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GL(n) Case: Tableaux

Let λ = (λ1, λ2, · · · , λn)

Our alphabet is (1, 2, · · · , n)

To form a Young tableau, fill the
tableaux with elements of the
alphabet such that:

1 Weakly increasing along rows
2 Strictly increasing along

columns

λ1 x x · · · x x

λ2 x x · · · x
...

...

λn x x
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GL(n) case: Tableaux Example

Let λ = (4, 2, 1).
Our tableau will be of the shape: A possible filling:

1 1 2 3

2 3

3

Alexandr et al. Ice Models and Classical Groups July 30th, 2018 4 / 48



Gelfand-Tsetlin Patterns

GL(n) ↓ GL(n − 1)

Gelfand-Tsetlin pattern rules:

1 Rows weakly decreasing

2 Interleaving

1 1 1 3 3

2 2 2

3 3

5 3 2
3 3

3
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Gelfand-Tsetlin Patterns

Gelfand-Tsetlin pattern rules:

1 Rows weakly decreasing

2 Interleaving

1 1 1
5 3 2

3 3
3
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Gelfand-Tsetlin Patterns

Gelfand-Tsetlin pattern rules:
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2 Interleaving
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3 3

3
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Strict Gelfand-Tsetlin Patterns

ρ = (n − 1, ..., 0)

5 3 2
3 3

3

+ ρ = (2, 1, 0) −→
+ ρ = (1, 0) −→
+ ρ = (0) −→

7 4 2
4 3

3
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Tokuyama’s Formula

∑
T∈SGT (λ+ρ)

(1 + t)S(T )tL(T )zwt(T ) =
∏
i<j

(zi + tzj)sλ(z1, ...zn)
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GL(n) Shifted Tableaux

7 4 2
4 3

3

1 1 1 2 3 3 3

2 2 2 3

3 3
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GL(n) Ice Models: Boundary Conditions

3

2

1

7 6 5 4 3 2 1 0
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GL(n) Ice Models: Gelfand-Tsetlin Pattern 1

3

2

1

7 6 5 4 3 2 1 0
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GL(n) Ice Models: Gelfand-Tsetlin Pattern 2

3

2

1

7 6 5 4 3 2 1 0
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GL(n) Ice Models: Gelfand-Tsetlin Pattern 3

3

2

1

7 6 5 4 3 2 1 0
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GL(n) Ice Models: Gelfand-Tsetlin Pattern 4

3

2

1

7 6 5 4 3 2 1 0

Alexandr et al. Ice Models and Classical Groups July 30th, 2018 16 / 48



GL(n) Ice Models: Gelfand-Tsetlin Pattern 5

3

2

1

7 6 5 4 3 2 1 0
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Boltzmann Weights

j j j j j j

1 zi ti zi zi (ti + 1) 1

Figure: Boltzmann weights for Gamma Ice
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Branching Rule for Sundaram Tableaux

ssoλ =
∑
µ⊆λ

ssp(µ)

Sp(2n) ↓ Sp(2n − 2)⊗ U(1)
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Sundaram Tableaux

Partition: λ = (λ1 ≥ λ2 ≥ . . . λn ≥ 1)
Alphabet: {1 < 1̄ < · · · < n < n̄ < 0}

1 Rows are weakly increasing.

2 Columns are strictly increasing, but 0s do not violate this condition.

3 No row contains multiple 0s.

4 In row i, all entries are greater than or equal to i.

1 1 0

2 0
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Sundaram Gelfand-Tsetlin-type patterns

Gelfand-Tsetlin-type pattern rules:

1 Rows weakly decreasing

2 Interleaving

3 Difference between top rows ≤ 1

4 Even rows cannot end in 0

1 1 0

2 0

3 2 0
3 1

2 1
2

1
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Sundaram Strict Gelfand-Tsetlin-Type Patterns

3 2 0
3 1

2 1
2

1

add ρ −→
5 3 0

5 2
4 2

3
2
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Sundaram Shifted Tableaux

5 3 0
4 3

3 2
2

1

1 1̄ 2 2̄ 0

2 2 2̄
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Sundaram Ice Models: Boundary Conditions

2

1̄

1

2̄

0

3 2 1

Figure:
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Sundaram Ice Models: Modeling GT-Type Pattern

2

1̄

1

2̄

0

3 2 1

3 2 0
3 1

2 1
2

1
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Sundaram Ice Models: Full Model

2

1̄

1

2̄

0

3 2 1

3 2 0
3 1

2 1
2

1
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Sundaram Boltzmann Weights

j j j j j j

∆ Ice
Even rows

1 tzi 1 zi zi (t + 1) 1

j j j j j j

Γ Ice
Odd rows

1 z
−1
i

t z
−1
i

z
−1
i

(t + 1) 1

Figure: Boltzmann weights for ∆ and Γ Sundaram Ice

z
−1
i

t

Figure: Boltzmann Weights for Sundaram Bends
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Sundaram Botlzmann Weights

Alternate Bend Weights for B Deformation:

z−1
i ·

(
z−n+i−1
i

(1 + tzi )

(1 + tz2
i )

)
t ·

(
z−n+i−1
i

(1 + tzi )

(1 + tz2
i )

)
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Branching Rule for Koike-Terada Tableaux

SO(2n + 1) ↓ SO(2n − 1)⊗ GL(1)
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Koike-Terada Tableaux

Partition: λ = (λn ≥ λn−1 ≥ · · · ≥ λ1 ≥ 0)
Alphabet: {1 < 1̄ < 1 < 2 < 2̄ < 2 · · · n < n̄ < n}.
Let Ti,j be the entry of the tableau in the i-th row and the j-th column. Then:

1 Rows are weakly increasing

2 Columns are strictly increasing

3 k can only appear in Tk,1

4 Ti,j ≥ i

1 1 2 2 2

2 2 2
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Koike-Terada Gelfand-Tsetlin-type pattern

1 The pattern has 3n rows. Label these rows 1, 1̄, 1, · · · , n, n̄, n, starting from
the bottom of the pattern. Rows i , ī , and i must have i entries.

