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Abstract. The pentagram map has been studied in a series of papers by

Schwartz and others. Schwartz showed that an axis-aligned polygon collapses
to a point under a predictable number of iterations of the pentagram map.

Glick gave a different proof using cluster algebras, and conjectured that the

point of collapse is always the center of mass of the axis-aligned polygon. In
this paper, we answer Glick’s conjecture positively, and generalize the state-

ment to higher and lower dimensional pentagram maps. For the latter map,

we define a new system – the mirror pentagram map – and prove a closely
related result. In addition, the mirror pentagram map provides a geometric

description for the lower dimensional pentagram map, defined algebraically by
Gekhtman, Shapiro, Tabachnikov and Vainshtein.
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Figure 1. The pentagram map on a pentagon.

1. Introduction

The pentagram map was introduced by Richard Schwartz in [9] in 1992. It is a
map

T :
{

polygons in P2
}
→
{

polygons in P2
}

given by the following procedure: we cyclically label n points (which form a polygon
P ), then draw lines li from vertex i − 1, to i + 1, and obtain the polygon T (P )
whose vertices are given by li∩li+1, reducing modulo n whenever necessary. In other
words, T acts on the polygon P by drawing 2-diagonals and taking the intersections
of successive diagonals as vertices of T (P ). For convenience we will work over
R throughout the paper, but our results hold over C (and other fields) as well.
We remark that the pentagram map commutes with projective transformations.
Furthermore, we point our that the pentagram map is a completely integrable
dynamical system, see [8] by Ovsienko, Schwartz and Tabachnikov.

We adopt a similar labelling convention of the polygon P used by Schwartz in
[9]. The vertices of P are labelled by indices of the same parity, while the edge
between vertices Pi−1 and Pi+1 is labelled by Pi. The intersection of diagonals
Pj−1Pj+3 and Pj−3Pj+1 is labelled as Qj , which form the vertices of T (P ). (See
Figure 1).

Definition. We say that a 2n-gon P is axis-aligned if the edges P2, P6, ..., P4n−2 are
concurrent, and the edges P4, P8, ..., P4n are concurrent, in other words, alternating
edges go through the same point in P2. The name comes from the fact that we can
projectively transform such a polygon so that the sides are parallel to the affine
x-axis and y-axis.

Definition. Let P be an axis-aligned polygon. We define the center of mass C (P )
of P as follows: first we apply a projective transformation ϕ to P such that ϕ(P )
has edges parallel to x-axis and y-axis alternatively. Note that ϕ(P ) sits in the
affine plane R2 ⊂ P2, with standard coordinates. Let C be the centroid of ϕ(P ),

in other words, C =
1

2n
(ϕ(P1) + ϕ(P3) + ...+ ϕ(P4n−1)) is the point obtained by

taking the average of the coordinates of all vertices of ϕ(P ). The center of mass of
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Figure 2. The point of collapse of an axis-aligned 6-gon under T 2.

P is defined as

C (P ) = ϕ−1(C) = ϕ−1


 1

2n




2n∑

j=1

ϕ(P2j−1)




 .

Remark. The definition of C (P ) is independent of different choices of projective
transformation ϕ such that the edges of ϕ(P ) are parallel to x and y-axis respec-
tively, in other words, C (P ) is well defined.

Remark. If the polygon P has edges parallel to the x-axis and y-axis, then we may
put a unit mass at each vertex of the polygon, then C (P ) will be the physical center
of mass of P . This justifies the choice of terminology “center of mass” in the paper.

Axis-aligned polygons are of particular interest since Schwartz proved the fol-
lowing surprising result:

Theorem 1.1 (Schwartz ′08 [11], Glick ′11 [4]). Let S be the set of all axis-aligned
2n-gons. Then there exists a generic subset S′ ⊂ S such that for any axis-aligned
A ∈ S′, Tn−2(A) has all its vertices lying on two lines, with each vertex alternating.
Consequently, all vertices of Tn−1(A) collapse to a single point.

Definition. For an axis aligned polygon A that satisfies the conditions in Theorem
1.1, we call the point p, where all vertices of Tn−1(A) collapse to, the point of
collapse of A under the pentagram map.

Remark. The proof of Theorem 1.1 consists of a proof of some particular lower
bound and upper bound. Both Schwartz and Glick explicitly showed the upper
bound (using different methods). Schwartz’s proof is easily adapted to prove the
lower bound, even though he did not explicitly mention it.

Example. Figure 2 gives an example of the theorem for n = 3.
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Remark. We also remark that T−1(A) gives the line at∞, so there is a nice duality
in the collapsing phenomenon for axis-aligned polygons.

Max Glick observed an interesting and surprising pattern through computer
experimentation, and has the following conjecture [6]:

Conjecture 1.2 (Glick, unpublished). Let P ⊂ P2 be an axis-aligned 2n-gon, let
p = Tn−1(P ) be its point of collapse under the pentagram map, then

p = Tn−1(P ) = C (P ).

Since C (P ) is projectively invariant, this is equivalent to saying that: suppose
that the edges of P are parallel to x- and y-axis respectively, where P has vertices
(x1, y1), (x2, y2), . . . , (x2n, y2n) [ note that x2k−1 = x2k, y2k = y2k+1], then the
coordinate of the point of collapse p coincide with the center of mass

p = Tn−1(P ) = (

∑
i xi

2n
,

∑
i yi

2n
).

Notation. From now on in the paper, axis-aligned polygon will only refer to the
polygon with edges parallel to the x-axis and y-axis respectively. In this case, we
can restrict ourselves to R2 ⊂ P2 (and later on when we discuss higher pentagram
maps, Rm ⊂ Pm).

In Section 2 of this paper, we answer the conjecture positively:

Theorem 1.3. Let P = P1P3....P4n−1 ⊂ R2 be a generic axis-aligned polygon,
let T be the pentagram map, then Tn−1(P) collapses to a point, furthermore, it
collapses to the center of mass of P, in other words,

Tn−1(P) = C (P) =
1

2m
(P1 + P3...+ P4n−1).

The key idea in the proof is based on a refinement of certain liftings that Schwartz
constructed in [10] to prove a generalization of Desargue’s theorem. We will define
similar liftings of a sequence of n-gons into Rn in a controlled manner. The crucial
point is that after these controlled liftings of the specifically chosen polygons into
Rn, the centroids of the lifted polygons coincide at a single point. In the report
version of this write-up, we will also include two illuminating low dimensional ex-
amples. Readers who wish to avoid technical details may proceed with the second
example directly, which carries key ideals behind the proof.

In the remaining sections we generalize Theorem 1.3 to higher and lower di-
mensional pentagram maps. We mention that in [5], Glick names the collapsing
type of phenomenons the Devron property, and proves that a higher and a lower
dimensional analog of the pentagram map [3] both have the Devron property. Our
generalization strengthens Glick’s result in the following sense: we give the specific
number of iterations needed to reach the point of collapse; we also prove that the
point of collapse of an “axis-aligned polygon” in dimension k, where k = 1 or k ≥ 3,
equals the “center of mass” in some appropriate sense.

More precisely, in Section 3 we show the following theorem regarding a general-
ization of axis-aligned polygons in Rm (we defer the precise definition of the higher
pentagram map Tm and axis-aligned polygons in Rm until Section 3 ).
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Theorem 1.4. Let P be a generic axis-aligned mn-gon in Rm, and Tm the m-
dimensional pentagram map, then Tn−1m (P ) collapses to a point. Furthermore, it
collapses to the center of mass of P , in other words,

Tn−1m (P ) = C (P ).

In Section 4 of the paper, we discuss the lower pentagram map. While the higher
dimensional pentagram map is defined through a similar geometric construction in
Pm, the lower dimensional analog is a certain system defined algebraically on points
in P1.

In this paper, however, we use a geometric construction to reinterpret the lower
pentagram map defined in [3] by Gekhtman, Shapiro, Tabachnikov and Vainshtein,
by defining the mirror-pentagram (MP) map. This provides a way to construct 1-
diagonals in some appropriate sense, and to some extent, completes the geometric
definitions of the pentagram map in all dimensions. We will prove a similar result
to Theorem 1.3 for the MP map. Consequently, we get the following interesting
result (Theorem 1.5) as a corollary:

Fix an arbitrary positive integer n, consider two sequences of cyclically ordered
n points in P1:

A0 =
{
X(0,2), X(0,4), X(0,6), ..., X(0,2n)

}

and

A1 =
{
X(1,1), X(1,3), X(1,5), ..., X(1,2n−1)

}
.

We first form two infinite sequences of numbers by repeating A0 and A1 repetitively
(cyclically) and arrange them in the following patterns in the plane, then inductively
generate (possibly) infinite collections of n repeated points:

... X(0,2n) X(0,2) X(0,4) ... X(0,2n) X(0,2)

X(1,1) X(1,3) ... ... X(1,1) ...
... X(2,2n) X(2,2) X(2,4) ... X(2,2n) X(2,2)

...
X(2m−1,1) X(2m−1,3) ... ... X(2m−1,1) ...

... X(2m,2n) X(2m,2) X(2m,4) ... X(2m,2n) X(2m,2)

...

where the row Ai+1 is determined by row Ai−1 and Ai by the following rules: for
each diamond pattern:

X(i−1,k)
X(i,k−1) X(i,k+1)

X(i+1,k)

,

we require the cross ratio

[X(i−1,k), X(i,k−1), X(i+1,k), X(i,k+1)] = −1,

where the cross ratio of a, b, c, d ∈ P1 is defined to be

[a, b, c, d] =
(a− b)(c− d)

(b− c)(d− a)
.

Such systems are considered, for example, in [1] by Adler, Bobenko and Suris.
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Remark. This particular system, where we start with a constant row and end with
another constant row, is similar in spirit with the celebrated frieze pattern discov-
ered by Conway and Coxeter in [2]. For this reason, we denote our system by cross
ratio frieze pattern, in honour of Conway and Coxeter.

Now we can state the result we prove in Section 4:

Theorem 1.5. Let A0 and A1 be as defined, which are the two starting rows in
the cross ratio frieze pattern. Suppose that

X(0,2) = X(0,4) = ... = X(0,2n) =∞ ∈ P1,

then

X(2n−1,k) = X(2n,k+1) =
1

n

(
X(1,1) +X(1,3) + ...+X(1,2n−1)

)

for all k = 1, 3, ..., 2n− 1.

Remark. We point out that the method to prove this seemingly algebraic result is
purely geometric, and similar to the proof of Theorem 1.4.

Example. We end the introduction with an example illustrating Theorem 1.5, where
n = 3 and A1 = {7, 5,−3}:

∞. . . . . .

2 6 1

2
3

34
9

11
6

. . .

. . . . . .

. . .

3 3 3 3 3 3. . . . . .

2 6 1

∞ ∞ ∞∞∞

2
3

34
9

11
6

3 3 3 3 3

16
3

23
3

13
9

7 5 −3 7 5

16
3

23
3

As the theorem predicted, both A5 and A6 are constant rows consisting of

3 =
1

3
(7 + 5− 3).

2. The point of collapse of the pentagram map

In this section, we prove Theorem 1.3 which states that the point of collapse of
an axis-aligned polygon equals its center of mass. As remarked in the introduction,
the proof of Theorem 1.3 relies on a refinement of a construction in [10] by Schwartz,
where he considers a certain collection of np lines that go through p points for p ≥ 3.
He shows that under a predictable iterations of the p-diagonal map, these np lines
turn into a collection of np points that sit on p lines. The proof involves two parts,
the first part (upper bound) says that the phenomenon above has to happen before
a certain number of iterations, and the other part says that for each p ≥ 3, there
exists a constructible example where the upper bound is reached.

Remark. Schwartz considers the case where p ≥ 3. For p = 2, which is relevant in
our paper, the proof of the upper bound still holds. Schwartz does not include this
case since it is covered in his paper [11] using a different method (the method of
condensation for computing matrices).
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For the upper bound, Schwartz considers a finite collection of sets of k points,
and lifts each set of k points into general positions in Rk, so the k lifted points in
Rk span a hyperplane. He considers the hyperplanes spanned by the lifted sets of
points. It is easy to show that generically any d hyperplanes intersect transversally
to form a d flat (a codimension d plane) in Rk, and the d flat again intersects with
certain faces of polytopes in space transversely to form a finite collection of points.
He proves the collapsing theorem by projecting these points into R2 and realizing
that the p-diagonal map is giving by taking such intersections of hyperplanes.

We point out that the liftings defined in [10] do not imply our theorem, since the
liftings we require are more constrained. More specifically, we have the additional
requirements on the collection of points such that some points degenerate in R2,
and on the liftings into Rn such that certain points have the same x3, x4, ..., xn
coordinates. The latter assumption is crucial for us to keep track of the center
of mass in Rn. Under these assumptions, it is not immediately clear that the
hyperplanes spanned by certain lifted points are in general position.

