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Abstract

In his paper providing an easy proof of the Rogers-Ramanujan
identities, D. Bressoud extended his work to multiple series identities.
Intrinsic in his works are polynomials with diverse application to sev-
eral aspects of g-series, This paper provides an initial exploration of
these polynomials.

1 Introduction

In [9], D. Bressoud provides a stunningly elementary proof of the celebrated
Rogers-Ramanujan identities [2, Ch.7]:
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In fact, the Rogers-Ramanujan identities are the cases k = 2, i = 1,2 of
the following general identity [1]:
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Noto that it is unnecessary to require that the s;’s are nonincreasing because
,]) — =0 if M <0 by the final expression in (1.3).
Now in Bressoud's paper [9], after providing his elegant, easy proof, he
provides a generalization.

Bressoud’s Theorem. Given positive integers k and N, we have that
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Bressoud notes that the case k = 2 is the instance from which the Rogers-
Ramanujan identities follow, and he points out that the case @ = —1 provides
a finite version of (1.5) when ¢ = k. Indeed, when ¢ = k, then (1.5) follows
with £ = —1 and N — oo; all that is necessary is to invoke Jacobi’s triple
product [2, p.22, Cor. 2.9]

If we explore (1.6) a little further, something quite surprising is in store.
Namely, setting 2 = —¢"~* and letting N — oo, we find (see Theorems 2 and
3 in Section 4)
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Now the series in (1.8) is identical with the series in (1.5) when ¢ = k and
i = k—1, because By(z) =1, and By(z) = . However, while the right-hand
sides of (1.5) and (1.8) are identical for 1 < < k&, the left-hand sides differ
fori <k—1.

In light of the fact that (1.8) is a special case of (1.5), we shall call
the B, (z,¢) Bressoud polynomials. We shall, in Section 2, introduce three
further polynomial sequences closely related to Bn(z,¢) and derive some of
their basic properties.

In Section 3, we put the Bressoud polynomials into the theory of Bailey
pairs and Bailey chains. This will be applied in Sections 5 and 6.

In Section 4, we shall reconsider Bregsoud’s Theorem from the viewpoint
of Bailey chaing and derive related results.

Section 5 will look at applications of Bressoud polynomials to Rogers-
Ramanujan type identities, and Section 6 will consider their relationship to
the mock theta functions.

The final two sections provide a discussion of open questions connected
with the Bressoud polynomials.

2 Recurrences. The Four Families of Bres-
soud Polynomials

In addition to the B,(z,¢) defined by (1.9), we shall also consider
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The following theorem is fundamental to each application of the Bressoud
polynomials:

Theorem 1. If we define for n <0

Bu(z,q) = Bu(2,¢) = Du(2,¢) = Dz,q) =0, (2.4)
and - B
Bo(2,9) = Bo(#,¢) = Do(z,q) = Do(2,q) = L, (2.5)
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Proof. We shall prove (2.7) and (2.9). Recurrence (2.6) follows from (2.7) by
(2.1), and (2.8) follows from (2.9) by (2.3).
First we note that :
)y =g (L= (L= 2@y = 072 = ¢ (Daa. (210)
So if we compare coefficients of (2); on each side of (2.7), we see that we
need to prove
t(n,j) = ¢ 7tn — 1,5) — ¢ t(n— 1,5 — 1) (2.11)
+¢" T It = 2,) = "t — 2,5 — 1)
—¢"M(n — 3,7),
where
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Now multiplying both sides of (2.11) by (¢)2;(¢)n—;/(¢)n+j-s reduces the
expression to an easily verified polynomial identity.

tn, §) = ['n + .’7} (_l)jqj(j+l)/‘2—'n;j. (2.12)
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Similarly if we compare coeflicients of (z); on each side of (2.9), we see
that we need to prove
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Finally mulitplying both sides of (2.13) by (¢)2j+1(@)n—j/(¢)n+j—2 reduces
this expression to an easily verified polynomials identity. O

