4x5
(w(Q1)w(Q3) + w(Q2)w(Q4))

4.4.4. Second Form of Condensation. The second formulation involves G of the form
(` + 2, ` + 1, 0, ` + 1, `, 1) with ` ∈ N. This decomposition is described explicitly
below with an example illustrated in Figure 17.

• C has basepoint p′ at the endpoint of the path P1 beginning at p and has
hexagonal representation x(`, `− 1, 0, `, `− 1, 0). Note that C is the familiar
Aztec dragon of integer order D`.
• S, E, N , and W are identical to the description given earlier in Section 4.4.3
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• SW is the vertex originally removed in the construction of C = D` = x(`, `−
1, 0, `, `− 1, 0).
• Recall the definition of B1 in 4.4.3. Then NW consists of B1 and all vertices

bounded by G, B1, C, SW , and W .
• Define B2 to be the rightmost quadrilateral of G (labeled 2) plus the north-

west edge bordering the leftmost black vertex of this quadrilateral. Then
SE consists of B2 and all vertices bounded by G, B2, and C.
• NE consists of the remaining vertices of G.
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Figure 17. Example of the second form of the decomposition.

Again, it is straightforward to verify that the conditions of the condensation
theorem are satisfied. Also note that the quadrants have the following form:

Q1 = (`, `− 1, 1, `+ 1, `, 0)

Q2 = (`+ 1, `, 0, `, `− 1, 1) = σ(Q1)

Q3 = σD`+1 = (`+ 1, `, 0, `+ 1, `, 0)x

Q4 = D`+1 = σ(Q3) = x(`+ 1, `, 0, `+ 1, `, 0)

Using the notation of the previous section, this yields the same relation as before.

w(G)w(C) =
1

x0x1x2x3x4x5
(w(Q1)w(Q3) + w(Q2)w(Q4))

4.4.5. Proof of the General Weight Relation. We now give proof of Lemma 4.4.2,
the general weight relation among Aztec castles.

Proof. The case ` = 0, k = −2 is a base case that is verified separately using a
diagram in Section 4.6. Hence for the remainder of the proof, assume ` > 0.
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Next, suppose −2 ≤ k < l − 2. Construct the Kuo condensation on γ`k = (2` −
k, `+1, `−k−2, 2`−k−1, `, `−k−1) presented in Section 4.4.3. We then make the
following observations using the action of σ and the definition of the Aztec castles:

C = (2`− k − 3, `− 1, `− k − 2, 2`− k − 2, `, `− k − 3) = σ γ`−1k

Q1 = (2`− k − 2, `− 1, `− k − 1, 2`− k − 1, `, `− k − 2) = σ γ`−1k−1

Q2 = σQ1 = γ`−1k−1

Q3 = (2`− k − 1, `+ 1, `− k − 3, 2`− k − 2, `, `− k − 2) = γ`k+1

Q4 = σ Q3 = σ γ`k+1

Plugging in these Qi into the first condensation verifies this case.
We complete the proof with the case k = `− 2. By explicit computation, γ``−2 =

(`+ 2, `+ 1, 0, `+ 1, `, 1). This graph has the necessary form for the second general
Kuo condensation presented in Section 4.4.4. Hence, the center is D` = σ γ`−1`−2 .

It is routine to verify that Q1 = σ γ`−1`−3 and Q2 = γ`−1`−3 . Finally, by construction,

Q3 = σD`+1 = γ``−1 and Q4 = σ γ``−1. Plugging this information in for Qi into the
second condensation equation verifies this case and completes the proof.

�

4.5. Covering Monomial Relation. The following lemma will be combined with
the weight relation to prove Theorem 4.4.

Lemma 4.3. For all `, k, where ` ≥ 0 and −2 ≤ k ≤ `− 2 :

m(γ`k)m(σγ`−1k ) = (x0x1x2x3x4x5)m(σγ`−1k−1)m(γ`k+1)

= (x0x1x2x3x4x5)m(γ`−1k−1)m(σγ`k+1)

Proof. The γ`k hexagon has associated side lengths (2`− k, `+ 1, `− k − 2, 2`− 1−
k, `, ` − 1 − k) when −2 ≤ k ≤ ` − 2 (Section 4.2). We will tackle the k = ` − 2
case separately because the graph γ``−1 = σD`+1 is a special case. Now, let G be a
subgraph of the brane tiling and let m′(G) denote the set of quadrilaterals of the
brane tiling included in and bordering G (we represent the quadrilateral marked i
by xi). Then we can rephrase Lemma 4.3 in this new notation as follows. Here the
curly brackets {. . .} indicate a multiset.

m′(γ`k) tm′(σγ`−1k ) = {x0, x1, x2, x3, x4, x5} tm′(σγ`−1k−1) tm′(γ`k+1)

= {x0, x1, x2, x3, x4, x5} tm′(γ`−1k−1) tm′(σγ`k+1)

Thus if for any i, j we can overlap m′(σγ`−1k−1) and m′(γ`k+1) such that

[m′(σγ`−1k−1) ∪m′(γ`k+1)] t {x0, x1, x2, x3, x4, x5} = m′(γ`k)

and
m′(σγ`−1k−1) ∩m′(γ`k+1) = m′(σγ`−1k ),
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then the lemma follows.
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Figure 18. The overlapping of the castles γ`k+1[Blue] and σγ`−1k−1
[Green] on the left with the overlapping of σγ`k+1 and γ`−1k−1 on the right.

In both cases, the intersection of the green and blue hexagons is m′(σγ`−1k )

[Black], while their union is m′(γ`k) with one small tip missing which con-
tains the quadrilaterals {x0, x1, x2, x3, x4, x5} [Red].