We outline the proof of our result:

Outline of the proof (Theorem 1.3 ). First we form n−1 sequences A1, A3, ..., A2n−3
of n points in R2 from the 2n vertices of a given axis-aligned polygon P . We use

a controlled lifting (the parallel lifting) to lift each Aj into Ãj ⊂ Rn. Lemma 2.2
asserts that for all j, the center of masses of the lifted n points in Aj coincide.

The n points in Ãj span a hyperplane in Rn, and Lemma 2.3 says that any subset
of the hyperplanes intersect transversely. The parallel lifting of all the (n − 1)n
points that we started with also form certain prisms in Rn. We take intersections
of several hyperplanes, and then intersect with certain faces (cyclic skeletons) of
the prisms to get n points in space. Lemma 2.7 guarantees that what we get from
the intersection process are always n points. Then we project the n points back to
R2. Lemma 2.4 and 2.6 shows that iterations of the pentagram map on the polygon
P can be obtained by projecting these points. In the end we carefully keep track
of where the center of mass of the polygon gets lifted and projected into, and the
theorem follows from the fact that in Rn, the lifted center of mass “gets stuck” on
the line of intersection of all the n− 1 hyperplanes.

2.1. Proof of Theorem 1.3. We proceed to the proof by first defining several
terms, the first two of which follow the definitions given by Schwartz.

Definition. We call a collection of n points in R2 in general position an n-point. In
general, for 2 ≤ m ≤ n, an n-point in Rm is a collection of n points in Rm.

Definition. A joint is a sequence of n points in Rn in general position . A prism to
be a sequence of n parallel lines in Rn in general position . Let J1, J3 be 2 n-joints,
then write J1J3 as the collection of n lines formed by corresponding pairs of points
from J1 and J3. A sequence of m n-joints J1, J3..., J2m−1 is called an m-polyjoint
if each J2k−1J2k+1 is a prism.

Now consider an axis-aligned polygon P = P1P3....P4n−1 ∈ R2 ⊂ Rn, where we
embed R2 in Rn by adding 0 to x3, x4, ..., xn coordinates. Consider the following
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(n− 1) sequences of n-points (where elements are given in their linear order):

A1 = {P1, P5, ..., P4n−7, P4n−3}
A3 = {P3, P7, ..., P4n−5, P4n−1}
A5 = {P5, P9, ..., P4n−3, P1}
. . .

A2n−3 = {P2n−3, P2n+1, ..., P2n−7}
Note that as sets, A1 = A5 = ..., but as linearly ordered sequences, they are

pairwise distinct. Let A be the collection A = {A1, A3, ..., A2n−1}, so A has (n− 1)
elements and each element is one of the Aj , hence A contains (n − 1)n points
regarded as a multi-set of points. We want to lift all points in A simultaneously
into Rn. In order to differentiate points Pk in different ordered set Aj , we label a
point Pk by Pk(j) if Pk ∈ Aj . Hence we have

A1 = {P1(1), P5(1), ..., P4n−7(1), P4n−3(1)}
A3 = {P3(3), P7(3), ..., P4n−5(3), P4n−1(3)}
A5 = {P5(5), P9(5), ..., P4n−3(5), P1(5)}
. . .

A2n−3 = {P2n−3(2n− 3), P2n+1(2n− 3), ..., P2n−7(2n− 3)}
and we can think of Pk(j), Pk(j+ 4), ... as different points but coincide in R2 ⊂ Rn.
Note that all points in A have coordinates (x1, x2, 0, ..., 0) for some x1, x2.

Definition. We define a lifting of A to be a way to lift each Ak into a joint in Rn
while fixing the x1, x2 -coordinates for every point. In other words, let π : Rn → R2

be the canonical projection sending (x1, x2, x3, ..., xn) 7→ (x1, x2, 0, ..., 0), then a

lifting of the points Pk(J) results in points P̃k(j) such that π(P̃k(j)) = Pk(j).

Definition. A parallel lifting L of the sequence of n-points A1, A3, ..., A2n−3 is a

family of liftings defined as follows: L sends A1, ..., A2n−3 to Ã1, ..., Ã2n−3, where

the lth point of each Ãk has the same x3, x4, ..., xn coordinates, for all l = 1, 2, ..., n.
This is to say that, we take the points that occupy the same position in each Ak,
and lift them to the same height, by which we mean the same x3 to xn coordinates.

For example, suppose that in R2 the points P2j−1 have coordinates (α2j−1, β2j−1),
then parallel lifting requires (on the first element of each Ak) that, in Cartesian
coordinates:

P̃1(1) = (α1, β1, c3, c4, ..., cn),

P̃3(3) = (α3, β3, c3, c4, ..., cn),

. . .

P̃2n−3(2n− 3) = (α2n−3, β2n−3, c3, c4, ..., cn)

where c3, ..., cn ∈ Rn. Similarly, the points P̃5(1), P̃7(3), ..., P̃2n+1(2n− 3) will have
the same height, and so forth.

Lemma 2.1. A parallel lifting lifts the sequence of n-points defined aboveA1, A3, ...,

A2n−3 to a polyjoint (Ã1, Ã3, ..., Ã2n−3).
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Proof. Let the jth element of Ak be Ak(j) for 1 ≤ j ≤ n, and similarly define Ãk(j).
Hence Ak(j) = Pk+4(j−1)(k) by definition of notations. By construction, for each
odd k, 1 ≤ k ≤ 2n− 1, we know that the n lines

Ak(1)Ak+2(1), Ak(2)Ak+2(2), ..., Ak(n)Ak+2(n)

are parallel, to either x1-axis or x2-axis in Rn depending on k. The parallel lifting

is defined such that the line through the corresponding pairs Ãk(j) and Ãk+2(j) is

parallel to Ak(j)Ak+2(j), hence each ÃkÃk+2 is a prism in Rn. �

Our next lemma explains why a parallel lifting is required.

Lemma 2.2. Suppose that a polyjoint (Ã1, Ã3, ..., Ã2n−3) is lifted from A1, A3, ...,

A2n−3 by a parallel lifting. Let Ci ∈ Rn be the centroid of the n-vertices in Ãi for
each i = 1, 3, ..., 2n− 3. Then

C1 = C3 = ... = C2n−3; and π(C1) = ... = π(C2n−3) = C (P )

Proof. Note that π(Ci) is precisely the centroid of Ai. Since P is axis-aligned, we
know that π(C1) = π(C3). Since A1 = A5 = ... and A3 = A7 = ... as sets, it is
clear that the second part of the lemma holds.

For the first part of the lemma we only need to show that each Ci has the same xj
coordinates for j ≥ 3, which follows immediately from the definition of the parallel
lifting. �

Let J be an n-joint in Rn, we denote by |J | the subspace in Rn spanned by
points in J . If points in J are in general position, then |J | is a hyperplane in Rn.

Lemma 2.3. There exists an axis-aligned polygon with a parallel lifting of A1, ...,

A2n−3 such that all subspaces |Ã1|, |Ã3|, ..., |Ã2n−3| are hyperplanes in general po-
sition.

Proof. There is a geometric proof and an algebraic one. The geometric one is
more intuitive, but for simplicity’s sake, we present the algebraic proof. Suppose
n = 2l + 1, the case where n is even is analogous.

We construct a lifting L0 : (R2)n(n−1) → (Rn)n(n−1) as follows:
First we give coordinates to the points Pk in R2. If we assume that P1P3 is

parallel to the x-axis, then the points P3, P7, ..., P4n−1 are determined (uniquely)
by P1, P5, ..., P4n−3. Let the coordinates of P1, ..., P4n−3 in R2 be

P1 = (a1, b1), P5 = (a2, b2), ..., P4n−3 = (an, bn),

then the other points have coordinates

P3 = (a2, b1), P7 = (a3, b2), ..., P4n−1 = (a1, bn).

For the lifting L0, we make a specific choice so that for each Ak (k being odd),

Ãk(1) = Ak(1) and Ãk(2) = Ak(2), while for j ≥ 3, Ak(j) is lifted to Rn so that
the xj coordinates are 1 and the xi coordinate is 0 for all i ≥ 3, i 6= j. in other
words, for each Ak, we fix the first two points in R2, and lift the jth point up by 1
in xj direction only. Without loss of generality, we may also assume a1 = b1 = 0,
so we choose P1 to be the origin in Rn.

Next we will find the normal vector vk to each hyperplane |Ãk|, and show that
there exists a polygon P such that under the lifting L0, the vectors v1, ..., v2n−3
are linearly independent in Rn. This will show that |Ã1|, |Ã3|, ..., |Ã2n−3| are in
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general position. We calculate each vk explicitly, which is the vector spanning the
orthogonal complement of the subspace formed by the (n− 1) vectors

Ãk(2)− Ãk(1), Ãk(3)− Ãk(1), ..., Ãk(n)− Ãk(1).

Let e1, e2, ..., en be the standard basis in Rn, and let e = (e1, ..., en) regarded as
a vector with entries being the basis, then it is clear that

vk = det(e, Ãk(2)− Ãk(1), ..., Ãk(n)− Ãk(1))T

As an example we calculate v1 and v3, where a1 = b1 = 0.

v1 = det




e1 e2 e3 . . . en
a2 b2 0 . . . 0
a3 b3 1 . . . 0
...

. . .

an bn 0 . . . 1




v3 = det




e1 e2 e3 . . . en
a3 − a2 b2 0 . . . 0
a4 − a2 b3 1 . . . 0

...
. . .

an − a2 bn 0 . . . 1




For this particular lifting L0, the determinants are easy to compute, since columns
3 to n of the matrix remain the same for each k, which is mostly 0 except for a
sub-diagonal of 1 and the top row being part of the basis. Hence we have the vk:

v1 = (b2,−a2,det

[
a2 b2
a3 b3

]
, . . . ,det

[
a2 b2
an bn

]
)

v3 = (b2, a2 − a3,det

[
a3 − a2 b2
a4 − a2 b3

]
, . . . ,det

[
a3 − a2 b2
a1 − a2 bn

]
)

. . .

v2n−3 = v4l−1 = (bl+1 − bl, al+1 − al+2,det

[
al+2 − al+1 bl+1 − bl
al+3 − al+1 bl+2 − bl

]
, . . . ,

det

[
al+2 − al+1 bl+1 − bl
al − al+1 bl−1 − bl

]
)

Now we set aj = j − 1 for all j = 1, ..., n. (Note that this agrees with the fact
that a1 = 0.) Under this assumption, we calculate that
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v1 = (b2, −1, b3 − 2b2, b4 − 3b2, ..., bn−1 − (n− 2)b2, bn − (n− 1)b2)

v3 = (b2, −1, b3 − 2b2, b4 − 3b2, ..., bn−1 − (n− 2)b2, bn + b2)

v5 = (b3 − b2, −1, (b4 − b2)− 2(b3 − b2), (b5 − b2)− 3(b4 − b2), ...,

(bn − b2)− (n− 2)(b3 − b2), (b1 − b2) + (b3 − b2))

v7 = (b3 − b2, −1, (b4 − b2)− 2(b3 − b2), (b5 − b2)− 3(b4 − b2), ...,

(bn − b2) + 2(b3 − b2), (b1 − b2) + (b3 − b2))

v9 = (b4 − b3, −1, (b5 − b3)− 2(b4 − b3), (b6 − b3)− 3(b4 − b3), ...,

(bn − b3)− (n− 3)(b4 − b3), ..., (b2 − b3) + (b4 − b3))

v11 = (b4 − b3, −1, (b5 − b3)− 2(b4 − b3), (b6 − b3)− 3(b4 − b3), ...,

(bn − b3) + 3(b4 − b3), ..., (b2 − b3) + (b4 − b3))

. . .

v4l−3 = (bl+1 − bl, −1, (bl+2 − bl)− 2(bl+1 − bl), (bl+3 − bl)− 3(bl+1 − bl), ...,
(bn − bl)− (l + 1)(bl+1 − bl), (b1 − bl) + (l − 1)(bl+1 − bl), ...)

v4l−1 = (bl+1 − bl, −1, (bl+2 − bl)− 2(bl+1 − bl), (bl+3 − bl)− 3(bl+1 − bl), ...,
(bn − bl) + l(bl+1 − bl), (b1 − bl) + (l − 1)(bl+1 − bl), ...)

It suffices to show that [v1, v3, ..., v4l−1]T has full rank n− 1, or equivalently, we
can show that [v1, v3, ..., v4l−1, v0]T has non-zero determinant for some vector v0.
Let u4i−3 = v4i−1− v4i−3 for i = 1, 2, ..., l. Then it suffices to show that the matrix

M = [u1, u5, ..., u4l−3, v3, v7, ..., v4l−1, v0]T

has non-zero determinant. Note that the matrix [u1, u5, ..., u4l−3]T has the following
form: 



0 0 . . . 0 0 . . . 0 0 nb2
0 0 . . . 0 0 . . . 0 n(b3 − b2) 0
0 0 . . . 0 0 . . . n(b4 − b3) 0 0
...

