Financial Mathematics

Central Limit Theorem

0059-1. Let C_1, C_2, \ldots be the usual sequence of $\{\pm 1\}$ -valued PCRVs that model coin-flipping. \forall integers $n \geq 1$, let $D_n := C_1 + \cdots + C_n$.

a. Compute $\lim_{n\to\infty} \mathbb{E}[(D_n/\sqrt{n})^4 + (D_n/\sqrt{n})^5].$

b. Let $f(x) = \begin{cases} 4x, & \text{if } 1 \leq x \leq 7 \\ 0, & \text{otherwise.} \end{cases}$ Compute $\lim_{n \to \infty} \mathsf{E}[f(D_n/\sqrt{n})].$

c. Compute $\lim_{n\to\infty} \mathsf{E}[(D_n/\sqrt{n})^4 - (D_n/\sqrt{n})^6]$.

d. Compute $\lim_{n\to\infty} E[(D_n/\sqrt{n})^9 + (D_n/\sqrt{n})^2]$.

a. Compute $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{2x-9} e^{-x^2/2} dx$.

b. Compute $\frac{1}{\sqrt{2\pi}} \int_{-1}^{2} e^{2x-9} e^{-x^2/2} dx$.

c. Compute $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (e^{2x-9} - 2)e^{-x^2/2} dx$.

d. Compute $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (e^{2x-9} - 2)_{+} e^{-x^2/2} dx$.

e. Compute $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (e^{2ix-9} - 2)e^{-x^2/2} dx$.

- 0059-3. Let X be a binary PCRV s.t. Pr[X = a] = p(p+q=1)and Pr[X = b] = q. Let f(t) be the Fourier transform of the distribution of X. a. Compute $E[X^4]$. b. Compute $E[X^5]$.
 - c. Compute f(0).
 d. Compute $f^{(4)}(0)$, the value at 0
 - of the fourth derivative of f. e. Compute $f^{(5)}(0)$, the value at 0 of the fifth derivative of f.
- (Answers should be expressions of a,b,p,q.)

```
0059-4. Let X be a PCRV
     s.t. Pr[X = a] = p,
         Pr[X = b] = q ( p + q + r = 1 )
     and Pr[X = c] = r.
Let f(t) be the Fourier transform of
                       the distribution of X.
  a. Compute E[X^4].
  b. Compute E[X^5].
  c. Compute f(0).
  d. Compute f^{(4)}(0), the value at 0
                  of the fourth derivative of f.
  e. Compute f^{(5)}(0), the value at 0
```

of the fifth derivative of f. (Answers should be expressions of a,b,c,p,q,r.)

0059-5. Let X be a PCRV whose distribution satisfies: $\Pr[X=-2]=0.4$ $\Pr[X=0]=0.4$

Pr[X=4]=0.2a. Find the generating function of

b. Find the Fourier transform of the distribution of \boldsymbol{X} .

c. Let X_1, X_2, \ldots be an iid sequence of PCRVs, all with the same distribution as X.

Find the Fourier transform of the distribution of

$$\frac{X_1 + X_2 + \dots + X_n}{\sqrt{n}}.$$

the distribution of X.

0059-6. Let X be a PCRV whose distribution satisfies: $\Pr[X = -2] = 0.4$

Pr[X = 0] = 0.4Pr[X = 4] = 0.2

The nth raw moment of X is $E[X^n]$. The moment generating function is obtained from the generating function after one replaces z by e^s .

Let $\alpha(s)$ be the moment generating fn of the distribution of X.

Let $\beta(t)$ be the Fourier transform of X. of the distribution of X.

- a. Find $\alpha(s)$. b. Find $\alpha'''(0)$.
- c. Find the third raw moment of X. d. Find $\beta'''(0)$.

-

0059-7. Let X be a binary PCRV s.t. $\Pr[X=a]=p$ and $\Pr[X=b]=q$. (p+q=1)

Let f(t) be the Fourier transform of the distribution of X.

Assume E[X] = 0, *i.e.*, pa + bq = 0. Assume SD[X] = 0.5, *i.e.*, $\sqrt{pq}(b - a) = 0.5$.

Compute $\lim_{n\to\infty} [f(t/\sqrt{n})]^n$.