Figure 18 illustrates such an overlapping for k ≤ l − 3. The blue hexagon on the
left side of the diagram outlines γ`k+1, while the green hexagon is σγ`−1k−1, because
the action of σ sends the tuple (a, b, c, d, e, f) → (d, e, f, a, b, c). Their intersection
is m′(σγ`−1k ) and their union is m′(γ`k), with one tip in the brane tiling removed.
This tip is outlined in red in the figure, and consists of exactly the quadrilaterals
{x0, x1, x2, x3, x4, x5} as desired. Collecting these unions and intersections from the
left and right hand side of Figure 18 then leads to both equalities in Lemma 4.3

A similar overlapping construction exists for the case k = `−2, which is exhibited
in Figure 19. For the figure on the left, the larger rectangle with the orange X
in its bottom right hand corner is γ``−1 = D`+1, the hexagon containing the blue

quadrilateral is γ`−1`−3 . We then have

[m′(γ`−1`−3) ∪m′(D`+1)] t {x0, x1, x2, x3, x4, x5} = m′(γ``−2),

and

m′(γ`−1`−3) ∩m′(D`+1) = m′(D`).

Hence

m(γ``−2)m(σγ`−1`−2) = (x0x1x2x3x4x5)m(σγ`−1`−3)m(γ``−1))

as desired. The right-hand side of Figure 19 similarly gives the corresponding rela-
tion:

m(γ``−2)m(σγ`−1`−2) = (x0x1x2x3x4x5)m(γ`−1`−3)m(σγ``−1).

�
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Figure 19. The covering monomial overlapping of castles for the case
when k = `−2. The right-side interior blue hexagon (rectangle in this case)

is m′(σγ`−1`−2 and the intersection of m′(γ`−1`−3) and m′(D`+1). The union of

these two plus the quadrilaterals {x0, x1, x2, x3, x4, x5} is m′(γ`l−2). Also,
in the figure on the right, the triangular region below the dotted green line
represents quadrilaterals which are not included by the original figures but
are shaded in when considering boundary quadrilaterals, so the argument
still holds.

4.6. Proof of the Integer Cone Theorem. Now we combine Lemmas 4.2 and
4.3 to prove our main result of this section, Theorem 4.1.

Theorem 4.4 (Main Result 1). Define the function

f(i) =

{
1 i ≡ 0, 1, 5 (mod 6)

0 else

Define the graph g(i, j) as:

g(i, j) =

{
σf(i)(γj−1

j−2− i
2

) i ≡ 0 (mod 2)

σf(i)(γj−2
j−3− i+1

2

) i ≡ 1 (mod 2)

Then

c(g(i, j)) = xi,j.

Proof. Note first that g(0, 1) = σ γ0−1 = D1, g(1, 1) = γ−1−3 = ρD1, and g(2, 1) = γ0−2.
The first two values can be checked explicitly and are also handled in [Zha12]. The
value of g(2, 1) follows from the decomposition presented in Figure 20. The covering
monomial is easily computed by hand.
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Figure 20. The condensation for the base case of γ0−2 which is g(2, 1).

Therefore, the theorem holds for the row j = 1 in the integer cone. Now let’s
consider rows higher than j = 1. A canonical path falls into one of the three forms
described in Section 1.5. By the work in [Zha12], g(0, j) = Dj = σ γj−1j−2 .

Now we induct on the rows of the integer cone. Suppose that the theorem holds
for row j−1. We show that the theorem holds for the row j. This requires handling
three cases, one for each type of canonical path. We handle the case j ≡ 2 mod 3
explicitly with the two remaining cases following analogously.

Note that row j of the integer cone consists of 2j+1 alcoves labeled by coordinates
(0, j) to (2j, j). Proving this case has three parts. First we prove the theorem for
the following alcoves with odd first coordinate: (1, j), (3, j), . . . , (2j−3, j). The final
odd alcove is a special case that is handled separately. For the remaining alcoves, we
will use the exchange relation and the labeling of the quiver at each step to verify
that the exchange relation is compatible with the covering monomial and weight
relations, which will conclude the proof.

For the first part, note that each of the alcoves (1, j), (3, j), . . . , (2j−3, j) borders
an alcove in the row below it. In general, the alcove (i, j) borders (i+ 1, j − 1). By
the inductive hypothesis, the border alcoves (i + 1, j − 1) have the given table of
values.

Alcove (i+ 1, j − 1) (2, j − 1) (4, j − 1) (6, j − 1) · · ·
g(i+ 1, j − 1) γj−2j−4 γj−2j−5 σ γj−2j−6 · · ·

In summary, the pth border alcove has value γj−2j−p−3 or σ γj−2j−p−3. It is the latter iff
p is divisible by 3.

Next, by the relations among the τj’s, recall that any path to the same alcove will
yield the same unordered cluster. We can use this to determine that g(i+1, j−1) and
g(i, j) are the same up to σ. More specifically, we show that g(i, j) = σ g(i+1, j−1)
if i ≡ 1 mod 3 and is exactly g(i+ 1, j − 1) otherwise. The argument proceeds by
induction.

The base case is i = 1. We represent the cluster at alcove (i, j) by Ci,j =
{c1, c2, c3}, where ci denotes the set of cluster variables at vertices v2i−1 and v2i−2.
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Note that the two members of ci are related by σ. By this observation, we can abuse
notation and replace ci with one of its elements. With these conventions, we see the
following.

C1,j = {x0,j, x0,j−1, x1,j};
C2,j−1 = {x1,j−1, x0,j−1, x2,j−1}

From the construction of the lattice, τ1 C2,j−1 = C1,j. Because the operation τ1
changes only the first entry of the cluster in the given notation, we can infer that
x1,j and x2,j−1 are the same up to σ. Next, note that the path to alcove (2, j− 1) is

given by β
2
3
(j−2)12|13 and the path to alcove (1, j) is given by β

2
3
(j−2)+11|3. By the

factorization phenomenon, x1,j and x2,j−1 have the same exponents. Hence, they
differ at most by their leading term, which is determined by the parity of the number
of 3’s in either path. It is easily checked that this parity is not the same for x1,j and
x2,j−1, which implies that their leading terms differ by σ. Finally, by the original

inductive hypothesis on j, x1,j = σ x2,j−1 = σ c(γj−2j−4) = c(σ γj−2j−4)) as desired.
The inductive step (on i) follows by a completely analogous argument. With this

result, we recover the following table of values.