...
... . . .

0 0 . . . 0 n(bl+1 − bl) . . . 0 0 0




If we write M =

[
M1 M2

M3 M4

]
where M1 is (l + 1) × l matrix of entries 0, M2 is

the l × l diagonal matrix, formed by the right l columns in the matrix above, and
M2 is (l+ 1)× (l+ 1) given by the first (l+ 1) columns of the vectors v3, v7, ..., v0.
We know that

detM = −detM2 detM3.

We write out M3 explicitly with the choice of v0 = (0, 1, 0, ..., 0):

M3 =




b2 −1 b3−2b2 . . . bl−(l−1)b2 bl+1−lb2
b3−b2 −1 (b4−b2)−2(b3−b2) . . . (bl+1−b2)−(l−1)(b3−b2) (bl+2−b2)−l(b3−b2)

...
bl+1−bl −1 (bl+2−bl)−2(bl+1−bl) . . . (b2l−bl)−l(bl+1−bl)

0 1 0 . . . 0 0




Note that if we interchange the first two columns of the matrix, the appearance
of the term bl+1 is only on the off-diagonal and the second last row. Suppose that
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bl+1 = β and all other bj = 0, then the matrix (after interchanging the first two
columns) becomes:

Mβ =




−1 0 0 . . . 0 β
−1 0 0 . . . β 0
...

...
...

−1 0 β . . . 0 0
−1 β −2β . . . −(l − 1)β −lβ
1 0 0 . . . 0 0




which is easily seen to be invertible, since we can add the last row to each row
above and then add (l + 1) − i copies of the ith row to the second last row for
all 1 ≤ i ≤ l − 1, and then obtain a off-diagonal matrix. Now we can simply set
bi+1 − bi = ε for all i ≤ l − 1 with sufficiently small ε > 0, so detM2 6= 0. Let M ′3
be M3 with first two columns interchanged, then M ′3 can be obtained by adding a
matrix with ε-small entries to Mβ . If we make β sufficiently large, it is clear that
detM3 6= 0.

This proves the lemma. �

Definition. We call a parallel lifting of a polygon good if it satisfies the requirements
in Lemma 2.3.

In particular, Lemma 2.3 tells us that, if L is the space of all parallel liftings of
all polygons, then the subspace L ′ ⊂ L of the good parallel liftings is a generic
subset. This is because L ′ is a subset defined by the non-vanishing of certain
algebraic equations, hence the complement of an affine subvariety of L , which is
generic as long as it is non-empty.

Notation. To ease notation for the rest of the section, we denote

J1 = Ã1, J3 = Ã3, ..., J2n−3 = Ã2n−3

if the lifting is good. In which case, we also label the prisms by

T2 = J1J3, T4 = J3J5, ..., T2n−4 = J2n−5J2n−3.

Note that each Tk consists of n parallel lines (tk(1), tk(3), ..., tk(2n− 1)), where
the order of the lines are inherited from the order of corresponding pairs Jk−1Jk+1,

in other words, tk(j) = Jk−1(j)Jk+1(j), where Jk−1(j) is the jth element in Jk−1 =

Ãk−1.
Now we define more terminologies.

Definition. Let T = (t1(1), t1(3), ..., t1(2n− 1)) be a prism where t1(2j − 1) repre-
sents a line. Following Schwartz [10], we define a structure called cyclic skeletons
inductively as follows: First set Σ1T = T . Define tk(j) to be the subspace of Rn
spanned by subspaces tk−1(j−1) and tk−1(j+1), and then set ΣkT = (..., tk(j), ...).
In other words, tk(j) is spanned by k consecutive lines, and thus has dimension k.
It is clear from definitions that

tk−1(j) = tk(j − 1) ∩ tk(j + 1).

The cyclic skeletons formalize the description of “faces” of the prisms. For a
prism T , the cyclic k skeleton ΣkT is a set of n elements, where each element is a
k-dimensional face of T in Rn. As mentioned in the outline of the proof, we use the
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notion of the skeletons in the following crucial way: We produce a codimension d
flat by intersecting d hyperplanes |Ji|, |Ji+2|, ..., |Ji+2d−2| (thanks to Lemma 2.3).
Then we intersect this d flat with each one of the faces in the cyclic d skeleton of
one of the prisms, to produce n points in Rn (this requires the notion of a perfect
lifting, which says precisely all such intersections are transverse).

Before we prove that all the intersections are indeed transverse, we first formalize
the notion of intersecting the d flat with cyclic skeletons, and then project these
points to the plane. As predicted, it turns out that these projected points recover
the orbits of the vertices under iterations of the pentagram map.

Definition. Let W be a codimension j flat and T be a prism. We say that W slices
T if W ∩ΣjT consists of n distinct points and W ∩Σj+1T consists of distinct lines
(as long as j < n − 1). Suppose that W slices T , we define WT = π(W ∩ ΣjT ),
which is the projection of the intersection points, thus WT consists n-point.

Definition. Now consider two distinct flats W and W ′, we say that the pair (W,W ′)
slices T if dim(W ∩W ′) + 1 = dim(W ) = dim(W ′) and if W,W ′,W ∩W ′ all slice
T .

The next lemma says that one iteration of the pentagram map can be obtained
by taking intersections of two joints with the prism and then projecting down.

Before we state the lemma, we first define the notion of the mating process, first
defined by Schwartz in [10].

Definition. Let X = (x1, x3, ..., x2n−1) and Y = (y1, y3, ..., y2n−1) be 2 n-points.
We construct Z = X ∗ Y where Z = (z2, z4, ..., z2n−2, z2n) by defining

zj = xj−1xj+1 ∩ yj−1yj+1

Note that labelling-wise, Z = (z2, z4, ..., z2n). Now letX1 = (X1,1, X1,3, ..., X1,2m−1)
be a sequence of n-points, such that for each pair X1,2k−1 and X1,2k+1, their prod-
uct X2,2k = X1,2k−1 ∗X1,2k+1 is well defined, then the sequence X1 produce a new
sequence X2 = (X2,2, X2,4, ..., X2,2m−2), and we denote X1 → X2 whenever the
process is well defined. This progression could carry on to obtain:

X1 → X2 → ...→ Xm

where Xm is one set of n-points, provided that each step is well defined. Schwartz
calls this process the mating process on a sequence of n-points.

In our setting, it is clear from definition that, if we take X1 = (A1, A3, A5, ...,
A2n−3), then the underlying set of X2, in other words, by taking the union of sets
in X2 (not a multi-set), gives all the vertices of T (P ), the first iteration of the
pentagram map. Similarly Xi provides all the vertices of T i−1(P ) for i ≤ n − 2.
In the last step, Xn−1 gives precisely half of the points in Tn−2(P ). Our goal is to
prove that, if P satisfies conditions in Theorem 1.3, then the points in Xn−1 are
collinear, where the line that goes through them also goes through the center of
mass C (P ).

Lemma 2.4 (Schwartz, Lemma 3.2 in [10]). Suppose (V, V ′) slices T , and the
offspring (V )T ∗ (V ′)T is well defined, then (V ∩ V ′)T = (V )T ∗ (V ′)T .

Let us denote H1,k = |Jk| for all appropriate choices of k, where Jk is defined as
above. We inductively define

Hg,k = Hg−1,k−1 ∩Hg−1,k+1; g = 2, 3, ..., n− 1, k ∈ [g, 2(n− 1)− g].
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Each Hg,k is in fact intersection of g hyperplanes. For example, if g is odd, then

Hg,k = |Jk−(g−1)| ∩ ... ∩ |Jk−2| ∩ |Jk| ∩ |Jk+2| ∩ ... ∩ |Jk+(g−1)|,
and a similar equation holds for g even.

Consider a good parallel lifting of a generic polygon P . Lemma 2.3 shows that
all hyperplanes |Ji| are in general position, so each Hg,k has codimension g.

Lemma 2.5. Let g and k be integers of the same parity, then

Hg,k ∩ ΣgTk−g = Hg,k ∩ ΣgTk−g+2 = . . . = Hg,k ∩ ΣgTk+g.

In particular, if both g and k are odd, then

Hg,k ∩ ΣgTk−1 = Hg,k ∩ ΣgTk+1;

if both g, k are even, then

Hg,k ∩ ΣgTk−2 = Hg,k ∩ ΣgTk = Hg,k ∩ ΣgTk+2.

Proof. We prove the lemma by pairwise comparison. Namely, we show that for
all even integers l such that k − g ≤ l ≤ k + g − 2 (where all indices are labeled
cyclically), we have that

Hg,k ∩ ΣgTl = Hg,k ∩ ΣgTl+2.

It is clear that the claim implies the lemma. First note that by construction the
following equation

Σ∗Tl ∩H1,l+1 = Σ∗Tl+2 ∩H1,l+1

holds for all even l. Now when we restrict l to the interval above, in other words,
l + 1 ∈ [k − g + 1, k + g − 1], then Hg,k ∈ H1,l+1. This is clear from the definition
of Hg,k, which is the intersection of g hyperplanes

H1,k−g+1 ∩H1,k−g+3 ∩ ... ∩H1,k+g−1.

Therefore, combining the two equations above, we have that

Hg,k ∩ ΣgTl = Hg,k ∩H1,l+1 ∩ ΣgTl = Hg,k ∩H1,l+1 ∩ ΣgTl+2 = Hg,k ∩ ΣgTl+2.

This proves the case where both g and k are odd, and a similar argument (which
possible shifting of indices) shows the case where both g, k are even. �

Now we formalize the definition of transverse intersections between a codimen-
sion g flats Hg,k with certain cyclic skeletons. In particular, we define the notion
of a polyjoint being fully sliced, namely, all the possible intersections we consider
are transverse – so they produce points instead of higher dimensional flats or the
empty set.

Definition. Let Ω = (J1, J3, ..., J2n−3) defined as above, where Jk = Ãk and the
lifting is a good lifting. We say that Ω is fully-sliced if for all g ≤ n− 1, Hg,k slices
Th for all relevant h such that |h − k| ≤ 1. From Lemma 2.5 we know that when
g, k are both odd, Hg,k slices Tk−1 if and only if it slices Tk+1, so the notion of fully
slices is well defined. If Ω is fully sliced, we define

Xg,k = π(Hg,k ∩ ΣgTh)

where h ∈ [k − 1, k + 1] and define

Xg = (Xg,g, Xg,g+2, ..., Xg,2(n−1)−g).

By the construction it is clear that X1 = (A1, A3, ..., A2n−1).
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Lemma 2.6 (Schwartz, Lemma 3.3 in [10]). Suppose Ω = (J1, ..., J2n−3) is fully
sliced, and the mating process is defined on all Xi, then

X1 → X2 → ...→ Xn−1,

in other words, each Xi+1 is obtained from Xi by the mating process defined in the
beginning of the section.

Definition. We say that a good lifting is perfect if the polyjoint Ω = (J1, J3, ..., J2n−3)
is fully sliced.

Lemma 2.7. There subspace of all axis-aligned polygons such that there exists a
perfect parallel lifting is a generic subset of the space of all axis-aligned polygons.

Proof. This follows from the proof of lemma 3.4 in [10]. �

As we remarked previously, the mating process is a generalization of the penta-
gram map in the sense that iterations of the pentagram map on the polygon P can
be obtained through the mating process of (A1, A3, ..., A2n−3):

Lemma 2.8. Let Y1 = (A1, A3, A5, ..., A2n−3) where each Ai is defined as in the
beginning of this section, then the mating process

Y1 → Y2 → ...→ Yd+1

is well defined for d steps if and only if the T d is well defined on P . In addition,
assume that mating process

Y1 → Y2 → ...→ Yn−1

is well defined, then the underlying set of Yi gives all the vertices of T i−1(P ) for
i ≤ n− 2. In the last step, Yn−1 gives precisely half of the points in Tn−2(P ).

Proof. This follows directly from the definition of the mating process and the con-
struction of the sequence of n-points (A1, A3, ..., A2n−3). Note that, if Tn−2 s well
defined on P , and let Q = Tn−2(P ), then the n points in the unique sequence of n-
points in Yn−1 are evenly spaces in Q, in other words, they are either the 1st, 3rd, ...
points or the 2nd, 4th, ... points in Q, depending on the parity of n. This follows
from carefully keeping track of relevant indices. �

We are ready to prove the main theorem in this section.

Proof of Theorem 1.3. First we prove that if P is polygon such that Tn−1 is well
defined on P and P has a perfect lifting, then the point of collapse Tn−1(P ) is its
center of mass C (P ).

Let A1, A3, ..., A2n−3 be as above, and Ã1, Ã3, ..., Ã2n−3 be lifted through a per-
fect lifting from A1, A3, ..., A2n−3. Let Y1 = (A1, A3, ..., A2n−3). Since Tn−1 is well
defined on P , by Lemma 2.8, we know that the mating process is well defined on
Y1 for n− 1 steps, so we have

Y1 → Y2 → ...→ Yn−1.

