Financial Mathematics

First proof of Black-Scholes

0065-1. a. Using the
Black-Scholes Option Pricing Formula, price a 0.5-year call option on a stock with current share price $\$ 2.50$ with strike price $\$ 2.45$
with annual volatility 0.42 and with annual risk-free rate $\ln (1.02)$
(meaning that \$1 "in the bank" grows to $\$ 1.02$ after one year).
b. Let $S_{0}:=2.5, K:=2.45, \sigma_{*}:=0.42$
and $r_{*}:=\ln (1.02)$. Let $\sigma:=\sigma_{*} / \sqrt{2}, r:=r_{*} / 2$ and $\nu:=r-\left[\sigma^{2} / 2\right]$. Compute

$$
\frac{e^{-r}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(S_{0} e^{\sigma x+\nu}-K\right)_{+} e^{-x^{2} / 2} d x
$$