Alcove (i, j) (1, j) (3, j) (5, j) · · ·
g(i, j) σ γj−2j−4 γj−2j−5 σ γj−2j−6 · · ·

Consequently, g(2q − 1, j) = γj−2j−q−3 if q ≡ 2 mod 3 and is σ γj−2j−q−3 otherwise,
1 ≤ q ≤ j − 1. It easily checked that this labeling is consistent with the statement
of the theorem.

The second part of the proof handles the alcoves (2, j), (4, j), (6, j), . . . , (2j −
2, j). To prove that the subgraphs corresponding to these alcoves agrees with the
theorem, it suffices to show that g(2r, j) = σ γj−1j−r−2 if r is divisible by 3 and is

γj−1j−r−2 otherwise. To do so, we demonstrate that the general weight relation from
Section 4.4.2 and covering monomial relation from Section 4.5 are compatible with
the exchange relation along canonical paths.

We will verify this first directly for the alcoves (2, j), (4, j) and (6, j), which serve
as base cases. Before doing so, it will be convenient to introduce notation that
represents the seed (the labeling of the quiver and the variables at each vertex) at
any stage in the τ -mutation sequence. The seed is represented by the following
matrix. 

a0 a1 a2
X0 X1 X2

a3 a4 a5
X3 X4 X5


Here, {a0, . . . , a5} is a permutation of the set {0, 1, 2, 3, 4, 5}. Starting from the

vertex labeled 0 on the initial quiver and reading clockwise, Q currently has the
labeling a0 − a1 − a2 − a3 − a4 − a5. The entry Xi directly below ai specifies the
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cluster variable at the vertex labeled ai. For example,


0 5 3
x0 x5 x3
1 4 2
x1 x4 x2

 specifies the

initial cluster. Observe also that because the action of any τ simply swaps antipodal
vertices, a0 and a3 are either 0 or 1 after any τ -mutation sequence. The analogous
statements hold for a1 and a4 as well as a2 and a5.

The path to the first alcove we consider, (2, j), is given by β
2
3
(j−2)+11|32. By the

inductive hypothesis on j, the first part of this proof, and the action of τi on the
quiver, the seed has the following form immediately before applying the final τ in
the given path. 

0 5 2

c(σ γj−1j−2) c(γj−2j−4) c(σ γj−2j−3)
1 4 3

c(γj−1j−2) c(σ γj−2j−4) c(γj−2j−3)


The exchange relation for the mutation µ2, the first mutation in τ2, is thus:

x2,j · c(σ γj−2j−3) = c(γj−1j−2)c(σ γj−2j−4) + c(σ γj−1j−2)c(γj−2j−4)

If we set ` = j−1 and k = j−3 and multiply the general condensation relation by
the covering monomial relation, we recover the previous equation with x2,j replaced

by c(γj−1j−3). This implies x2,j = c(γj−1j−3) as desired.

The same method verifies that x4,j = c(γj−1j−4) and x6,j = σ c(γj−1j−5). With this
information, we can complete the inductive step.

Suppose that g(i, j) has the desired value up to some alcove (s, j) with 0 ≤ s <
2j − 2 and s odd. We verify that the theorem holds for the alcove (s+ 1, j). Write
s + 1 = 2t for t ∈ N. Then based on the value of t modulo 3, we have three cases,
one of which we verify explicitly.

Suppose t ≡ 1 mod 3. Then the path to (2t, j) has the form β
2
3
(j−2)+11|(321)2u32,

u ∈ N. Observe that before the application of τ2, the quiver has the same vertex
labeling as before entering the alcove (2, j). Then by the two inductive hypotheses
the seed has the following form:

0 5 2

c(σ γj−1j−t−1) c(γj−2j−t−3) c(σ γj−2j−t−2)
1 4 3

c(γj−1j−t−1) c(σ γj−2j−t−3) c(γj−2j−t−2)


Then the exchange relation for µ2, the first step of τ2 is given below.

x2t,j · c(σ γj−2j−t−2) = c(σ γj−2j−t−3)c(γ
j−1
j−t−1)

+ c(γj−2j−t−3)c(σ γ
j−1
j−t−1)
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Now set ` = j−1 and k = j−t−2 and multiply the general condensation relation
by the covering monomial relation. We see that

c(γj−1j−t−2) · c(σ γj−2j−t−2) = c(σ γj−2j−t−3)c(γ
j−1
j−t−1)

+ c(γj−2j−t−3)c(σ γ
j−1
j−t−1)

We now solve the equations to see that x2t,j = c(γj−1j−t−2), as desired. For t ≡ 2

mod 3, the same process reveals that x2t,j = c(γj−1j−t−2). Likewise, if t ≡ 0 mod 3,

x2t,j = c(σ γj−1j−t−2), as desired.
We handle separately the alcove with coordinates (2j − 1, j), the final alcove

with first coordinate odd. The canonical path to this alcove is given by P =
β

2
3
(j−2)+11|(321)

2
3
(j−2)+1. Note that this alcove as well as (2j − 2, j) are on the

boundary of the integer cone traced by the path 12131213 . . .. Specifically, (2j−2, j)
and (2j − 1, j) are intersected by the last two steps of the path (1213)j−1121. It
follows from Corollary 2.4 that the cluster variables produced by the last two steps
of P are related by ρ or σρ. Because the cluster is independent of path, the same
must hold true for x2j−2,j and x2j−1,j. Using the an argument based on the par-
ity of the number of 2’s and 3’s in the original path P , we can directly observe
that ρ x2j−2 = ρ c(γj−1−1 ) = c(γj−2−3 ). This is consistent with the construction of g as
desired.