Define H1,1, H1,3, ...,H1,2n−3 as in Lemma 2.5, and define X1, X2, ..., Xn−1 as
above Lemma 2.6. Since the lifting is assumed to perfect, that is to say, H1,1, ...,

H1,2n−3 are in general position and the joint Ã1, Ã3, ..., Ã2n−3 is fully sliced, by
Lemma 2.6, we know that

X1 = Y1 = (A1, A3, ..., A2n−3)
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and
X1 → X2 → ...→ Xn−1.

Therefore, Yi = Xi for all i ≤ n− 1. Hence

Yn−1 = Xn−1 = (Xn−1,n−1) = π(Hn−1,n−1 ∩ Σn−1Th),

which consists of n points. Note that Hn−1,n−1 is a line since it is the intersection

of (n− 1) hyperplanes in general position. Hence the n points X̃n−1 = Hn−1,n−1 ∩
Σn−1Th in space are collinear, and all lie on the line Ln−1 = Hn−1,n−1. Let
ln−1 = π(Li) be the projection into R2, and it is clear that ln−1 goes through all

points in Xn−1 = π(X̃n−1). Since Xn−1 = Yn−1, we know that ln−1 goes through
Yn−1, in other words, half of the points (the indices of which are of the same parity)
in Tn−2(P )..

We want to show that the line ln−1 goes through C (P ). Let Ci be the centroid

of the n-vertices in Ji = Ãi as in Lemma 2.2, so

C1 = C3 = ... = C2n−3.

Denote this point in Rn by C. It is clear that the centroid Ci ∈ |Ji| = H1,i, so the
point C ∈ H1,j for all j = 1, 3, ..., 2n− 3. By the definition of Hn−1,n−1, it is clear
that C ∈ Hn−1,n−1 = Ln−1. Again by Lemma 2.2

C (P ) = π(C) ∈ π(Ln−1) = ln−1.

This implies that Tn−1(P ) = C (P ), since the line l′n−1 that goes through the other
n points in Tn−2(P ) also goes through C (P ) by symmetry. Since T is well defined
on Tn−2(P ) by assumption, we know that ln−1 and l′n−1 do not degenerate. Hence
they have to intersect, at their common point C (P ). The intersection ln−1 ∩ l′n−1
is the degenerate point Tn−1(P ) by the definition of the pentagram map, therefore
the point Tn−1(P ) coincide with the center of mass.

Let S be the space of all axis-aligned polygons. Theorem 1.1 says that the
subspace of axis-aligned polygons such that Tn−1 is well defined on P is a generic
subspace of S. Lemma 2.3 and Lemma 2.7 guarantee that the subspace of axis-
aligned polygons that have a perfect lifting is again a generic subspace of S. So
generically, for axis-aligned 2n-gon P , we have

Tn−1(P ) = C (P ).

�

2.2. Two illustrating examples.

2.2.1. The Desargue’s theorem case. The case n = 3 is the where the proof is
motivated from. It is a simple and elegant argument using classical geometry. We
point out that the prove resembles the proof of Desargue’s theorem, in addition of
which we have some control over where the center of mass of the polygon is.

Let us consider the 6-gon P = P1P3...P11, as shown in Figure 3. We embed
the copy of affine plane R2 determined by P into R3 as in the proof. Note that
P1P3, P5P7 and P9P11 are parallel, say, to the x-axis in R3, so the other three
edges are parallel to the y-axis. Consider the triangles A = 4P1P5P9 and B =
4P3P7P11 (for a clearer picture, see Figure 2). We lift the three parallel lines

P1P3, P5P7, P9P11 into R3 by lifting Pi to P̃i by changing only the z-coordinates,

in such a way that the z-coordinates of P̃4k+1 and P̃4k+3 coincide, and in addition,

P̃1, P̃5 and P̃9 (respectively P̃3, P̃7 and P̃11 ) are in general position. Such liftings
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P1 P3

P5

P9P11

Figure 3. Lifting of an axis-aligned 6-gon to R3.

guarantee that the three lines P̃1P̃3, P̃5P̃7, P̃9P̃11 are still parallel in R3 and thus
form a non-degenerate 3-prism. Let π : R3 → R2 be the projection that takes

(a1, a2, a3) 7→ (a1, a2), then clearly π(P̃i) = Pi. As discussed in the proof, we may
without loss of generality assume that only P5 and P7 are lifted. Now Consider

the triangles Ã = 4P̃1P̃5P̃9 and B̃ = 4P̃3P̃7P̃11, the triangle Ã is obtained by
cutting the prism with a plane (in general a hyperplane) σ1 which goes through the

three points P̃1, P̃5, P̃9; similarly B̃ is obtained by cutting the prism with plane σ2.
This corresponds to the fact that the lifting is fully sliced. It is clear that that the

intersections of corresponding edges of Ã and B̃ are collinear, since they all lie in

the intersection of σ1 and σ2, which is a line. Call this line l̃2 as in the proof. Label

Q̃4 = P̃1P̃5 ∩ P̃3P̃7, Q̃8 = P̃5P̃9 ∩ P̃7P̃11 and Q̃12 = P̃9P̃1 ∩ P̃11P̃3. It is clear from

construction that Q4 = π(Q̃4), Q8 = π(Q̃8) and Q12 = π(Q̃12). Since Q̃4, Q̃8 and

Q̃12 are collinear, their projections are collinear. [Note that this is how one proves
the Desargue’s theorem]. Similarly we can lift the other three parallel edges of P

and obtain l̃′2 in space.

Lemma 2.2 says that the centroid C (P ) lies on l2 = π(l̃2) after the projection

along z-axis. We prove the claim for l̃2 in this example. Note that, because the
polygon is axis-aligned, the centroid C1 of A and C2 of B are the same point.
Since we lift each corresponding pair of the vertices of A and B to the same z-

coordinate, the lifted centroid C̃1 of Ã coincide with C̃2 of B̃ in R3, in other words,

C̃1 = C̃2 and C (P ) = π(C̃1). Observe that by construction C̃1 ∈ σ1 and C̃2 ∈ σ2,

so C̃1 = C̃2 ∈ σ1 ∩ σ2 = l̃2. Take the projection π and we obtain that C (P ) lies

in l2 = π(l̃2). Following a similar argument, we know that l′2 = π(l̃′2) also goes
through C (P ), and this proves that C (P ) is the point of collapse.

2.2.2. An example where n = 4. The case when n = 4 provides a more convincing
example.

Let P = P1P3...P15 be an axis-aligned polygon as in Figure 4. We follow the
proof described in Subsection 2.1 and define

A1 = {P1(1), P5(1), P9(1), P13(1)}
A3 = {P3(3), P7(3), P11(3), P15(3)}
A5 = {P5(5), P9(5), P13(5), P1(5)}
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P3

P7

P11

P15

P1

P5

P9

P13

Figure 4. An axis-aligned 8-gon.

where we regard each Pj(k) as a distinct point in R2 that occupies the same position
as Pj . In particular, A1 is considered as a different set as A5. Since P is axis-
aligned, we know that the lines Pj(1)Pj+2(3) are parallel to the x-axis in R2 for
all j = 1, 5, 9, 13; similarly, the lines Pj(3)Pj+2(5) are parallel to the y-axis for
j = 3, 7, 11, 15. In the right hand side of Figure 4, we colour the underlying set of
A1 and A5 by red and the underlying set of A3 by blue.

Now we represent the 12 points in the plane as in Figure 5, where we ignore
the fact that Pj(1) and Pj(5) occupy the same position in R2 for now to obtain a
cleaner picture for exposition’s sake. The readers should keep the picture in Figure
4 in mind, since in the end we will come back to point that the underlying sets of
A1 and A5 coincide.

Next we lift the 4 points in A1 into 4 points in general position into Ã1 ⊂ R4 to
form a tetrahedron, by changing the x3, x4 coordinates of the 4 points in R2 ⊂ R4.
The lifting of A1 will consequently determine the liftings of A3 and A5, since we

give the same x3, x4 coordinates of point P̃j(1) to points P̃j+2(3) and P̃j+4(5) for
j = 1, 5, 9, 13, reducing mod 16 whenever necessary. Note that if we let π : R4 →
R2 be the projection onto the first two coordinates, then π(P̃j(k)) = Pj(k) by

construction. Moreover, the corresponding lines P̃j(1)P̃j+2(3) are parallel, so they

form a 4-prism in R4; similarly, P̃j+2(3)P̃j+4(5) form another prism in R4.

Now let the center of mass of Ãj be C̃j ∈ R4, by construction it is easy to

see that C̃1 = C̃3 = C̃5 = C̃ (Lemma 2.2). Let H1,j be the hyperplane in R4

spanned by points in Ãj , then by Lemma 2.3, we know that for a generic lifting,

H1,1, H1,3, H1,5 are in general position. Moreover, C̃ ∈ H1,j for all j = 1, 3, 5, so C̃

lies on the intersection L̃1 = H3,3 = H1,1 ∩H1,3 ∩H3,5, where L̃1 = H3,3 is a line
in R4.

We now consider the 2-dimensional plane H2,2 = H1,1 ∩H1,3, by Lemma 2.7 we

know that H2,2 intersect the 4 2-dimensional faces of the prism Ã1Ã3 transversely.

Let H2,2 intersect the plane spanned by P̃j(1)P̃j+4(1) and P̃j+2(3)P̃j+6(3) to get

point Q̃j+3. This process produce 4 points Q̃4, Q̃8, Q̃12 and Q̃16. Similarly we

intersect H2,4 = H1,3 ∩ H1,5 with appropriate 2-dimensional faces of prism Ã3Ã5

to get 4 more points Q̃2, Q̃6, Q̃10, Q̃14.

Now consider H3,3 = H2,2∩H2,4 as represented in Figure 5. The prism Ã1Ã3 has

4 cyclic 3 faces, namely the hyperplane spanned by lines P̃j(1)P̃j+2(3), P̃j+4(1)P̃j+6(3)
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P̃1(5)
P̃5(5)

P̃9(5)P̃13(5)

Ã5

Ã3

Figure 5. A perfect lifting of a chain A1, A3, A5 into R4.

and P̃j+8(1)P̃j+10(3), one for each j = 1, 5, 9, 13. H3,3 intersect with each hyper-

plane to produce 4 points R̃3, R̃7, R̃11 and R̃15 ∈ L̃1 = H3,3 ⊂ R4. Lemma 2.5 says

that we get the same 4 points if we intersect H3,3 with faces of the prism Ã3Ã5

instead of Ã1Ã3.
Finally, we go back to the polygon P we started with, and let Q = T (P ) and

R = T 2(P ), where Q and R are labelled according to our labelling convention.

Then by Lemma 2.4, 2.6 and 2.8, we know that π(Q̃i) = Qi for i = 2, 4, ..., 16 and

π(R̃i) = Ri for i = 3, 7, 11, 15. In particular, we know that R3, R7, R11, R15 are

collinear through the line L1 = π(L̃1), and most importantly, the center of mass

C (P ) = π(C̃ ) ∈ π(L̃1) = L1. This shows that the point of collapse T 3(P ) is the
center of mass C (P ), for the example where n = 4.

3. Higher pentagram map

In this section we generalize Theorem 1.3 to a certain family of higher pentagram
maps, defined in [3] by Gekhtman, Shapiro, Tabachnikov and Vainshtein. We will
first define the so-called corrugated polygons in Pm and the corrugated pentagram
map Tm, as a generalization of Schwartz’s pentagram map into m dimensional space
for m ≥ 3. As in Section 2, we restrict our attention to axis-aligned polygons in
Rm ⊂ Pm. The main objective in this section is to prove Theorem 1.4, which states
that a generic axis-aligned mn-gon P ⊂ Rm collapses to a point under the n − 1
iterations of Tm, which equals its center of mass. We break the theorem into two
cases. In Subsection 3.2 we prove the theorem for cases when n ≥ m. We finish the
section by showing that the result holds for 2 ≤ n < m as well in Subsection 3.2.2.
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3.1. The corrugated polygons and higher pentagram map.

Definition (GSTV ′11 [3]). Let V = V1V2...Vk be a polygon in Pm, we say that V is
corrugated if, for every i, the vertices Vi, Vi+1, Vi+m and Vi+m+1 span a projective
plane.

On the space of corrugated polygons, the successive pairs ofm-diagonals intersect
by definition (which is not true for general polygons), so we have the following
natural generalization of the pentagram map on the space of corrugated polygons:

Definition (GSTV ′11 [3]). Let V ⊂ Pm be a corrugated polygon, the (corrugated)
higher pentagram map Tm on V is defined by taking the intersections of successive
pairs of m-diagonals as vertices of Tm(V ), labelled according to the cyclic order on
the vertices of V .

