Financial Mathematics

Polynomial approximation, bilinear forms and quadratic forms

0029-1. Let $B: \mathbb{R}^{5} \times \mathbb{R}^{5} \rightarrow \mathbb{R}$ be the bilinear form defined by

$$
[B]=\left[\begin{array}{ccccc}
4 & 7 & 9 & 0 & 6 \\
5 & 0 & 8 & 0 & 2 \\
1 & -2 & -4 & 1 & -8 \\
4 & -2 & 3 & 3 & 1 \\
0 & 4 & 0 & 9 & 0
\end{array}\right]
$$

a. Let $v:=(-1,3,1,0,0), w:=(1,-1,0,1,0)$. Compute $B(v, w)$.
b. Define $Q: \mathbb{R}^{5} \rightarrow \mathbb{R}$ by $Q(v)=B(v, v)$. Write out $Q(p, q, r, s, t)$.
c. Find a symm. matrix $M \in \mathbb{R}^{5 \times 5}$ s.t., if S is the SBF def'd by $[S]=M$, then $S(v, v)=B(v, v)$.

0029-2.

Let $Q: \mathbb{R}^{5} \rightarrow \mathbb{R}$ be the quadratic form def'd by

$$
\begin{aligned}
Q(p, q, r, s, t)= & 2 p^{2}+4 q^{2}-7 r^{2}-9 s^{2} \\
& +4 p q-8 p r-6 p s-2 p t \\
& -6 q r-8 q s+4 q t \\
& -6 r s+2 r t \\
& +100 s t
\end{aligned}
$$

Let $B: \mathbb{R}^{5} \times \mathbb{R}^{5} \rightarrow \mathbb{R}$ be the polarization of Q. Write out the matrix $[B]$ of B.

0029-3. Let $Q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the quadratic form defined by $Q(x, y)=2 x^{2}+6 x y+y^{2}$. Determine whether Q is positive semidefinite. Hint: $Q(x, 1)=2 x^{2}+6 x+1$

Is this always positive?
Then check $Q(x, 2)$.
Then check $Q(x, y)$, in general.
0029-4. Let $P: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the quadratic form defined by $P(x, y)=\left(x^{2} / 25\right)+\left(y^{2} / 16\right)$.
a. Graph $\{(x, y) \mid P(x, y)=1\}$.
b. Let $v:=(2,8)$.

Let B be the polarization of P.
Find a vector $w \in \mathbb{Z}^{2} \backslash\{(0,0)\}$ such that

$$
B(v, w)=0 .
$$