2 ai,j−1 ≥ ai,j ≥ ai,j+1 ≥ 0

3 ai−1,j ≥ ai,j ≥ ai−1,j+1

4 Row i must end in a 1 or a 0 (for i ∈ {1, · · · , n})
5 Each entry in row i (for i ∈ {1, · · · , n}) must be left-leaning.

5 3 2

4 2 2̄
2 1 2

2 1

1 1̄
0 1

Alexandr et al. Ice Models and Classical Groups July 30th, 2018 32 / 48



Koike-Terada Shifted Tableaux

1 Rows are weakly increasing.

2 Columns are weakly increasing.

3 Diagonals are strictly increasing.

4 The first entry in row k is k , k or k .
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Koike-Terada Ice: Bends and Ties

To connect rows k and k for each k ∈ {1, · · · , n}:

A B C

For rows k, where k k ∈ {1, · · · , n}, there are 3 possible ”ties”:

U D O

Note: Along with ties U, D and O, rows k k ∈ {1, · · · , n} are three-vertex
models, the vertices being SW, NW, and NE.
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Koike-Terada Ice: Boundary Conditions

The following depicts the boundary
conditions for an ice model with top
row λ = (2, 1).

1

1̄

1

2

2̄

2

2 1
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Koike-Terada Ice: Full Model

A

D

C

O

2 1

2 1
2 1

2 0
2

2
1
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Theorem (1)

The following are equivalent:

1 Koike-Terada Gelfand-Tsetlin-type pattern rules 4 and 5 are satisfied.

2 Each ice row labeled k ∈ {1, · · · , n} has no NS, SE, or EW configurations,
and tie boundary conditions are satsified.
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Branching Rule for Proctor Tableaux

SO(2n + 1) ↓ SO(2n − 1)⊗ SO(2)
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Proctor Tableaux

1 Rows are weakly increasing

2 Columns are strictly increasing

3 Follows the 2c orthogonal condition

4 Follows the 2m protection condition

Alexandr et al. Ice Models and Classical Groups July 30th, 2018 39 / 48



Proctor Tableaux

2c Orthogonal Condition: Less than or equal to 2c entries that are less than or
equal to 2c in the first two columns.

1 1 3 5

x 3 4

5

1 1 3 5

3 3 4

5
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Proctor Tableaux

2c Orthogonal Condition: Less than or equal to 2c entries that are less than or
equal to 2c in the first two columns.

1 1 3 5

x 3 4

5

1 1 3 5

3 3 4

5
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Proctor Tableaux

2m Protection Condition: For a 2m-1 entry in the first column, specified 2m
entries must be ”protected” by 2m-1 entries.

1 1 x 5

3 x 4

5

1 1 3 5

3 3 4

5
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Proctor Gelfand-Tsetlin-type Patterns

n=4 shape

x x x x (9)
x x x x (8)

x x x x (7)
x x x x (6)

x x x x (5)
x x x x (n = 4)

x x x (3)
x x (2)

x (1)
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Proctor Gelfand-Tsetlin-type Patterns

2c Orthogonal Condition

6 5 3 1
6 5 3 1 = 2 + 2 + 2 + 1 (8)

6 4 2 1
4 3 1 0 = 2 + 2 + 1 (6)

4 2 1 0
2 1 0 0 = 2 + 1 (4)

2 1 0
1 0 = 1 (2)

1
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Proctor Gelfand-Tsetlin-type Patterns

2m Protection Condition:
Add in 0s to make all rows length n

6 5 3 2
6 5 3 2

6 4 2 1
4 3 1 0

4 2 1 0
2 1 0 0

2 1 0 0
1 0 0 0

1 0 0 0
0 0 0 0
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Proctor Gelfand-Tsetlin-type Patterns

2m Protection Condition:
Identify non-left-leaning 0s in even rows

6 5 3 2
6 5 3 2

6 4 2 1
4 3 1 0

4 2 1 0
2 1 0 0

2 1 0 0
1 0 0 0

1 0 0 0
0 0 0 0
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Proctor Gelfand-Tsetlin-type Patterns

2m Protection Condition

Check Example:

For 0, if 2 > 1

Check:

2 ≥ 2

2 > 1

0 ≤ 1

6 5 3 2
6 5 3 2

6 4 2 1
4 3 1 0

4 2 1 0
2 1 0 0

2 1 0 0
1 0 0 0

1 0 0 0
0 0 0 0
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Proctor Strict Gelfand-Tsetlin-type Patterns

Change to be Strict and check Orthogonal Condition:

6 5 3 1
6 5 3 1

6 4 2 1
4 3 1 0

4 2 1 0
3 2 1 0 = 2 + 2 + 1 (4)

2 1 0
1 0

1

Alexandr et al. Ice Models and Classical Groups July 30th, 2018 47 / 48



Acknowledgements:

Prof. Ben Brubaker and Katy Weber

University of Minnesota, Twin Cities REU

NSF

Alexandr et al. Ice Models and Classical Groups July 30th, 2018 48 / 48



.

Questions?
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