Finally, the alcove (2j, j) satisfies g(2j, j) = γj−1−2 . This is verified with the same
argument as used for those alcoves with first coordinate even. This concludes the
inductive step for the case j ≡ 2 mod 3. The remaining cases j ≡ 1, 0 mod 3
follow by analogous reasoning. This completes the proof.

�

5. The Half–Integer Cone

Now we study the graphs which appear in the so–called half–integer cone first
introduced in Section 1.5, which are in perfect duality with the graphs in the integer
cone.

a

b

c

d

e

f

Figure 21. The hexagonal notation for a graph in the half-integer cone
which is specified by the tuple [a, b, c, d, e, f ].
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5.1. Hexagonal Notation. Given a six-tuple [a, b, c, d, e, f ], where we use square
brackets to distinguish this from the previous notation, we associate the following
hexagon exhibited in Figure 21.

This tuple defines a graph G in the brane tiling. Mark a point p that lies in the
center of a 6-cycle (introduced in Section 1.1) in the brane tiling to be the basepoint
of G as before. Now define the following four-step subpaths which will make up the
boundary of G illustrated in Figure 22.

3!
0!

1! 5!

1!
2!

1!

1!

0! 0!4!

0!

0!

1!

P̃1 = (W, S, SW,SE)

P̃2 = (NW, SW, NW,SW )

P̃3 = (E, S, SE, SW )
P̃4 = (E, N, NE, NW )

P̃5 = (SE, NE, SE, NE)

P̃6 = (W, N, NW, NE)

Figure 22. The six four-step subpaths that trace out a boundary path
P̃ placed around a castle of half-integer order to signify their position in
the brane tiling. The subgraph induced by all of the vertices in P̃ is an
Aztec castle in the half-integer cone.

Associate the path

P̃ = P̃ e+1
1 P̃ f+1

2 P̃ a
3 P̃

b+1
4 P̃ c+1

5 P̃ d
6

which starts at the basepoint p to the tuple [a, b, c, d, e, f ]. Note that the transition
of the path from P̃1 to P̃2 as well as P̃4 to P̃5 involves tracing out an edge twice.
Both of these edges should be deleted from P̃ . If P̃ is a simple closed curve after
deletion, we define G to be the subgraph induced by all vertices on the boundary
path P̃ and in the interior region of P̃ .

The half-integer order Aztec dragons fit into this framework with a slight modifi-
cation. In the hexagonal notation, σDn+ 1

2
would have the following form illustrated

in Figure 23. The x in the left-hand corner signifies that the left-most quadrilateral
labeled 1 and its sole neighbor labeled 5 in Figure 23 should be removed from the
graph formed by the process defined above. In the six-tuple notation, this removal
is denoted by x[n, n− 1, 0, n, n− 1, 0].
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x!

n

n
n − 1

n − 1

Figure 23. The Aztec dragon Dn+ 1
2

in hexagonal notation, with a small

modification denoted by the red x in the left-hand corner.

Furthermore, observe that if G = [a, b, c, d, e, f ], then σG = [d, e, f, a, b, c]. In the
special case of the Aztec half-dragon, σDn+ 1

2
= [n, n− 1, 0, n, n− 1, 0]x, where the

x on the right–hand side of the tuple denotes that the rightmost quadrilateral and
its sole neighbor in the graph [n, n− 1, 0, n, n− 1, 0] should be deleted.

5.2. Graphs in the Half-Integer Cone. Here we define the Aztec castles of
half-integer order, a family of subgraphs of the brane tiling which include the
half-integer order Aztec dragons. As before, we will demonstrate that this family is
exactly those subgraphs that correspond to mutation sequences in the half-integer
cone.

Definition 4 (Aztec Castle of Half-Integer Order). Define the (`, k)–Aztec castle of
half-integer order γ̃`k for ` ∈ Z≥0 and −3 ≤ k ≤ `− 1 as follows. Note that addition
and scalar multiplication in this case correspond to the standard operations on Z6.

γ̃`k =

{
[2`+ 3, `+ 1, `+ 1, 2`+ 2, `, `+ 2]− (k + 3)[1, 0, 1, 1, 0, 1] if − 2 ≤ k < `− 1

σD`+1+ 1
2

= [`+ 1, `, 0, `+ 1, `, 0]x if k = `− 1
.

Note that γ̃`−3 = δ γ̃`+1
−1 , where δ is the permutation (25)(34) illustrated in Figure

24.

δ

ea
b

c
d

f
c

d
e

f

a

b

Figure 24. The action of δ, the permutation (25)(34), on the half-integer
order castles in hexagonal notation.

Two examples of half-integer order Aztec castles, the graphs γ̃2−2 and γ̃10 , are
exhibited in Figures 25 and 26 respectively. Finally, note the duality between γ`k
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and γ̃`k. When written in six-tuple notation, γ̃`k is obtained from γ`k in a canonical
way by replacing parentheses with square brackets. In hexagonal representation,
this correspondence is illustrated in Figure 27.

3

4 1

12

2

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 0!

0!

0!

0!
3!

1!
4!0! 2!

5! 1!
4!0! 2!

5! 1!
4!0! 2!

1!

1!

1!

1!

1!

5!
3!

1!
0! 2!

5!
3!

1!
0! 2!

Figure 25. The half-integer order castle γ̃2−2 illustrated in the brane
tiling and hexagonal notation.

2

2

1

1

x!
5!

3!
1!
4!0! 2!

5!
3!

1!
0! 2!

5!
3!

1!
0! 2!

3!
1!
4!0! 2! 0!

0!

1!

1!

1!

4! 0!

