Financial Mathematics

Conditional probability, independence and the Central Limit Theorem

0047-1. Suppose $\operatorname{Pr}[A \mid B]=0.6$, $\operatorname{Pr}[A]=0.3$ and $\operatorname{Pr}[B]=0.5$.
a. Find $\operatorname{Pr}[A$ and $B]$. b. Find $\operatorname{Pr}[B \mid A]$.

0047-2. a. Find two PCRVs X and Y s.t.

$$
\operatorname{Pr}[(X=1) \mid(Y=2)]=0.6
$$

$$
\operatorname{Pr}[X=1]=0.3 \text { and } \operatorname{Pr}[Y=2]=0.5
$$

b. Compute $\operatorname{Pr}[(Y=2) \mid(X=1)]$.

0047-3. Let $C_{1}, C_{2}, C_{3}, \ldots$ be our standard sequence of coin-flipping PCRVs.
\forall integers $n \geq 1$, let $D_{n}:=\left(C_{1}+\cdots+C_{n}\right) / \sqrt{n}$.
a. Compute $\lim _{n \rightarrow \infty} \mathbb{E}\left[D_{n}^{6}\right]$.
b. Compute $\lim _{n \rightarrow \infty} \mathrm{E}\left[80\left(e^{4 D_{n}-3}-e\right)_{+}\right]$.

0047-4. Let X and Y be PCRVs

$$
\begin{array}{ll}
\text { s.t. } & \operatorname{Pr}[X=4]=0.8 \\
\text { s.t. } & \operatorname{Pr}[(X=4) \&(Y=9)]=0.35
\end{array}
$$

and s.t. $\operatorname{Pr}[(X=4) \&(Y=2)]=0.45$.
a. Find $\operatorname{Pr}[(Y=2) \mid(X=4)]$. b. Find $\mathrm{E}[Y \mid(X=4)]$.

0047-5. Find two PCRVs
which are uncorrelated, but not independent.
Sketch the graphs of the two PCRVs.
WARNING: Neither can be deterministic. WARNING: At least one must have three values of positive probability.

0047-6. Let $X_{1}, X_{2}, X_{3}, \ldots, X_{40}$ be iid.
Suppose $\mathrm{E}\left[X_{1}+X_{2}+X_{3}+\cdots+X_{40}\right]=60$ and $\operatorname{SD}\left[X_{1}+X_{2}+X_{3}+\cdots+X_{40}\right]=10$.

Let $\mu:=\mathrm{E}\left[X_{1}\right]=\mathrm{E}\left[X_{2}\right]=\cdots=\mathrm{E}\left[X_{40}\right]$
and $\sigma:=\operatorname{SD}\left[X_{1}\right]=\operatorname{SD}\left[X_{2}\right]=\cdots=\operatorname{SD}\left[X_{40}\right]$.

Compute μ and σ.