3 Bressoud Polynomials in Bailey Pairs

Let us recall fundamental aspects of the theory of Bailey chains and Bailey
pairs [3]. We start with a pair of sequences of rational functions (e, 3,)
defined to be a Bailey pair provided [3, p.278]
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Whenever you have a Bailey pair then the following holds for integers K > 1
[3, p.273, eq.(3.1)]
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and in particular when K =1
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Now let us consider four Bailey pairs associated with the Bressoud poly-
nomials. We begin with B, (z, ).
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we see that

is a Bailey pair for a = ¢.
Similarly,

Du(z,0), (3.9)
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we see that
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we see that
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is a Bailey pair for a = ¢°.

4 Bressoud polynomials and the generalized
Rogers-Ramanujan Series

The object of this section is first to show how Bressoud’s theorem relates to
the generalized Rogers-Ramanujan series [1] via Bailey chains, and second to
provide a companion result in which the D, (z) appears.

Theorem 2. for1 <i<k,
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Remark. This result may also be derived from Bressoud’s original proof of
Bressoud’s Theorem. Our goal here is to put the proof mto the Bailey chain
scenario.

Proof. The g-binomial theorem [1, p.36, eq.(3.3.6)] asserts that
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Thus (e, ) is a Bailey pair for ¢ = 1, where

Bn = (q)gn , (4.4)

and
» 1 ifn=20 L
T TUED (e + gBa) it > 0. (4.5)

We now insert this pair into (3.3) with ¢ =1 and K = k.
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Now set = ¢*'. The left side of (4.6) becomes
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(by Jacobi’s Triple product [1, p.22, Cor. 2.9])

which is the third expression in (4.1), and thus equal to the first expression
in (4.1) by (1.5).

On the right-hand side of (4.6), the inner sum on s, becomes
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and this confirms that the resulting right side of (4.6) equals the expression
in (4.7) and the theorem is proved. [




Theorem 3. For 1 <i<k,
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Now set = ¢"~1. The left side of (4.13) becomes
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(by Jacobi’s Triple product 2, p.22, Cor 2.9]),

which is the third expression in (4.8), and thus equal to the first expression
in (4.8) by (1.5).
On the wht hand side of (4.13), the inner sum on s, becomes
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This confirns that the resulting right side of (4.13) equals the expression in
(4.14), and the theorem is proved.

To close this section, we note that the first two expressions in Theorem
3 are identical at 7 = 1 because Dy(z) = 1.

5 Rogers-Ramanujan-Slater Identities

In this short section, we note that eight identities from [11] are direct corol-
laries of the results in Section 2.

Theorem 4.

0 ifn=3r+1
B.(0,q) = { (=1)rq B2 yfn =3y (5.1)

(=) g vB=972 i =3v—1
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Dn —{{, :D ’_"(,’1“ == . R r8
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Proof. We only need prove (5.1) - (5.4) in light of the fact that (5.5)- (5.8)
follow by replacing ¢ by .

As for (5.1) - (5.4) these follow directly by mathematical induction using
the recurrences in Theorem 1. For example, by (2.6)

B,(0,q) = —¢" 7" By-3(0,q), (5.10)

and one verifies directly that the right-hand side of (5.1) satisfies this same
recurrence.
Equations (5.2)-(5.4) follow in the same manner. m
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Seven of these eight identities imply identities listed in Slater’s com-
pendium [11]. In each case, one combines one of the above with the cor-
responding Bailey pair from section 3 and inserts the result in (3.4). Our
(5.1) implies equation (83) of [11].

Our (5.2) implies equation (46) of [11]

Our (5.3) implies equation (86) of [11].
Our (5.4) implies equation (44) of [11].
Our (5.5) implies equation (99) of [11]

Our (5.7) implies equation (96) of [11].

Our (5.8) implies equation (59) of [11].

The first entry in (5.9) implies equation (32) of [11], and the second entry
in (5.9) implies equation (19) of [11].

The missing case (which turns out to be a linear combination of two of
Slater’s identities) can be written out in full to illustrate the method.