Figure 26. The Aztec castle γ̃10 , which happens to be the Aztec dragon
σD 5

2
with corresponding hexagonal notation.

a
b

c

d
e

f a

b

c

d

e

f

γ�
k γ̃�

k

Figure 27. The duality between integer order Aztec castles γ`k and half-

integer order castles γ̃`k.
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5.3. The Half-Integer Cone Theorem. Recall the coordinates and canonical
paths on the half-integer cone first introduced in Section 1.5. As before, define xi,j
to be the first variable produced after entering the alcove (i, j) in the half-integer
cone by a canonical path. Now we state the main result of this section which is in
duality with Theorem 4.1.

Theorem 5.1 (Main Result 2). For all alcoves (i, j) in the half-integer cone, xi,j
is equal to c(G), where G is either an Aztec castle of half-integer order or a 180◦

rotation of an Aztec castle of half-integer order.

The specific pairing of the alcove (i, j) with the appropriate Aztec castle γ̃`k is
stated explicitly at the end of this section. We summarize this pairing with the
image on the next page in Figure 28.
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j = 0

j = 1

j = 2

j = 3

j = 4

j = 5

j = 6

j = 7

j = 8

j = 9

j = 10

(−1,−3)

(0,−1)

(0,−2)

(0,−2)

(1, 0)

(0,−3)

(1,−1)

(1,−1)

(2, 1)

(1,−2)

(1,−2)

(2, 0)

(2, 0)

(3, 2)

(1,−3)

(2,−1)

(2, 3) (3, 1)

(4, 3)

(2,−2)

(2,−2)

(3, 0)

(3, 0)

(4, 2)

(4, 2)

(5, 4)

(2,−3)

(3,−1)

(3,−1)

(4, 1)

(4, 1)

(5, 3)

(5, 3)

(3,−2)

(3,−2)

(3, 1)

σ

σ

σ

σ

σ

σ

σ

σ

σ
σσ

σ
σσσ

σσσσσ

σσσσσ

σσσσσ

σσσσσ

σσσσσσ

(6, 4)

(6, 4)

(5, 2)

(5, 2)

(4, 0)

(4, 0)

(7, 5)

(7, 5)

(6, 3)

(6, 3)

(5, 1)

(5, 1)

(4,−1)

(4,−1)

D 1
2

D 3
2

D 5
2

D 7
2

D 9
2

D 11
2

D 13
2

D 15
2

D 17
2

σ

Figure 28. The half-integer cone with alcoves labeled by their corre-
sponding half-integer castles, where (`, k) represents γ̃`k and σ(`, k) repre-

sents σ γ̃`k. Note that the labeling of the half-integer cone is obtained by
flipping the integer cone about the path 123 . . . in the Coxeter lattice and
converting integer castles to half-integer castles in the canonical way.
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5.4. General Weight Relation. To prove the main result of this section, we need
recursion relations among the weights and covering monomials of half-integer order
castles. The weight relation is Lemma 5.2 stated below. Note that this is precisely
the statement of Lemma 4.2 with half-integer order castles replacing integer order
castles.

Lemma 5.2. For ` ≥ 0 and −2 ≤ k < `− 1, the following relation holds:

w(γ̃`k)w(σ γ̃`−1k ) = (w(σ γ̃`−1k−1)w(γ̃`k+1) + w(γ̃`−1k−1)w(σ γ̃`k+1))

(
1

x0x1x2x3x4x5

)
.

To prove this lemma, we must define two general forms of general condensations,
similar in manner to the proof of Lemma 4.2. Once these are proven, the proof of
Lemma 5.2 mimics the proof of Lemma 4.2.

5.4.1. First Form of Condensation. Suppose G = [a, b, c, d, e, f ] with all a, b, c, d, e, f
positive and basepoint p. Then we define the components of the condensation as
follows. It is schematically represented by the hexagonal representation in Figure
29.

a

b

c

d

e

f

f − 2

e
d−

1

c

b−
2

a−
3

p

p�

Figure 29. The first general condensation illustrated in hexagonal no-
tation, with the center outlined in red.

• Let the basepoint p ′ of C be the endpoint of the path P̃1 beginning at p.
Then the we let C = [a− 3, b− 2, c, d− 1, e, f − 2].
• E and N are empty.
• S consists of the bottom-most quadrilateral, labeled 1, plus the northeast

and northwest edges bordering this quadrilateral.
• W consists of the left-most quadrilateral in G, which is labeled 1, plus the

south and northeast edges bordering this quadrilateral.
• Define B̃0 to be the quadrilateral labeled 1 immediately northeast of S plus

the northwest edge bordering the higher black vertex of this quadrilateral.
Then SE consists of B̃0 and all vertices bounded by G, C, and B̃0.
• Define B̃1 to be the quadrilateral labeled 1 immediately southeast of W plus

the northeast edge bordering the rightmost white vertex of this quadrilateral.
Then SW consists of B̃1 and all vertices bounded by G, C, B̃1, S, and SE.
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• NW consists of all vertices in G bounded by C, SW , and W .
• NE consists of all remaining vertices in G.

It is then straightforward to verify that all conditions of the condensation theorem
are satisfied. For notational convention, define the quadrants Q̃i, i = 1, . . . , 4 of the
decomposition as follows. Note that this labeling corresponds to applying a flip
about a horizontal axis to the first decomposition defined in Section 5.4.1. This is in
accordance with the duality which we have observed throughout. It can be verified
that the quadrants yield analogous graphs as in the first decomposition. In fact, the
transition from Qi to Q̃i is simply replacing parentheses with square brackets. The
quadrants are listed below in hexagonal notation. Figure 30 is an example of this
condensation.

S

NW

NE

W

SW

C

SE

p

p�

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!
5!

3!
1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!
5!

3!
1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

3!
1!
4!0! 2!

3!
1!
4!0! 2!

3!
1!
4!0! 2!

5! 1!
4!0! 2!

5! 1!
4!0! 2!

