Financial Mathematics From Stirling's Formula to the Central Limit Theorem **0051-1**. \forall integers $n \ge 1$, let H_n be the *n*th histogram, as def'd as defined in this topic.

Vintegers $n \ge 1$, $\forall x \in \mathbb{R}$, define $p_n(x)$ as follows: If x is outside the span of H_n , then $p_n(x) = 0$. If x is under exactly one bar of H_n , then $p_n(x)$ is the height of that bar. If x at the bordeline of two bars, then $p_n(x)$ is the height of the leftmost of those two bars.

Let
$$p(x) := [e^{-x^2/2}]/\sqrt{2\pi}$$
.

We proved, in this topic, that

$$\forall x \in \mathbb{R}, \quad \lim_{n \to \infty} p_n(x) = p(x).$$

0051-1 (cont'd).

 \forall integers $n \geq 1$, $\forall x \in \mathbb{R}$, define $f_n(x)$ as follows: If x is outside the span of H_n , then $f_n(x) = 0$. If x is under exactly one bar of H_n , then $f_n(x)$ is the midpoint of the base of that bar.

If x at the borderline of two bars, then $f_n(x)$ is the midpoint of the base of the leftmost of those two bars.

a. Show,
$$\forall x \in \mathbb{R}$$
, that $\lim_{n \to \infty} f_n(x) = x$.

b. Let
$$g(x) = (e^{2x} - 3)_+$$
. Show that
 $E\left[g(D_{2n}/\sqrt{2n})\right] = \int_{-\infty}^{\infty} g(f_n(x))[p_n(x)] dx.$

cont'd below

0051-1 (cont'd). Remark (not assigned): Let C_n be the usual coin-flipping PCRVs. Let $D_n := C_1 + \cdots + C_n$. A version of the CLT says: \forall reasonable fn ϕ , $\lim_{n \to \infty} \mathsf{E}[\phi(D_{2n}/\sqrt{2n})] = \int_{-\infty}^{\infty} [\phi(x)][p(x)] \, dx.$ Let's prove this for $\phi(x) = g(x)$: By the "Dominated Convergence Theorem" (taught in FM 5011), one can prove: $\lim_{n \to \infty} \int_{-\infty}^{\infty} g(f_n(x))[p_n(x)] dx$ $= \int_{-\infty}^{\infty} \lim_{n \to \infty} g(f_n(x))[p_n(x)] \, dx.$ That is, $\lim_{n \to \infty} E\left[g(D_{2n}/\sqrt{2n})\right] = \int_{-\infty}^{\infty} [g(x)][p(x)] dx$, as desired.