Corollary 5.
oo 2.0,
n=0) 1)2n
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(@)oo (0)oo

Proof. Substituting (5.6) into (3.7) we see that (v, £,) is a Bailey pair for
a = ¢, with
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Inserting this pair into (3.4) with a = ¢ we find
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3

and if we apply Jacobi’s triple product to the two series on the left we obtain
the desired result. ]
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Turning to Slater’s list we find that the two infinite products in Corollary
5 correspond to equations (51) and (59) of [11]. Not surprisingly, Slater’s
identities imply that the left side of (5.11) is

i qn‘l (—(I)'n ‘ i f]n2+2""(—(1)n
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6 Mock Theta Functions

It should be noted that the Bailey pair (3.8) was suggested in [5] and studied
extensively in [6]. Thus it is natural that it will arise here among the five
instances we shall exhibit that yield the Hecke-type expansions involving
indefinite quadratic forms. The cases we have chosen illustrate how often
Bressoud polynomials arise in this context. We emphasize that this is only
a sample.

Theorem 6.

L5
Bu(-La)=(=1)" 3, (/g (6.1
J___L'nJ }
L3 ‘
Bu(=L0) = Bu(-1,)) = (=1)" > (-1¢" (6.2)
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Du(q, ) =q" > ¢V (6.5)
j==0
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Proof. As in Section 5, these results are easily deduced from the recurrences
in Theorem 1. As an example, we treat (6.5). It is immediate by inspection
that (6.5) is valid for n = 0,1,2. Now let A,, denote the right-hand side of
(6.5). Clearly

n n—1
Bn— @l = 3 @O _ 0 37 072
=0 =0
— qn('rz---}--.'})/Z
while
q1+‘2nA‘n~2 _ QQHHA,;-a
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_ e
S0 \
An - QAn—], = ql+2ﬂ An-m‘z - (IQTH_QAH ~~~~~ 3y
and the relevant recurrence is established. d

We may immediately use this results in the Bailey pairs in section 3, and
thus obtain the following identities of mock theta or false theta type.

Theorem 7.
< gBnt)/2 (—1;¢q)

e (@)2n (@)oo = l<La] /
(6.7)
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Proof. In each of the six identities we take the corresponding evaluation of
the Bressoud polynomial in Theorem 6 and then apply it to the corresponding
Bailey pair and the Bailey Lemma from section 3.

We should remark that (6.9) is a small variation of the seventh order
mock theta function identity in [5, p.132, eq. (7.23)]. Also the last line of
(6.10) is due to L. J. Rogers [10, Sec.9]. O

7 Bressoud’s Theorem and the Generalized
Rogers-Ramanujan Series

The object of this section is to reconsider the left-sides of (1.5) and (1.8).
Theorem 8. For 1 <i <k,
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(7.1)

Proof. The above assertion follows inunediately from the fact that the right
sides of (1.5) and (1.8) are identical. O

The object here is to consider whether (7.1) can be proved directly with-
out using either (1.5) or (1.8).

The cases ¢ = k and i = k— 1 are, in fact tautologies because By(z,q) =1
and Bi(z,q) = 2.

We go through the 7 = k — 2 case step by step because it illustrates the
general case.

For simplicity, we write
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quQ ’+9k 1+2"’k ](1_ (1_q9k D=8 l))

= T(s1,...,8
Z (] k- i (Q)SL,-MS"S'I' '1((])-5'}«-»--2—31\1-»1(q)sk--l

2+Q 1+‘23k—1

e . q k
= r (81, ooy S3)
Zﬁ: v (q)sk—s—sk—z (Q)Sk~2“~3k:~], (Q)sk_l

50 ot (o1 =12 4+2(sp—1—1) (1 — qb‘k--l)

. g
- E T (8_],, cas ,6‘/‘1,_3)
s (q)skr—fi"slc~—2 (q)skz-—‘Z"'Sk-l (q)Sk—l

(where sg—1 — Sg—1 — 1 in second sum)

62 442
. T (31, V. 73}“."_3) q b—2t8h—1 ( 28k1 +g Sp1—1 ~1)
= ‘ q q q
(/) PRI (/) P, (/) P

Z (7‘51+ +bl\ 1B2 ((791» 1)
= (@ar- ’

sz "7 Q)Sl —2—Sk— 1<Q)Sk,—-1

because !