The following says that we can in fact define iterations of corrugated pentagram
maps on corrugated polygons, as long as resulted polygons do not have degenerate
vertices.

Lemma 3.1 (GSTV ′11, Theorem 5.2(i) [3]). Let V ⊂ Pm be a corrugated polygon,
then Tm(V ) is also corrugated.

We point out that there are other generalizations of the pentagram map into
higher dimensional projective spaces. For example, there are dented pentagram
maps, defined using intersections of certain hyperplanes by Khesin and Soloviev in
[7]. For the generalization of our result Theorem 1.4, the most natural choice of
higher pentagram map is the one by taking higher diagonals, namely Tm. We call
it the corrugated pentagram map to distinguish from the dented map, since both
authors originally named their maps “the higher pentagram map”.

Now we define the corresponding notion of axis-aligned polygon.

Definition. A closed polygon V = V1V2...Vk is axis aligned in Rm if the edge ViVi+1

is parallel to the xj axis where j = i mod m. In other words, we have V1V2 in the
direction of x1 axis, V2V3 in the direction of x2 axis, and so forth.

Remark. It is clear that if a k-gon V = V1V2...Vk is axis-aligned in Rm, then m|k.
In the rest of the section, we will denote an axis-aligned polygon in Rm by P , where
P is an mn-gon.

Definition. Let P be an axis-aligned mn-gon in Rm ⊂ Pm, we define the center of
mass C (P ) of P to be the arithmetic mean of the vertices in P (regarded as vectors
in Rm).

Remark. As in the introduction, we could also define axis-aligned mn-gon as one
with corresponding edges going through n points, and define the center of mass in a
projectively invariant way: by first applying a projective transformation so that P
has edges parallel to axis, then taking the centroid and transforming back. Again,
for our purposes, it suffices to consider the case described in the above definitions.

We observe that an axis-aligned polygon in Rm ⊂ Pm is corrugated by construc-
tion, we state this as a lemma:

Lemma 3.2. Let P be an axis-aligned mn-gon in Rm, then P is a corrugated
polygon in Rm. Hence Tm is defined.
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Figure 6. An axis-aligned 9-gon P under the 3d pentagram map T3.

Now we describe the labelling convention for an axis-aligned mn-gon P , which
is compatible with the regular case where m = 2.

Notation. Let P be an axis-aligned mn-gon in Rm ⊂ Pm, we label the mn vertices
of P by

P1, Pm+1, P2m+1, ..., P(mn−1)m+1.

Thus an m-diagonal has the form of PjPm2+j .

Notation. Let Tm(P ) = Q, then we label vertices of Q by

Qk, Qm+k, Q2m+k, ..., Q(mn−1)m+k

where k = m2+m+2
2 . In particular, we let Qk = Q(m2+m+2)/2 to be the intersection

P1Pm2+1 ∩ Pm+1Pm2+m+1, and the index of the vertex in Q comes from averaging
the indices of the relevant 4 vertices in P .

Example. For an example of an axis-aligned 9-gon in R3 with the specified labelling
convention, see Figure 6. The dotted lines represent 3-diagonals and the image of
T3(P ) is also presented in the figure.

3.2. The point of collapse under the corrugated pentagram map. Now we
are ready to prove Theorem 1.4. We first prove the theorem under the assumption
that n ≥ m, namely:

3.2.1. The case when m ≤ n.

Theorem 3.3. Let P be a generic axis-aligned mn-gon in Rm, where n ≥ m, then
Tn−1m (P ) collapses to the center of mass of P , in other words,

Tn−1m (P ) = C (P ).

Example. Figure 7 provides an example of the statement with n = m = 3, in
which case T 2

3 (P ) = C (P ). We omit the labelling of the vertices for the sake of
presentation.
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Figure 7. The point of collapse of an axis-aligned 9-gon in R3

under (T3)2. The figure to the right is a zoomed version of T3(P ).

The proof of Theorem 3.3 is analogous to the proof of Theorem 1.3, and we shall
provide less details.

Suppose that P = P1Pm+1P2m+1 ... P(mn−1)m+1 ⊂ Rm ⊂ Rn is an axis-aligned
mn-gon. We start with n− 1 sequences of n-points in Rm, constructed similarly as
in Section 2:

A1 =
{
P1(1), Pm2+1(1), ..., P(n−2)m2+1(1), P(n−1)m2+1(1)

}

Am+1 =
{
Pm+1(m+ 1), Pm2+m+1(m+ 1), ..., P(n−1)m2+m+1(m+ 1)

}

A2m+1 =
{
P2m+1(2m+ 1), Pm2+2m+1(2m+ 1), ..., P(n−1)m2+2m+1(m+ 1)

}

. . .

A(n−2)m+1 =
{
P(n−2)m+1((n− 2)m+ 1), ..., P(n−1)m2+(n−2)m+1((n− 2)m+ 1)

}

We lift these points to Rn by adding xm+1, ..., xn coordinates to each point above.
As before, a parallel lifting is lifting such that for all l = 1, ..., n, the lth point of
each sequence Aj (for appropriate j) has the same xm+1, ..., xn coordinates, while
the definitions of prisms and polyjoints remain the same as in Section 2.

Lemma 3.4. A parallel lifting lifts the sequence of n-points defined aboveA1, Am+1,

..., A(n−2)m+1 to a polyjoint (Ã1, Ãm+1, ..., Ã(n−2)m+1).

Lemma 3.5. Suppose that a polyjoint (Ã1, Ãm+1, ..., Ã(n−2)m+1) is lifted from
A1, Am+1, ..., A(n−2)m+1 by a parallel lifting. Let Ci ∈ Rn be the centroid of the

n-vertices in Ãi for each i = 1,m+ 1, ..., (n− 2)m+ 1. Then

C1 = Cm+1 = ... = C(n−2)m+1; and π(C1) = ... = π(C(n−2)m+1) = C (P )

where π : Rn → Rm is the projection into the first m coordinates.
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Proof of Lemma 3.4 and 3.5. Both lemmas are clear by carefully keeping track of
definitions, and the details are similar to the proofs of Lemma 2.1 and 2.2. �

Lemma 3.6. There exists an axis-aligned polygon with a parallel lifting of A1, ...,

A(n−2)m+1 such that all subspaces |Ã1|, |Ãm+1|, ..., |Ã(n−2)m+1| are hyperplanes in
general position.

Proof. The proof is similar to the proof of Lemma 2.3, except that we have more
freedom to choose coordinates for the mn points, so the criterion of the determinant
of a similar matrix as in Lemma 2.3 being nonzero is easier to satisfy. �

The rest of the construction is again similar to the 2-dimensional case. We
adjust the notion of mating process and slicing to Rm, while while keeping the
same definitions of cyclic skeleton, perfect lifting, etc. It is not surprising that
similar results in Section 2 extend naturally to the higher dimensional case.

Definition (higher mating). Let X = (x1, x3, ..., x2n−1) and Y = (y1, y3, ..., y2n−1)
be 2 sequences of n points in Rm. We say that X and Y are relatively corrugated,
or a corrugated pair, if the 4 points xi1 , xi+1, yi−1, yi+1 span a plane in Rm for all
i. If X,Y are a corrugated pair, then we can construct Z = X ∗Y by the same rule
as before by defining

zj = xj−1xj+1 ∩ yj−1yj+1.

Let X1 = (X1,1, X1,3, ..., X1,2m−1) be a sequence of n-points in Rm, such that each
pair of successive n-points X1,2k−1 and X1,2k+1 are relatively corrugated, then we
form a new sequence X2 = (X2,2, X2,4, ..., X2,2m−2) as in the mating process, where
X2,j = X1,j−1 ∗X1,j+1. Lemma 3.1 says that each pair of 2 successive n-points in
X2 is again relatively corrugated. As before, we denote X1 → X2 whenever the
process is well defined. This process is called the higher mating process.

Definition (higher slicing). We have the same definition for slicing, pairwise slicing
and fully slicing as in Section 2. The only notable change is that our projection
π : Rn → Rm is projecting to Rm instead of R2, again by dropping the xm+1, ..., xn
coordinates. We retain notations from Section 2.

Following the proofs line by line of Lemma 2.4 to Lemma 2.7, we note that the
statements of Lemma 2.4 to 2.7 remain the same (under corresponding interpreta-
tions of notations in Rm instead of R2) in higher dimensions. While the proof of
the corresponding lemma of Lemma 2.8 is word by word similar as before, certain
notations need to be adjusted.

Lemma 3.7. Let Y1 = (A1, Am+1, A2m+1, ..., A(n−2)m+1) where each Ai is defined
as above, then the higher mating process

Y1 → Y2 → ...→ Yd+1

is well defined for d steps if and only if the T d is well defined on P . In addition,
assume that mating process

Y1 → Y2 → ...→ Yn−1

is well defined, then the underlying set of Yi gives corresponding vertices of T i−1m (P )
for i ≤ n− 1.

Now we are ready to prove the main theorem for corrugated pentagram maps.
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Proof of Theorem 3.3. Let P = P1Pm+1P2m+1 ... P(mn−1)m+1 ⊂ Rm be an axis-

aligned mn-gon such that Tn−1m is well defined on P .

Let A1, Am+1, ..., A(n−2)m+1 be defined as above, and (Ã1, Ãm+1, ..., Ã(n−2)m+1)
a polyjoint lifted from A1, Am+1, ..., A(n−2)m+1.

Let Y1 = (A1, Am+1, ..., A(n−2)m+1). Since Tn−1m is well defined on P , the higher
mating process is well defined on Y1 for n− 1 steps, so we have

Y1 → Y2 → ...→ Yn−1.

Define hyperplanes H1,1, H1,m+1, ...,H1,(n−2)m−1 as in Section 2 (see discussion
above Lemma 2.5), and define X1, X2, ..., Xn−1 as in the definition proceeding
Lemma 2.6. By definition of perfect lifting, we know that H1,1, ..., H1,(n−2)m+1

are in general position and the joint (Ã1, Ãm+1, ..., Ã(n−2)m+1) is fully sliced. The
analogous statement of Lemma 2.6 tells us that

X1 = Y1 = (A1, Am+1, ..., A(n−2)m+1) and X1 → X2 → ...→ Xn−1.

Therefore, Yi = Xi for all i ≤ n− 1. In particular

Yn−1 = Xn−1 = (Xn−1,n−1) = π(Hn−1,n−1 ∩ Σn−1Th),

which consists of n points. Similar to before, Hn−1,n−1 is a line as the transverse
intersection of (n− 1) hyperplanes.

The n points X̃n−1 = Hn−1,n−1∩Σn−1Th in space are therefore collinear, through
a line Ln−1 = Hn−1,n−1 ⊂ Rn. Let ln−1 = π(Li) be the projection into Rm, and it

is clear that ln−1 goes through all points in π(X̃n−1) = Xn−1 = Yn−1.

Let Ci be the centroid of the n-vertices in Ãi as in Lemma 3.5, so

C1 = Cm+1 = ... = C(n−2)m+1 = C.

Therefore by a similar argument in the proof of Theorem 1.3, the line ln−1 goes
through C (P ) = π(C). Again by symmetry, we know that the other m−1 similarly
constructed lines also go through the center of mass C (P ). This proves our theorem
for the corrugated pentagram case, at least when m ≤ n. �

3.2.2. The remaining cases. Now we discuss the case where 2 ≤ n < m. Note we
can no longer lift points by adding extra coordinates, so instead of extending to
higher dimensions, we restrict certain points to lower dimensions. We still start
from the collection of n points A1, Am+1, ..., A(n−2)m+1, each consisting of n points
in general position in Rm. It is easy to see that all points in this collection span
a subspace of dimension n inside Rm, since we can start from n points in A1 and
reach all the points in A2 following the direction along the x1-axis, and reach all
the points in A3 along the x2 direction, and so forth. Namely, they all live in a
copy of Rn ⊂ Rm. Though the points in Ai no longer span a hyperplane in Rm,
they certainly do in this copy of Rn.

Now nothing else is changed. We have Ji = |Ai|, which is an (n−1) dimensional
flat in Rm and a hyperplane in Rn, and we have n − 1 copies of these (n − 1)-
flats, in the same copy of Rn spanned by all the points considered. The transverse
intersections are given for free this time, since the Ai can be chosen such that the
(n− 1) flats are in general position. We then carry out the same analysis as in the
previous case, and the desired result follows immediately. This together with the
case n ≥ m concludes the proof of Theorem 1.4.
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Figure 8. The definition of the lower pentagram map.

4. Lower pentagram map and the mirror pentagram map

In this section, we introduce the notion of the lower pentagram map, define
a new system called the mirror pentagram map, and prove the center of mass
results of “axis-aligned polygons” for the mirror pentagram maps (Theorem 4.4),
for the lower pentagram maps (Theorem 4.1) and for the cross ratio frieze patterns
discussed in the introduction (Theorem 1.5). We point out that the methods to
prove the seemingly algebraic results mentioned above, in particular Theorem 4.1,
are purely geometric. It is in fact similar to the proof of Theorem 1.3 for the usual
pentagram map.

