Financial Mathematics

Estimating variance
3400-1. Let λ be Lebesgue msr on \mathbb{R}.
Let $\Omega := (0, 1)$. Let $\lambda_1 := \lambda|\Omega$.
Let $Z := \Phi^{-1} : \Omega \to \mathbb{R}$.
Define $X : \Omega^2 \to \mathbb{R}^2$ by $X(s, t) = (Z(s), Z(t))$.
Let $\mu := X_*(\lambda_1 \times \lambda_1)$. joint distribution of two indep std normal RVs
Let $\nu := \lambda \times \lambda$.

a. Compute \(\frac{d\mu}{d\nu} \). joint PDF of joint distribution of two indep std normal RVs

Define $Y : \Omega^2 \to \mathbb{R}$ by $Y(s, t) = 5(Z(s)) - 2(Z(t))$.
Let $\tau := Y_*(\lambda_1 \times \lambda_1)$. distribution of a lin. comb. of two indep std normal RVs

b. Compute \(\frac{d\tau}{d\lambda} \). PDF of distribution of sum of two indep std normal RVs

Hint: Use rotational invariance of μ.
NOTE: The numbers below are made up. I’d be interested to know the correct standard deviation of heart rate (in the US population).

3400-2. Suppose we have 75 measurements of heart rates with a sample standard deviation of 8.3 beats per minute. Using a χ^2-table, find a 99% confidence interval for the standard deviation of the population.