By(zq) =42 — =
( a g

The simplification applied in the i = k — 2 case can be made applicable
to the general problem of reducing the left side of (7.1) to the right-side.

Lemma 9. Let

(_[ 1+77+Lq+utl+fu+m;

Trs(u,t,n) .
Rl’ Z ((] R—n 71 l'z(q)Ls—'L3(Q)1~:a—S

iy 4dn,d3 >0

(7.2)

Then

Trs(u,t,n) = Tas(u—1,t+1,n)—¢ " Trs(u—1,t—1,1n)—¢ " Ths(u—1,t,n-1).
(7.3)

Proof. We note that

1= " (1= (1—g"7)).
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Hence
qqtf{+1tg+7§+ui1+m+m‘3—il—-ig (1 _ (1 _ qil ~~i2))
((J)R—il (Q)'ij —in (Q)iz—i" (Q)'i:a—s

qll-l 12”;4 (u==1)i1+-(t+1)d2-+nis

Trs(u,t,n) =

i1,82,i3>0

—TRC.(U/*“J.T“FITL Z

i ,d0,432>0

((JR i q i1—ig— 1((! ig— H(q)73 S

=Thge(u—1t+1,n)
Z qi%+(i2~1)2+i§+(“—1)"31+(75+1)(‘f~2—1)+'n,-1‘.3 (1 _ (1 _ qi'z—i:a))

i1,42,i3>0 ((I)R"‘U ((.[)7'1_12 (q)il_"f‘i (Q)'L(‘X_S

(where iy — iy — 1)
= TR,S(U - ]-1 t+ 17 n) - q_tTR,S(u - Lt- 15 TL) - q.—tTR,S(u — 17 t,n— 1)
[
I believe that successive applications of Lemma 9 to the left-hand side of
(7.1) will yield the right-hand side of (7.1) just as we did in the case ¢ = k—2
with effectively one application of Lemma 9.
In particular, let us define

g 353+ 828 1 FSjan sk Hhse,

Z (q)S]—SQ(Q)S;’“Sf} T ((_Z)Sk.—-l._slc(q)sk

81228120

5 girEsk g (k — g, Ry 0%)
s1> >8>0 (q)sl—sg ((I)sg—-sg e ((J)Sk—l,—b’k ((-‘I)sk

Then successive application of Lemima 9 reveal that

frlk —1,h; 2) = 2t
Mt
full=2hiz) =2 = T
and for j > 2
fulk— g, h;2) = fi(k—j+1,h+1;2)
+ @ =M Ak=+ L= 1;2)
— k=2 h )+ ik =+ 1k 2).
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Conjecture.
fk(’l‘n‘ -7 L; 3) = B.‘i(z7 Q)
We have already shown that this is true for j =0,1,2. The assertion has
been verified for 0 < 7 < 10.

8 Conclusion

There are many questions yet to be examined in connection with the topics
explored in this paper. The fact that B, (z,¢) (actually a normalized version)
played a central role in the recent study of the seventh order mock theta
functions [3] suggests that the other three Bressoud polynomials might well
reveal interesting results from a similar study.

The work in Section 7 is effectively dual to the work of Berkovich and
Paule [7], [8]. In their work they were able to represent

s394 bs2 |+ Mysy+-MasodA-Mp_186-1

q
Z (Q)SPSz (@)sp—sy " ((J)skng—sk,_t (([)sk__l

512 28k—120

as linear combinations of the series given in (1.5). In section 8, we examine
when various linear combinations are identical. Presumably identical combi-
nations could be identified by means of Lemma 9.

Finally the fact that the Bressoud polynomials have such diverse applica-
tions as those considered here suggests that they merit further study in their
own right.
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