Financial Mathematics

Principal component analysis

0035-1.

Let e_1,e_2,e_3 be the standard basis of $\mathbb{R}^{1 imes 3}$, $viz., \qquad e_1:=[1 \quad 0 \quad 0],$

$$viz.$$
, $e_1 := [1 \quad 0 \quad 0],$ $e_2 := [0 \quad 1 \quad 0],$ $e_3 := [0 \quad 0 \quad 1].$

a.Let
$$v_1 := [2 \quad 4 \quad -2],$$

Let $v_2 := [1 \quad -1 \quad -1].$

Find a rotation matrix R and scalars $c_1, c_2 \in \mathbb{R}$ such that $c_1e_1R = v_1$ and $c_2e_2R = v_2$.

b. Find a rotation matrix L such that $v_1L \in \mathbb{R}e_1$ and $v_2L \in \mathbb{R}e_2$.

0035-2. Let
$$M := \begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 2 \end{bmatrix}$$
.

Find rotation matrices $K \in \mathbb{R}^{2 \times 2} \quad \text{and} \quad L \in \mathbb{R}^{3 \times 3}$ s.t. KML is "diagonal".