This section is organized as follows:

• We first introduce the definition of the lower pentagram maps. Based on the
obstruction to taking diagonal polygons, we define the notion of the mirror
pentagram map, which serves as taking 1-diagonals of polygons in P1.

• We discuss properties of the mirror pentagram map, and then move on to prove
Theorem 4.4, which is an analogous “center of mass” result on for the mirror
pentagram map. Not surprisingly, this is achieved through a similar controlled
lifting method.

• Based on this, we prove Theorem 4.1. More specifically, given A0 and A1 as in
1.5, we lift the n points in A1 from P1 to P2. On these n points in P2, we apply
the mirror pentagram maps. We then show that Theorem 4.4 implies Theorem
4.1 by taking appropriate projections.

• Next, we show that Theorem 4.1 implies Theorem 1.5 by restricting to some
sub-rows of points in the cross ratio frieze pattern in 1.5.

• In the end, we include a lower dimensional example for Theorem 4.4, which is
where the general proof is motivated from.

4.1. The lower pentagram map. Gekhtman, Shapiro, Tabachnikov and Vain-
shtein considered a lower dimension analog of the pentagram map in [3]. Let P1

be the set of polygons (cyclically labeled points) in P 1, and let Λ ⊂ P1 × P1 be a
generic subset of P1×P1, the space of pairs of polygons. The lower pentagram map
T1 : Λ → Λ is defined by T1(X,Y ) = (Y, Z) where Z = Z1Z2....Zm is determined
from X = X1X2...Xm and Y = Y1Y2...Ym by the following procedure: Zi is the
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Figure 9. Analogy between the lower pentagram map and the
pentagram map.

unique point in P1 such that the six-point cross ratio

[Xi, Yi, Yi−1, Zi, Yi, Yi+1] = −1

where [a, b, c, d, e, f ] =
(a− b)(c− d)(e− f)

(b− c)(d− e)(f − a)
.

Illustration. An illustration of the definition is given in Figure 8

T1 is analogous to the pentagram map T in the following sense: let us consider
a polygon P ⊂ P2 and apply the pentagram maps to obtain T (P ) and T 2(P ), as
shown in Figure 9. Consider the 6 points Pi ∈ P and Qi±1, Qi±3 ∈ T (P ) and
Ri ∈ T 2(P ) in the figure. The Menelaus theorem from projective geometry says
that the following ratio of signed lengths:

PiQi−1
Qi−1Qi−3

· Qi−3Ri
RiQi+1

· Qi+1Qi+3

Qi+3Pi
= −1.

With a moderate abuse of notation, we can write this as

[Pi, Qi−1, Qi−3, Ri, Qi+1, Qi+3] = −1,

which is analogous to the 6-point cross ratio that defines the T1 map. Furthermore,
we know that if we project the 6-points in Figure 9 to any P1 ⊂ P2, the cross
ratio will be preserved. In particular, we can take the projection in the direction
Qi+1Qi−1 as suggested in the figure, in which case the projected points (after
properly relabelling) satisfy the defining relation of the T1 map:

[Xi, Yi, Yi−1, Zi, Yi, Yi+1] = −1.

In [5] Glick showed that certain sets of points under the lower pentagram map T1
have the Devron (collapsing) property. However, there was no concrete geometric
description of such systems on P1. In the next subsection, we give a geometric
construction of the lower pentagram map, in the same spirit of how the pentagram
map was initially defined by Schwartz.
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Figure 10. The Mirror pentagram map.

With the supporting geometry, we can extend our theorems on pentagram maps
and corrugated pentagram maps to the 1-dimensional case. First, we have an
analogous notion of axis-aligned polygons in P1:

Definition. Let (X,Y ) be described as above, we say the 2n points form an axis-
aligned polygon if X only consists of n points at infinity.

Now, we can state the center of mass theorem for the lower pentagram map T1,

Theorem 4.1. Let (∞, B) be a generic axis-aligned n-gon such that Tn−11 is de-
fined, then Tn−11 (∞, B) = (C,D) where D = (d1, d2, ..., dn) and

d1 = d2 = ... = dn = C (B).

Example. For example, if we take 3 points 1, 2, 6 as B, then we obtain the following
pattern where 2 iterations of T1 give us the constant row with constant 3.

∞. . . . . .

2 6 1

2
3

34
9

11
6

. . .

. . . . . .

. . .

3 3 3 3 3 3. . . . . .

2 6 1

∞ ∞ ∞∞∞

2
3

34
9

11
6

The readers may notice that the rows in the example above are obtained by
taking the 1st, 3rd, 5th and 7th rows from the example displayed at the end of the
introduction. This observation will indeed provide a way to prove 1.5, as we shall
see near the end of the paper.

4.2. The mirror pentagram map. Now we proceed to discuss the mirror pen-
tagram map in this subsection. We first define a simple reflection map:

Definition (The reflection map). First we fix the projective line l0 ∈ P2 where the
affine part of l0 is the x-axis in the affine plane in P2. We define the reflection
map r : P2 → P2 by sending a point X ∈ P2 to its mirror image X ′ about l0. In
particular, for points in the affine plane R2, r((x, y)) = (x,−y). (In homogeneous
coordinates r((X,Y, Z)) = r(X,Y,−Z)). It is clear that r2 is the identity on P2.

We define the mirror pentagram (MP) map as the following:

Definition (The mirror pentagram map). Consider a linearly ordered sequence of
n points in general position P = X1, X2, ..., Xn ∈ P2, let

r(P ) = {r(X1), r(X1), ..., r(Xn)}
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Figure 11. An example of the mirror pentagram map.

be the linearly ordered sequence of the reflected points (the order being inherited
from A1). Let Ω be the space of pairs (P, r(P )), let Ω0 be the space of (A, r(A))
where A is n-points not necessarily in general position, and we define the Mir-
ror pentagram map MP : Ω → Ω0, which sends (P, r(P )) to (Q, r(Q)) where
Q = Y1, Y2, ..., Yn ∈ R2 is determined by the following rules: we take four points
Xi, X

′
i, Xi−1 and X ′i+1, since the four points are in general position, we know that

the two lines XiX
′
i+1 and Xi−1X ′i intersect. We define the intersection to be Yi:

Yi = XiX
′
i+1 ∩Xi−1X

′
i.

Similarly, we define
Y ′i = X ′iXi+1 ∩X ′i−1Xi.

The definition of the pentagram map is illustrated in Figure 10.

Example. The mirror map is best described through an example. In Figure 11, we
start with 4 pointsX1, X2, X3, X4, first apply the reflection map to getX ′1, X

′
2, X

′
3, X

′
4

and then apply the mirror pentagram map to obtain the Yi and Y ′i .

The MP map is well defined, since

r(Yi) = r(XiX
′
i+1 ∩Xi−1X

′
i) = r(Xi)r(X

′
i+1) ∩ r(Xi−1)r(X ′i) = Y ′i .

We remark that the MP map commutes with the reflection r, in other words, for
(P, r(P )) ∈ Ω, we have

MP ◦ r(P, r(P )) = MP (r(P ), P ) = r ◦MP (P, r(P )).

Lemma 4.2. The MP map has an inverse (whenever the image lies in Ω): given
(Q, r(Q)) ∈ Ω, we take the intersection of YiYi+1 and Y ′i−1Y

′
i to obtain Xi, and

similarly Y ′i Y
′
i+1 ∩ Yi−1Yi = X ′i.

Example. The definition of the inverse of the mirror pentagram map is illustrated
in Figure 12.

Proof. The fact that these maps are inverses to each other is easy to see, we show
one direction and leave the other to the reader. Consider YiYi+1 ∩ Y ′i−1Y ′i , where



THE POINT OF COLLAPSE OF AXIS ALIGNED POLYGONS 29

Yi

Y ′
i

Y ′
i−1

Yi+1

Xi

Y ′
i

Yi

Yi−1

Y ′
i+1

X ′
i

Figure 12. The inverse of the Mirror pentagram map.

each Yi is obtained from the Xi, X
′
i under MP, then Yi = X ′iXi−1 ∩ X ′i+1Xi and

Yi+1 = X ′i+1Xi ∩ X ′i+2Xi+1, thus the line YiYi+1 is same as the line X ′i+1Xi by
the assumption that no two lines are degenerate. Similarly, Y ′i−1Y

′
i = r(Yi−1Yi) =

r(X ′iXi−1) = XiX
′
i−1, so YiYi+1 ∩ Y ′i−1Y ′i = X ′i+1Xi ∩XiX

′
i−1 = Xi. This proves

that MP−1 ◦MP is identity. The other direction is identical. �

The Mirror pentagram map is closely related to the lower pentagram map, in
fact, it can be viewed as a geometric definition of the lower pentagram map. Given
some P ⊂ P2 or equivalently (P, r(P )) ∈ Ω in general position, let (P−1, r(P−1)) =
MP−1(P, r(P )) ∈ Ω be the uniquely determined points by the inverse. Let p :
P2 → P1 be the projection (X,Y, Z) 7→ (X,Y ) in homogeneous coordinates. Take
the projection of the two pairs of n-points p(P−1, P ), it is clear from definition that
p(P−1, P ) = (p(P−1), p(P )) ∈ Λ. We claim that

T1[p(P−1), p(P )] =
(
p(P ), p[MP(P, r(P ))]

)
.

This seemingly complicated expression asserts that, starting from n-points P in
R2, we can find a corresponding pair (A,B) ∈ Λ, where B = p(P ), A = p(P−1),
such that applying the lower pentagram map T1 to the pair (A,B) is the same
as applying the Mirror pentagram map to (P, r(P )) and then project down using
p. An illustration of the claim is given in Figure 13. In fact, this process can be
repeated (as long as concerned points are in general position), so we have

Lemma 4.3. Retain notations from above, for any k iterations:

T k1 [p(P−1), p(P )] =
(
p[MPk−1(P, r(P ))], p[MPk(P, r(P ))]

)
.

4.3. The point of collapse under the mirror pentagram map. For the lower
pentagram map T1, there is an analogous notion of axis-aligned polygon. We say
a pair of n-points (A,B) ∈ Λ where A = (A1, A2, ..., An) is axis-aligned if A1 =
A2 = ... = An. Suppose that B = (B1, B2, ..., Bn) and that Bi 6= A1 for any i, then
we can define the center of mass of C (A,B) as follows: first we apply a projective
transformation ϕ to P1 that sends Aj to the point at ∞, by assumption ϕ(B) sits

in the affine line R1 ⊂ P1, define C =
1

n
(ϕ(B)1 + ϕ(B)2 + ... + ϕ(B)n), and then

define

C (A,B) = ϕ−1(C) = ϕ−1
( 1

n
(
∑

ϕ(B)j)
)
.

Remark. Similar to the definition of axis-aligned polygon in Section 1, C (A,B) is
well defined, in other words, it does not depend on choices of ϕ such that ϕ(Aj) =
∞.
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Figure 13. The correspondence between the Mirror pentagram
map and the lower pentagram map.

Notation. When A is uniformly ∞, we denote C (A,B) = C (B). Note that this
corresponds to the case in the Mirror pentagram map where P ⊂ P2 lies on a
horizontal line l 6= l0, in other words, the affine part of l is parallel but not equal
to the x-axis, or equivalently, the intersection of l and l0 lies on the line at infinity.
We call such a pair (P, r(P )) ∈ Ω an axis-aligned pair in Ω. For an illustration see
Figure 14.

The main theorem that we will prove in this section is the following:

Theorem 4.4. Let (P, r(P )) ∈ Ω be a generic axis-aligned pair where P consists
of n points on a line l parallel to l0. Suppose that the (n−1) iteration of the mirror
pentagram map MPn−1 is well defined on (P, r(P )), then MPn−1 takes (P, r(P ))
to two points (s, r(s)) ∈ P2 × P2, where

p(s) = C (p(P )).

in other words, for any (P, r(P )) ∈ Γn, let (S, r(S)) = MPn−1(P, r(P )), then
S1 = S2 = ... = Sn = s, and

s =
1

n
(p(P1) + p(P2) + ...+ p(Pn)).

An example of theorem when n = 3 is again given by Figure 14.

Remark. The theorem asserts that the (n − 1) iteration of the mirror pentagram
map takes (P, r(P )) to two points s, r(s) that are mirror images of each other. We
will see in the proof that when n is even, s = r(s), in other words, s = (C (P ), 0).
While for the case when n = 2k − 1 is odd, s = (C (P ),− 1

n ).

Similar to Section 2, we construct liftings of certain polygons into Rn and show
that they intersect appropriately. For different parities of n, we need to construct
slightly different liftings. In particular, our next lemma needs to be treated differ-
ently depending on whether n is even or odd.

4.3.1. n is even. First we assume that n = 2k is even, the case when n = 2k + 1
involves slightly different definitions, which we treat later in the section.