1!

1!

1!

1!

1!

1!

1!

5!
3!

1!
0! 2!

5!
3!

1!
0! 2!

5!
3!

1!
0! 2!

5!
3!

1!
0! 2!

5!
3!

1!
4!0! 2!

0!

0!

0!

0!

0!

0!

B̃1

B̃0

Figure 30. Example of the first form of the condensation on castles of
half-integer order.

Q̃1 = N ∪NW ∪NE ∪ C = [a− 2, b− 2, c+ 1, d, e, f − 1]

Q̃2 = W ∪NW ∪ SW ∪ C = [a− 1, b− 1, c, d− 1, e− 1, f ]

Q̃3 = S ∪ SW ∪ SE ∪ C = [a− 1, b, c− 1, d− 1, e, f − 1]

Q̃4 = E ∪ SE ∪NE ∪ C = [a− 2, b− 1, c, d, e+ 1, f − 2]
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We recover the familiar condensation relation given below.

w(G)w(C) =
1

x0x1x2x3x4x5
(w(Q̃1)w(Q̃3) + w(Q̃2)w(Q̃4))

5.4.2. Second Form of Condensation. The second formulation involves G of the
form [` + 2, ` + 1, 0, ` + 1, `, 1] with ` ∈ N. This condensation has the hexagonal
representation exhibited in Figure 31. We also explicitly define its components.
Again, this representation is a flip of the hexagonal representation of the second
general decomposition presented in Section 5.4.2.

x!

n
n

n
n
− 1

n
− 1

n
+

1

n
+

1
n
+

2

Figure 31. The subgraphs covered in the second general condensation
are of the form [`+ 2, `+ 1, 0, `+ 1, `, 1] with the center defined in red with
tuple x[`, `− 1, 0, `, `− 1, 0].

• The basepoint of C is the endpoint of the path P̃1 beginning at p. In six-tuple
notation, C = x[`, `− 1, 0, `, `− 1, 0], which is the Aztec dragon D`+ 1

2
.

• E, W , N , and S are identical to the description given earlier in Section 5.4.1.
• NW consists of the remaining vertices of the quadrilaterals that were deleted

from the graph [`, `−1, 0, `, `−1, 0] to form C = D`+ 1
2

= x[`, `−1, 0, `, `−1, 0].

• Let B̃2 denote the quadrilateral labeled 1 directly northwest of S plus the
northeast edge bordering the rightmost white vertex of this quadrilateral.
Then SW consists of B̃2 and all vertices bounded by G, C, NW , W , and
B̃2.
• Define B̃3 to be the rightmost quadrilateral of G (labeled 0) plus the south-

west edge bordering the leftmost white vertex of this quadrilateral. Then
NE consists of B̃3 and all vertices bounded by G, C, B̃3.
• SE consists of all remaining vertices of G.
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Again, the quadrants are analogous to the quadrants of the second decomposition
presented in the previous section.

Q̃1 = [`, `− 1, 1, `+ 1, `, 0]

Q̃2 = [`+ 1, `, 0, `, `− 1, 1] = σ(Q̃1)

Q̃3 = σD`+1+ 1
2

= [`+ 1, `, 0, `+ 1, `, 0]x

Q̃4 = D`+1+ 1
2

= σ(Q̃3) = x[`+ 1, `, 0, `+ 1, `, 0]

Finally, we recover the familiar condensation relation below. Figure 32 is an
example of this condensation.

w(G)w(C) =
1

x0x1x2x3x4x5
(w(Q̃1)w(Q̃3) + w(Q̃2)w(Q̃4))

S

NW

NE

W

SW

C

SE

p�

p

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
0! 2!

5!
3!

1!
4!0! 2!

5!
3!

1!
4!0! 2!

3!
1!
4!0! 2!

3!
1!
4!0! 2!

5! 1!
4!0! 2!

1!

1!

1!

1!

1!

5!
3!

1!
0! 2!

0!

0!

0!

0!

B̃2

B̃3

5!
3!

1!
0! 2!

Figure 32. Example of the second form of the condensation on castles
of half-integer order.

5.5. Covering Monomial Relation. Just as with the castles residing within the
integer cone, there is an analogous overlapping construction for the covering mono-
mials of half-integer castles. Note that the hexagonal representations of these over-
lappings are merely flips about a horizontal axis of the overlappings for the integer
case.

Lemma 5.3. For all `, k, where ` ≥ 0, and −2 ≤ k ≤ `− 2 :
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m(γ̃ `
k)m(σγ̃ `−1k ) = (x0x1x2x3x4x5)m(σγ̃ `−1k−1)m(γ̃ `k+1)

= (x0x1x2x3x4x5)m(γ̃ `−1
k−1)m(σγ̃ `k+1)

In a similar manner to the integer castles, Figure 33 exhibits the overlapping
construction of covering monomials. The blue hexagon defines γ̃ `k+1, while the

green hexagon outlines σγ̃ `−1k−1. Using the same notational conventions as in Section
4.5, we see that

[m′(γ̃ `k+1) ∪m′(σγ̃ `−1k−1)] t {x0x1x2x3x4x5} = m′(γ̃ `k),

and

m′(γ̃ `k+1) ∩ m′(σγ̃ `−1k−1) = m′(σγ̃ `−1k ).

We can then deduce the first half of the equality in Lemma 5.3 and the second
half follows from considering the diagram on the right of Figure 33 which has similar
relations.

2l −
k −

1

2l −
k −

2

2l −
k −

1

2l −
k −

2

l − k − 2

l − k − 1

l −
1

l +
1

l

l − k − 2

2l −
k −

1

2l −
k −

1

2l −
k −

2

2l −
k −

2

l − k − 3
l − k − 1 l −

1

l l

l − k − 2

l +
1

l − k − 2

Figure 33. The overlapping of the castles γ̃`k+1[Blue] and σγ̃`−1k−1
[Green] on the left with the σ version exhibited on the right. In both

cases, the intersection of the green and blue hexagons is m′(σγ̃`−1k ) [Black],

while their union is m′(γ̃`k) with one small tip missing which contains the
quadrilaterals {x0, x1, x2, x3, x4, x5} [Red].