THE POINT OF COLLAPSE OF AXIS ALIGNED POLYGONS 31

X1

X ′
1

X ′
2

X2

X ′
3

X3

Y ′
2

Y ′
1

Y ′
3

Y3

Y1

Y2

Z ′
1 = Z ′

2 = Z ′
3

Figure 14. Point of collapse of axis-aligned under the mirror
pentagram map.

We identify R2 with the copy of affine plane in Rn where x3, ..., xn coordinates
are 0 as in Section 2. Consider an axis-aligned pair (P, r(P )) ∈ Ω where P =
{X1, X2, ..., X2k}, and consider the following (n − 1) linearly ordered sequences of
n points:

A1 = {X1(1), X ′2(1), X3(1), ..., X2k−1(1), X ′2k(1)}
A3 = {X2(3), X ′3(3), X4(3), ..., X2k(3), X ′1(3)}
A5 = {X3(5), X ′4(5), X5(5), ..., X1(5), X ′2(5)}

. . .

A2n−3 =
{
Xn−1(2n− 3), X ′n(2n− 3), ..., Xn−3(2n− 3), X ′n−2(2n− 3)

}

again we think of Xi(j), Xi(j+4), ... as different points that coincide in R2. Without
loss of generality, we may assume that the line l ∈ R2 where points in P lie on is
the line y = −1. Then all points in Aj have coordinates (x1,±1, 0, ..., 0) for some
x1 ∈ R.

Notation. We denote A′i = r(Ai) which consists of the mirror image of each point
in Ai. Let W1 = {A1, A3, ..., A2n−3} and W ′1 =

{
A′1, A

′
3, ..., A

′
2n−3

}
.

Lemma 4.5. Let n = 2k be an even integer with k ≥ 2. Let P be defined as in
Theorem 4.4 and W1 be defined as above, then for j ∈ [2, n− 1], the map MP j−1

is defined on (P, r(P )) if and only if the mating process

W1 →W2 → ...→Wj

is defined. Suppose that MP i−1 is well defined where i ≤ n− 2, then the union of
all sets in Wi gives the points in MP i−1(P, r(P )). If MPn−2 is well defined, and
suppose that MPn−2(P, r(P )) = (Q, r(Q)) where Q = (Q1, Q2, ..., Q2k), then

Wn−1 = (Q2k−1, Q
′
2k, Q1, Q

′
2, ..., Q2k−3, Q

′
2k−2).
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Proof. This is simply unfolding the definitions. Assume that W1 → W2 is well de-
fined, whereW2 = (B2, B4, ..., B2n−4). ThenB2 = A1∗A3 = {Y2(2), Y ′3(2), ..., Y ′1(2)}
from the definition of the mirror pentagram map, hence MP is well defined on
(P, r(P )) if and only if A1 ∗ A3 is well defined, if and only if A2s−1 ∗ A2s+1 is well
defined for all relevant indices s, since the pentagram map commutes with the re-
flection map r. Repeat the argument j − 1 times and we get the first part of the
lemma. The second part of the lemma is trivial from the construction of W1, and
the third part of the lemma comes from carefully keeping track of indices of each
step of the mating process. �

4.3.2. n is odd. Now we assume that n = 2k− 1 is odd for k ≥ 2. Let P be defined
as in Theorem 4.4 as usual. In this case we define

A1 =
{
X1(1), X ′2(1), X3(1), ..., X ′2k−2(1), X2k−1(1)

}

A3 =
{
X2(3), X ′3(3), X4(3), ..., X ′2k−1(3), X1(3)

}

A5 = {X3(5), X ′4(5), X5(5), ..., X ′1(5), X2(5)}
. . .

A2n−3 =
{
Xn−1(2n− 3), X ′n(2n− 3), ..., X ′n−3(2n− 3), Xn−2(2n− 3)

}

A2n−1 =
{
Xn(2n− 1), X ′1(2n− 1), ..., X ′n−2(2n− 1), Xn−1(2n− 1)

}

Note that since the nth element and the 1st element are both in P , when we take
a successive pair, for example A1, A3, the mating process will produce an element
X2k−1X1∩X1X2 which is not defined, since (P, r(P )) is an axis-aligned pair. Hence
we need to redefine the mating process for the case when n is odd.

Definition (The star operation). Let α = (x1, x3, ..., x2n−1) and β = (y1, y2, ...,
y2n−1) be linearly ordered sequences of n points, we define the star operation on α
and β by constructing γ = α ? β, where γ = (z2, z4, ..., z2n−2) is a linearly ordered
sequence of (n− 1) points defined by

zj = xj−1xj+1 ∩ yj−1yj+1.

Remark. Note that the difference between α∗β and α?β is simply that α?β drops
the last point from α ∗ β, hence contains one less point than α or β.

Definition (The star-mating process). Suppose that each α1,1, α1,3, ..., α1,2m−1 is a
linearly ordered n point sequence. Let S1 = (α1,1, α1,3, ..., α1,2m−1), then we say
S1 ; S2 if each star-mating α1,2i−1 ? α1,2i+1 is well defined and

S2 = (α2,2, α2,4, ..., α2,2m−2) where α2,2i = α1,2i−1 ? α1,2i+1.

The process S1 ; S2 is called the star-mating process.

Remark. For S1 ; S2 ; ... ; Sm to be well defined, we need to require m ≤ n.
Note that if S1 contains n points, then Si contains n− i+ 1 points.
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Now let

W1(1) = {A1, A3, ..., A2n−3} ;

W1(2) = {A3, A5, ..., A2n−1} ;

W1(3) = {A5, A7, ..., A1} ;

. . .

W1(n) = {A2n−1, A1, ..., A2n−5} .
Each W1(j) is a linearly ordered sequence of n points.

Lemma 4.6. Let n = 2k − 1 with k ≥ 2. Let P be defined as in Theorem 4.4 and
W1(l) be defined as above for l = 1, ..., n, then for j ∈ [2, n − 1], the map MP j−1

is defined on (P, r(P )) if and only if the star-mating process

W1(l) ;W2(l) ; ...;Wj(l)

is defined for all l ∈ [1, n]. Suppose that MP i−1 is well defined where i ≥ n − 1,
then the union of all sets in Wi gives the points in MP i−1(P, r(P )). In particular,
if MPn−2 is well defined, and suppose that MPn−2(P, r(P )) = (Q, r(Q)) where
Q = (Q1, Q2, ..., Q2k), then

Wn−1(1) = (Qn−1, Q
′
n); Wn−1(2) = (Qn, Q

′
1), ..., Wn−1(n) = (Qn−2, Q

′
n−1)

Proof. The proof is again keeping track of definitions and relevant indices and
analogous to the proof of Lemma 4.5, where the only difference is that now we
consider a sequence of star-mating processes instead of one mating process. �

As in Section 2, we define a lifting of the sequence A1, A3, ..., A2n−3 to be a way
to lift each Ai into a joint in Rn while fixing the x1, x2 -coordinates for every point.
Analogously, a parallel lifting L of the sequence of n-points A1, A3, ..., A2n−3 is a

family of liftings such that L sends A1, ..., A2n−3 to Ã1, ..., Ã2n−3, where the lth

point of each Ãi has the same x3, x4, ..., xn coordinates, for all l = 1, 2, ..., n.

Remark. By Lemma 2.1 we know that a parallel lifting lifts the sequence of n points

defined above A1, A3, ..., A2n−3 to a polyjoint (Ã1, Ã3, ..., Ã2n−3).

Lemma 4.7. Suppose that a polyjoint (Ã1, Ã3, ..., Ã2n−3) is lifted from A1, A3...,

A2n−3 by a parallel lifting. Let Ci ∈ Rn be the centroid of the n-vertices in Ãi for
each i = 1, 3, ..., 2n− 3. Then

C1 = C3 = ... = C2n−3;

and {
π(C1) = ... = π(C2n−3) = (C (P ), 0) if n is even;

π(C1) = ... = π(C2n−3) = (C (P ), −1n ) if n is odd.

Proof. The proof of first part is analogous to the proof of Lemma 2.2. For the
second assertion, we note that for each Ai, when n = 2k, there are k points in
Ai that lie on l with x2-coordinates −1 and k points on r(l) with y-coordinates 1;
while when n = 2k − 1, there are k points on l and k − 1 points on r(l), so the
x2-coordinate of the average of all vertices is −1/n. �

Lemma 4.8. There exists an axis-aligned polygon with a parallel lifting ofA1, A3...,

A2n−3 such that all subspaces |Ã1|, |Ã3|, ..., |Ã2n−3| are hyperplanes in general po-
sition.
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Proof. The proof is analogous to the proof of Lemma 2.3, for which we set the x-
coordinates of the points to be 0, 1, 2, ..., n− 1 and let the y-coordinates vary. Here
we have to require the y coordinates of the sequence of points to be 1,−1, 1,−1, ...,
but we can let x vary. Other than the change of indices all other calculations
remain the same, namely we can choose 1 x-coordinate to be large and all other
x-coordinates to be sufficiently small such that the determinant of the matrix is
nonzero. Hence by a similar argument of Lemma 2.3, the statement of the lemma
follows. �

For a parallel lifting, we label the prisms by

T2 = Ã1Ã3, T4 = Ã3Ã5, ..., T2n−4 = Ã2n−5Ã2n−3.

Since (P, r(P )) is an axis-aligned pair, it is clear that all the prisms coincide, in
other words,

T2 = T4 = ... = T2n−4 := T.

Recall that a parallel lifting of A1, ..., A2n−3 is good if it satisfies the requirements

in Lemma 4.8, and a good lifting is perfect if the sequence (Ã1, Ã3, ..., Ã2n−3) is
fully sliced.

Lemma 4.9. For a generic axis-aligned pair (P, r(P )), let A1, ..., A2n−3 be as con-
structed, then there exists a perfect lifting into Rn.

Proof. This follows directly from lemma 3.4 in Schwartz [10]. �

Next we prove the main theorem of the section.

Proof of Theorem 4.4.
1. n is even.
We know that (P, r(P )) is a generic axis-aligned polygon with a perfect lifting

into Rn. Let (A1, A3, ..., A2n−3) and W1 be defined as in 4.3.1. By assumption we

can lift W1 = (A1, ..., A2n−3) into (Ã1, Ã3, ..., Ã2n−3) through a perfect lifting. Let

T be as defined above, and we know that the polyjoint (Ã1, Ã3, ..., Ã2n−3) is fully
sliced. By assumption, MPn−2 is well defined on (P, r(P )), so according to Lemma
4.5, (n− 2) iterations of the mating process is well defined on W1. We have:

W1 →W2 → ...→Wn−1.

Now define Hg,k similarly as in Section 2 where H1,i = Ãi, and also define Zg,k =
π(Hg,k ∩ΣgT ) for all relevant indices [note that in this case T = T2 = ... = T2n−4].
Let Zg = (Zg,g, Zg,g+2, ..., Zg,2(n−1)−g), so Z1 = W1. Apply Lemma 2.6 to the fully

sliced polyjoint (Ã1, Ã3, ..., Ã2n−3), and we get:

Z1 → Z2 → ...→ Zn−1.

Thus Wi = Zi for all relevant i. Now we repeat the argument in the proof of
Theorem 1.3 using Lemma 4.7 and Lemma 4.8, and obtain that the line ln−1 =
π(Hn−1,n−1) goes through all the points in Zn−1, and also goes through the point

π(C1) = π(C2) = ...π(C2n−3) = (C (P ), 0).

Let MPn−2(P, r(P )) = (Q, r(Q)) and Q = (Q1, Q2, ..., Qn), then since

Zn−1 = Wn−1 = (Qn−1, Q
′
n, Q1, Q

′
2, ..., Qn−3, Q

′
n−2),
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all these points in W1 goes through the line ln−1. By symmetry we know that there
is a line l′n−1 that goes through all the points in

W ′n = r(Wn) = (Q′n−1, Qn, Q
′
1Q2, ..., Qn−2),

and also goes through r(C (P ), 0) = (C (P ), 0). Since MP is well defined on
(Q, r(Q)) by assumption, we know that ln−1 and l′n−1 are distinct lines so intersect
at most 1 point. So their common point (C (P ), 0) is the intersection ln−1 ∩ l′n−1.
By the definition of the mirror pentagram map, we know that (C (P ), 0) is precisely
the degenerate point of MP (Q, r(Q)) = MPn−1(P, r(P )). Hence the point s in the
statement of the theorem is s = (C (P ), 0), where p(s) = C (P ).

2. n is odd.
This is a slight variant of the proof above. This time we let W1(1) = (A1, A3, ...,

A2n−3) and through a perfect lifting obtain W̃1(1) = (Ã1, ..., Ã2n−3), which is by
definition fully sliced. Since MPn−2 is well defined on (P, r(P )), by Lemma 4.6 we
know that the following star-mating is well defined:

W1(1) ;W2(1) ; ...;Wn−1(1).