Figure 34 illustrates the picture in the case where k = `− 2, where γ̃ ``−1 is a half-
integer order Aztec dragon, and the X signifies two quadrilaterals removed, where
analogous relations (Figure 19) to the integer cone case hold.
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x!

l −
1

l +
1

l +
1

l

1

1

l +
1

l +
1

l −
1

l

1

1

x!
x!

Figure 34. The covering monomial overlapping of half integer order cas-
tles in the case where k = `−2. The dotted green line has the same purpose
as described in the caption to Figure 19.

5.6. Proof of the Half-Integer Cone Theorem and Main Theorem. Theorem
5.4 is a more precise formulation of the main result of this section.

Theorem 5.4 (Main Result 2). Let

f(i) =

{
1 iff i ≡ 0, 1, 5, 6

0 else

Define the graph g̃(i, j) as:

g̃(i, j) =

{
σf(i)(γ̃j−1

j−2− i
2

) i ≡ 0 (mod 2)

σf(i)(γ̃j−2
j−3− i+1

2

) i ≡ 1 (mod 2)

Then

c(g̃(i, j)) = xi,j.

This theorem follows using Lemmas 5.2 and 5.3 along with applying the same
techniques as in Section 4.6 3.

With the above result, Lemma 3.1, implies that our main theorem, Theorem 1.1,
is proven by applying the appropriate permutation α for alcoves in regions II - XI
of the Coxeter lattice. Such α are given in Table 1.

3Gregg Musiker suggests analyzing the duality discussed in this section further. There might be
an algebraic duality alongside the graph theoretic duality between integer and half-integer order
Aztec castles that could lead to an alternate (and perhaps simpler) proof of Theorem 5.1.
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6. Further Questions

Associating subgraphs to the cluster variables produced by τ -mutation sequences
on the dP3 quiver presents a foundation from which to explore several promising
directions. We now summarize some possibilities for future investigation.

Problem 6.1. To any matching of a planar bipartite graph G it is possible to asso-
ciate a corresponding height function on the set of matchings of G, see for example
[Ken03], or [CY10]. In [JMZ], it is proven that if we enrich our quiver with princi-
pal coefficients, the cluster variables produced by the sequence 123 · · · are still given
by the weighted matchings of Aztec dragons where the coefficients correspond to the
height of each perfect matching. In particular, Gregg Musiker conjectures that Aztec
castles equipped with height functions also account for principal coefficients.

Problem 6.2. In [CY10] a domino-shuffle is outlined on the dP3 brane tiling; what
happens when this shuffle is applied to perfect matchings of Aztec castles? Is there
a simple way to see that the number of these matchings is a power of 2? Even if
the shuffling does not give us perfect matchings of other Aztec castles, it could give
a new class of subgraphs of the brane tiling whose number of perfect matchings are
a power of 2.

Problem 6.3. Now that we have analyzed τ -mutation sequences, it is natural to try
to extend the work to further mutation sequences on the dP3 quiver, and in particular
to toric sequences (mutating only at vertices with 2 incoming and 2 outgoing arrows)
that are not τ -mutation sequences. While the factorization phenomenon no longer
occurs in these cases, a search for subgraphs with appropriate weighted enumerations
of perfect matchings is still of interest.

Problem 6.4. Al Garver suggests looking at certain products of cluster variables
produced by τ−mutation sequences, as they encode data on pairs of perfect matchings
of Aztec castles. Specifically, given two such cluster variables xij and xkl, if we may

write xijxkl =
∑
e

cexe, where the xe’s are cluster variables, how do the coefficients

ce encode combinatorial data on superpositions of perfect matchings of the castles
associated to xij and xkl?

Problem 6.5. This research project was jumpstarted by applying the method for
constructing shadows as outlined in Sections 4 and 7.3 of [EF] by Richard Eager
and Sebastián Franco. Their work presents two algorithms for computing subgraphs
corresponding to toric mutations. During this investigation, a discrepency between
the graphs obtained by these two methods was observed, for instance in the special
case of the τ -sequence 1213 . . ., but this was soon resolved through a private dis-
cussion with Musiker and Franco [FM]. In spite of this issue, the method was still
instrumental in allowing us to construct the Aztec castles appearing in this paper.
This and other observations suggest that there is much work to be done in providing
a mathematical basis to the algorithm – one which could not only shed light on the
connections between the combinatorics of cluster algebras and gauge/string theory
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duality, but also immediately lead to combinatorial interpretations of the type given
in this paper for a wide variety of quivers and their associated brane tilings.

Acknowledgments

This research was conducted during the 2013 REU in Combinatorics at the Univer-
sity of Minnesota, Twin Cities. The authors would first like to thank Gregg Musiker
for suggesting and supervising this project, having several invaluable discussions
about the research, demonstrating to us the Eager–Franco method, and comment-
ing on drafts. We would also like to thank Gregg Musiker, Pavlo Pylyavskyy, Joel
Lewis, and Dennis Stanton for mentoring the REU. We are grateful that Pavlo
Pylyavskyy pointed out the connection to the Coxeter lattice used throughout the
paper and that Joel Lewis provided some insightful observations on the factoriza-
tion phenomenon. The authors would like to thank Thomas McConville for a useful
conversation regarding canonical paths, and Sebastián Franco for correspondence
regarding the methods in his work with Richard Eager. Finally thanks goes to our
graduate student mentor Alexander Garver for numerous fruitful conversations and
for commenting diligently on drafts of the manuscript. The research was supported
by NSF grants DMS-1067183 and DMS-1148634.