Analogous to the previous case, we define H1,i and Hg,k, and let Zg,k = π(Hg,k ∩
ΣgT ). Note that Lemma 2.6 no longer applies since the mating process on any
two pairs Zg,k and Zg,k+2 is not well defined. In order to use the lemma we
make the following definition: for each Zg,k, an ordered sequence of n points, we
take the first n − g + 1 points from Zg,k to form a new sequence Vg,k, and let
Vg = (Vg,g, Vg,g+2, ..., Vg,2(n−1)−g). Lemma 2.6 implies that, if star-mating process
is well defined on all Vi, then

V1 ; V1 ; ...; Vn−1

since V1 = Z1 = W1(1) and W̃1(1) is fully sliced. Therefore, we know that Vn−1 =
Wn−1(1). Let MPn−2(P, r(P )) = (Q, r(Q)), then

Vn−1 = Wn−1(1) = (Qn−1, Q
′
n)

by Lemma 4.6. By a similar argument as in the even case, we know that the line
ln−1(1) = Qn−1Q′n goes through the point (C (P ),−1/n). By symmetry we know
that, all lines

ln−1(2) = QnQ
′
1, ln−1(3) = Q1Q

′
2, ..., ln−1(n) = Qn−2Q

′
n−1

go through the point (C (P ),−1/n). By assumption MPn−1 is well defined on
(P, r(P )), so the lines are pairwise distinct. So the lines are concurrent and intersect
at the common point (C (P ),−1/n). Let MPn−1(P, r(P )) = (S, r(S)) as in the
statement of the theorem, by the definition of the mirror pentagram map,

Si = Qi−1Q
′
i ∩QiQ′i+1 = ln−1(i+ 1) ∩ ln−2(i+ 2),

which implies S1 = S2 = ...Sn = (C (P ),−1/n).
This proves the theorem. �
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4.4. Some interesting corollaries. As a corollary, we obtain Theorem 1.5, which
answers one of the conjectures of Glick’s. Before we prove the theorem, we first
observe that whenever the lower pentagram map is well defined, the corresponding
mirror pentagram map is also well defined. We state the observation in the following
lemma:

Lemma 4.10. Let (∞, B) denote an axis-aligned polygon (A,B) ∈ Λ where A =
(∞,∞, ...,∞). Let (P, r(P )) be an axis-aligned pair in Ω such that p(P ) = B, then
MP k is well defined on (P, r(P )) if T k1 is well defined on (∞, B).

Theorem (4.1). Let (∞, B) be a generic axis-aligned n-gon in Λ such that Tn−11

is defined, then Tn−11 (∞, B) = (C,D) where D = (d1, d2, ..., dn) and

d1 = d2 = ... = dn = C (B).

Proof. We lift the polygon B ⊂ R1 ⊂ P1 to a polygon P on a horizontal line l, which
is parallel to the x-axis, so p(P ) = B, and P−1 = (∞), where (P−1, r(P−1)) =
MP−1(P, r(P )). Lemma 4.10 asserts that MPn−1 is well defined on (P, r(P )). By
Theorem 4.4, we know that MPn−1(P, r(P )) consists of two points (s, r(s)), where
s = C (B). Hence

p[MPn−1(P, r(P ))] = C (B).

Now, by Lemma 4.3,

Tn−11 (∞, B) = Tn−11 [p(P−1), p(P )]

=
(
p[MPn−2(P, r(P ))], p[MPn−1(P, r(P ))]

)

=
(
C,C (B)

)
.

In the equation, we have Tn−11 (∞, B) = (C,D) where C = p[MPn−2(P, r(P ))] is
some n-gon in P1, and D = C (B) as desired. �

Remark. This strengthens theorem 6.15 in Glick’s paper [5] for the case when the
polygon he considers is closed. Glick showed that for a twisted polygon, under some
iterations of the twisted pentagram map, the twisted polygon collapses to a point.
We predict the position and number of iterations for the case of closed polygons.

Now we return to Theorem 1.5 stated in the introduction. Recall that we consider
the following chessboard patterns of integers in the plane:

... X(0,2n) X(0,2) X(0,4) ... X(0,2n) X(0,2) ...
... X(1,1) X(1,3) ... ... X(1,1) ...

... X(2,2n) X(2,2) X(2,4) ... X(2,2n) X(2,2) ...

...

... X(2n−1,1) X(2n−1,3) ... ... X(2n−1,1) ...
... X(2n,2n) X(2n,2) X(2n,4) ... X(2n,2n) X(2n,2) ...

where A2i = {X(2i,0), X(2i,2), ..., X(2i,2n)} and A2i+1 = {X(2i+1,1), X(2i+1,3), ...,
X(2i+1,2n−1)} for 0 ≤ i ≤ n − 1, and the corresponding cross ratios are all −1
as described in Section 1.
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Lemma 4.11. Let A0, A1, ..., A2n−1 be as above, then for any pair Ai−2, Ai, 2 ≤
i ≤ 2n− 3, the lower pentagram map T1 is well defined on (Ai−2, Ai) and

T1(Ai−2, Ai) = (Ai, Ai+2).

Proof. We want to show that for any sub-pattern as the following

V2
X1 X3

Y0 Y2 Y4
Z1 Z3

W2

where the cross ratios

[V2, X1, Y2, X3] = [X1, Y0, Z1, Y2] = [X3, Y2, Z3, Y4] = [Y2, Z1,W2, Z3] = −1,

then

[V2, Y2, Y0,W2, Y2, Y4] = −1.

It suffices to consider the five points V2, X1, X3, Y0, Y4 ∈ P1, since the rest of the
points are uniquely determined given that the cross ratios are well defined. Note
that the cross ratios are preserved under projective transformations in P1, so we
may assume that V2 =∞, thus Y2 = X1+X3

2 .
Now it is just a matter of computation to solve for W2 from the 4 4-term cross

ratios, where we obtain that

W2 =
(X1 +X2)2 − 4Y0Y4

4(X1 +X2 − Y0 − Y4)
.

It is easy to verify that W2 satisfies the 6-term cross ratio as desired. �

Remark. There is also a slightly more complicated, but also more elegant geometric
proof of the lemma.

Lemma 4.12. Let X1, X3, X5 ∈ P1 be 3 points. Suppose that Y is the point in P1

such that the following 6-term cross ratio

[∞, X3, X1, Y,X3, X5] = −1.

Also suppose that Y ′ is the point such that the 4-term cross ratio

[X3,
X1 +X3

2
, Y ′,

X3 +X5

2
] = −1.

Then Y = Y ′.

Proof. This follows from an easy calculation. We solve for Y and Y ′ from the
corresponding cross ratios and obtain that

Y = Y ′ =
X2

3 −X1X5

2X3 −X1 −X5
.

�

Corollary 4.13. LetA0, A1, ... be defined and labelled as above, then T1(A−1, A1) =
(A1, A3), where A−1 = {∞,∞, ...,∞} consists of n points at ∞ ∈ RP 1.
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Proof. A0 consists of n points at ∞, so by the cross ratio condition we have that
X(2,2k) = 1

2 (X(1,2k−1) +X(1,2k+1)) for all k. Thus X(3,2k+1) is determined by cross
ratio

[X(1,2k+1),
X(1,2k−1) +X(1,2k+1)

2
, X(3,2k+1),

X(1,2k+1) +X(1,2k+3)

2
] = −1.

By the lemma we know that

[∞, X(1,2k+1), X(1,2k−1), X(3,2k+1), X(1,2k+1), X(1,2k+3)] = −1.

By definition, this shows that T1(A−1, A1) = (A1, A3)
�

We restate the theorem that we want to prove:

Theorem (1.5). Let A0 and A1 be as defined, and suppose that

X(0,2) = X(0,4) = ... = X(0,2n) =∞ ∈ RP 1,

also suppose that the cross ratio iterations are well defined for 2k − 1 steps, then

X(2n−1,k) = X(2n,k+1) =
1

n

(
X(1,1) +X(1,3) + ...+X(1,2n−1)

)

for all k = 1, 3, ..., 2n− 1.

Proof. First we consider the rows Ai of even indices. We know that for all i such
that 1 ≤ i ≤ n − 1, T i1(A0, A2) = (A2i, A2i+2) by repetitively apply Lemma 4.11.
Especially, we have that

Tn−11 (A0, A2) = (A2n−2, A2n).

Theorem 4.1 tells us that

X2n,2 = X2n,4 = ... = X2n,2n =
1

n

(
X(2,2) +X(2,4) + ...+X(2,2n)

)
.

For the odd indices, we apply Corollary 4.13 and Lemma 4.11 and obtain that

Tn−11 (A−1, A1) = (A2n−3, A2n−1).

Again by Theorem 4.1, we have that

X(2n−1,1) = ...X(2n−1,2n−1) =
1

n

(
X(1,1) +X(1,3) + ...+X(1,2n−1)

)
.

It is clear that

X(1,1) +X(1,3) + ...+X(1,2n−1) = X(2,2) +X(2,4) + ...+X(2,2n)

since A0 consists of infinities, hence we reach the statement of the theorem.
�

4.5. A low dimensional example. We conclude this section with a brief descrip-
tion of an example.

We start with P = X1X2X3 on a horizontal line, as shown in Figure 14, and
get X ′1, X

′
2, X

′
3 by reflection. Our goal is to show that 2 iterations of the mir-

ror pentagram map MP 2 collapses the pair (P, r(P )) to a reflected pair of points
(Z, r(Z)).
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X1

X ′
1 X ′

2

X2
X ′

3

X3

Y ′
2

Y ′
3

Y3

Y1

Y2

X̃ ′
1 X̃ ′

2

Figure 15. A perfect lifting of an axis-aligned pair
(X1X2X3, X

′
1X
′
2X
′
3) under the mirror pentagram map.

We construct 3 collections of 3-points, similar to the proof in subsection 4.3.2,
the only difference being that we choose to investigate the point r(Z) = Z ′ in this
example:

A′1 = {X ′1(1), X2(1), X ′3(1)}
A′3 = {X ′2(3), X3(3), X ′1(3)}
A′5 = {X ′3(5), X1(5), X ′2(5)}

We investigate the star mating A′3 ? A
′
5 of A′3 and A′5. By our construction, the

star mating A′3 ? A
′
5 gives {Y ′3 , Y1}. For next iteration of the MP to collapse to

point Z ′ = (C (p(P )), 1/3), we only need to show that the line Y ′3Y1 goes through the
point Z ′, and by symmetry, the other line through the two point A′1 ?A

′
3 = {Y ′2 , Y3}

also goes through Z ′, thus Z ′3 = Y ′2Y3∩Y ′3Y1 = Z ′. Again by symmetry, one obtains
that Z ′1 = Z ′2 = Z ′3, hence all equals to Z ′.

Now we lift A′1, A
′
3, A

′
5 into R3 by adding the z-coordinates. Recall that we lift

in the way that gives the jth points of each A′i the same the z-coordinate for all
j = 1, 2, 3. In this example, we give the first points (which are points in the first
column in the array listed above), namely X ′1(1), X ′2(3), X ′3(5), the 0 coordinate in
z-direction; we also give the second column the 0 coordinate, so they are fixed in
R2. We give the last column the z-coordinate 1. For now, we can only focus on
A′3, A

′
5 since we are interested in their start-mating. This is shown in Figure 15.
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Now A′3, A
′
5 are lifted into two triangles Ã′3 and Ã′5. We know that Ỹ ′2 , Ỹ

′
3 go

through the intersection L′ of the planes spanned by Ã′3 and by Ã′3, since they are
intersections of lines from both planes. As in Subsection 2.2.1, we know that Z ′ is

lifted to Z̃ ′, which also lies on the intersection L′, since the centers of mass of the 3

points in Ã′3 and of those in Ã′3 necessarily coincide. Next, we take the projection
π : R3 → R2 into the first 2 coordinates, and this shows that Y2Y

′
3 = π(L′) goes

through Z ′, therefore concludes the proof that Z ′1 = Z ′2 = Z ′3 = Z ′.

5. Final Remarks

We start with a discussion on twisted pentagram maps on twisted polygons (ob-
tained through certain monodromies), for definitions of which we refer the readers
to, for example, [5] and [8]. As we remarked previously, Glick proves certain col-
lapsing results of axis-aligned twisted polygons under the twisted pentagram map
in [5], using methods from cluster algebra. We mention that, for the axis-aligned
twisted polygons that are obtained through translations (that is to say, satisfying
the monodromy x 7→ x+ b for some vector b ∈ R2), we can prove the collapsing re-
sult using a similar lifting methods. The proof relies on the fact that corresponding
points in this particular type of twisted polygon P are connected through parallel
lines, so instead of considering infinitely many points, we consider a finite collection
of vertices in P , lift them using similar liftings, and connect successive translated
points by parallel edges. An interesting and still open question is: can we predict
the point of collapse of the twisted polygons?
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