References

[CY10] C. Cottrell and B. Young. Domino shuffling for the Del Pezzo 3 lattice. ArXiv e-prints,
October 2010. arXiv:1011.0045.

[EF] R. Eager and S. Franco. Colored BPS Pyramid Partition Functions, Quivers and Cluster
Transformations. JHEP, 1209:038.

[FG] V. V. Fock and A. B. Goncharov. Moduli spaces of local systems and higher Teichmuller
theory. Publications Mathematiques de lInstitut des Hautes Etudes Scientifiques, 103:211.

[FHK+] S. Franco, A. Hanany, K. D. Kennaway, D. Vegh, and B. Wecht. Brane dimers and quiver
gauge theories. JHEP, 0601:096.

[FM] S. Franco and G. Musiker. private communication.
[FZ] S. Fomin and A. Zelevinsky. Cluster algebras I: Foundations. Journal of the American

Mathematical Society, 15(2):497–529.
[GK12] A. Goncharov and R. Kenyon. Dimers and Cluster Integrable Systems. ArXiv Mathematics

e-prints, November 2012. arXiv:math/1107.5588.
[HS] A. Hanany and R. Seong. Brane Tilings and Reflexive Polygons. Fortsch.Phys., 60:695–

803.
[Jeo11] I. Jeong. Bipartite Graphs, Quivers, and Cluster Variables . 2011. URL: http://www.

math.umn.edu/~reiner/REU/Jeong2011.pdf.
[JMZ] I. Jeong, G. Musiker, and S. Zhang. Brane Tilings and Cluster Algebras I. In preparation.
[JMZ13] I. Jeong, G. Musiker, and S. Zhang. Gale-Robinson Sequences and Brane Tilings.

DMTCS proc. AS, pages 737–748, 2013. URL: http://www.liafa.jussieu.fr/fpsac13/
pdfAbstracts/dmAS0169.pdf.

[Kel08] B. Keller. Cluster algebras, quiver representations and triangulated categories. ArXiv e-
prints, July 2008. arXiv:0807.1960.

[Ken03] R. Kenyon. An introduction to the dimer model. ArXiv Mathematics e-prints, October
2003. arXiv:math/0310326.

[Kuo] E. H. Kuo. Applications of Graphical Condensation for Enumerating Matchings and
Tilings. Theoretical Computer Science, 319:29–57.

http://arxiv.org/abs/1011.0045
http://arxiv.org/abs/math/1107.5588
http://www.math.umn.edu/~reiner/REU/Jeong2011.pdf
http://www.math.umn.edu/~reiner/REU/Jeong2011.pdf
http://www.liafa.jussieu.fr/fpsac13/pdfAbstracts/dmAS0169.pdf
http://www.liafa.jussieu.fr/fpsac13/pdfAbstracts/dmAS0169.pdf
http://arxiv.org/abs/0807.1960
http://arxiv.org/abs/math/0310326


AZTEC CASTLES AND THE dP3 QUIVER 47

[LS] K. Lee and R. Schiffler. A Combinatorial Formula for Rank 2 Cluster Variables. Journal
of Algebraic Combinatorics, 37:67–85.

[MS] G. Musiker and R. Schiffler. Cluster expansion formulas and perfect matchings. Journal
of Algebraic Combinatorics, 32:187–209.

[Mus] G. Musiker. A graph theoretic expansion formula for cluster algebras of classical type.
Annals of Combinatorics, 15:147–184.

[Rou] R. Rouquier. Weyl groups, affine Weyl groups, and reflection groups. URL: http://www.
math.ucla.edu/~rouquier/papers/weyl.pdf.

[Spe] D. E Speyer. Perfect Matchings and the Octahedron Recurrence. Journal of Algebraic
Combinatorics, 25:309–348.

[SW] D. Speyer and L. K. Williams. The tropical totally positive Grassmannian. Journal of
Algebraic Combinatorics, 22:189–210.

[Zel07] A. Zelevinsky. What is . . . a Cluster Algebra? Notices of the AMS, 54:1494–1495, 2007.
[Zha12] S. Zhang. Cluster Variables and Perfect Matchings of Subgraphs of the dP3 Lattice . 2012.

URL: http://www.math.umn.edu/~reiner/REU/Zhang2012.pdf.

Department of Mathematical Sciences, Durham University, Durham DH1 3LE,
UK

E-mail address: megan.leoni@gmail.com

Department of Mathematics, Harvard University, Cambridge, MA
E-mail address: sethneel@college.harvard.edu

Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana
70803

E-mail address: pturne7@tigers.lsu.edu

http://www.math.ucla.edu/~rouquier/papers/weyl.pdf
http://www.math.ucla.edu/~rouquier/papers/weyl.pdf
http://www.math.umn.edu/~reiner/REU/Zhang2012.pdf

	1. Introduction
	1.1. Quivers and Brane Tilings
	1.2. -mutation Sequences
	1.3. Preliminary Definitions and Aztec Dragons
	1.4. Main Results
	1.5. Coxeter Lattice and Relations

	2. The Factorization Phenomenon
	2.1. Factorization of cluster variables
	2.2. Recursion on exponents for -mutation sequences

	3. Existence of explicit formula for  -mutation sequences
	4. The Integer Cone
	4.1. Hexagonal Notation
	4.2. Graphs in the Integer Cone
	4.3. The Integer Cone Theorem
	4.4. Condensations on Integer-Order Castles
	4.5. Covering Monomial Relation
	4.6. Proof of the Integer Cone Theorem

	5. The Half–Integer Cone
	5.1. Hexagonal Notation
	5.2. Graphs in the Half-Integer Cone
	5.3. The Half-Integer Cone Theorem
	5.4. General Weight Relation
	5.5. Covering Monomial Relation
	5.6. Proof of the Half-Integer Cone Theorem and Main Theorem

	6. Further Questions
	Acknowledgments
	References

