Financial Mathematics
Conditional probability and independence
Definition: The **conditional probability** of P given Q is

$$
\Pr[P | Q] := \frac{\Pr[P \& Q]}{\Pr[Q]}
$$

Warning: Only defined when $\Pr[Q] \neq 0$.

Is P likely or unlikely? Given that you’re told Q happened, is P likely or unlikely?
Definition: The **conditional probability** of P given Q is

$$\Pr[P \mid Q] := \frac{\Pr[P \land Q]}{\Pr[Q]}$$

Warning: Only defined when $\Pr[Q] \neq 0$.

$C_1 := \text{same distr. coin-flipping standard}$

$C_2 := \text{standard}$

Key point: Finding out $C_1 = 1$ has no influence on the prob. that $C_2 = 1$.

$$\Pr[(C_2 = 1) \mid (C_1 = 1)] = \frac{0.25}{0.5} = 0.5 = \Pr[C_2 = 1]$$
Definition: The **conditional probability** of \(P \) given \(Q \) is

\[
\Pr[P \mid Q] := \frac{\Pr[P \amp Q]}{\Pr[Q]}
\]

Warning: Only defined when \(\Pr[Q] \neq 0 \).

Assume \(\Pr[Q] \neq 0 \):

\(P \amp Q \) are **independent** (events)

if \(\Pr[P \mid Q] = \Pr[P] \),

i.e.: if \(\frac{\Pr[P \amp Q]}{\Pr[Q]} = \Pr[P] \),

i.e.: if \(\Pr[P \amp Q] = (\Pr[P])(\Pr[Q]) \).

Key point: Finding out \(C_1 = 1 \)

has no influence on the prob.

that \(C_2 = 1 \).

\[\Pr[(C_2 = 1) \mid (C_1 = 1)] = \frac{0.25}{0.5} = 0.5 \]

these are independent
Definition: The **conditional probability** of P given Q is

$$\Pr[P \mid Q] := \frac{\Pr[P \& Q]}{\Pr[Q]}$$

Warning: Only defined when $\Pr[Q] \neq 0$.

Definition: Assume $\Pr[Q] \neq 0$. P & Q are **independent** (events) if $\Pr[P \& Q] = (\Pr[P])(\Pr[Q])$.

If $\Pr[P \& Q] = (\Pr[P])(\Pr[Q])$.

Key point: Finding out $C_1 = 1$ has **no influence** on the prob. that $C_2 = 1$.

$$\Pr[(C_2 = 1) \mid (C_1 = 1)] = \frac{0.25}{0.5} = 0.5$$

These are independent
Definition: The **conditional probability** of P given Q is

$$\Pr[P \mid Q] := \frac{\Pr[P \& Q]}{\Pr[Q]}$$

Warning: Only defined when $\Pr[Q] \neq 0$.

Definition: P & Q are **independent** (events) if $\Pr[P \& Q] = (\Pr[P])(\Pr[Q])$.

"The probability of both is the product of the probabilities"

Key point: Finding out $C_1 = 1$ has no influence on the prob. that $C_2 = 1$.

$$\Pr[(C_2 = 1) \mid (C_1 = 1)] = \frac{0.25}{0.5} = 0.5$$

these are independent

6
Definition: The **conditional probability** of P given Q is

$$\Pr[P \mid Q] := \frac{\Pr[P \& Q]}{\Pr[Q]}$$

Warning: Only defined when $\Pr[Q] \neq 0$.

Definition: $P \& Q$ are **independent** (events) if $\Pr[P \& Q] = (\Pr[P])(\Pr[Q])$.

Definition: $S \& T$ are **independent** (PCRVs) if, $\forall A, B \subset \mathbb{R}$, $S \in A$ is independent of $T \in B$.

Key point: Finding out $C_1 = 1$ has no influence on the prob. that $C_2 = 1$.

$$\Pr[(C_2 = 1) \mid (C_1 = 1)] = \frac{0.25}{0.5} = 0.5$$

these are independent
Definition: The **conditional probability** of P given Q is

$$
\Pr[P \mid Q] := \frac{\Pr[P \& Q]}{\Pr[Q]}
$$

Warning: Only defined when $\Pr[Q] \neq 0$.

Definition: P & Q are **independent** (events) if $\Pr[P \& Q] = (\Pr[P])(\Pr[Q])$.

Definition: S & T are **independent** (PCRVs) if, $\forall A, B \subseteq \mathbb{R}$, $S \in A$ is independent of $T \in B$.

$$
\Pr[(C_2 = 1) \mid (C_1 = 1)] = \frac{0.25}{0.5} = 0.5
$$

These are independent

$C_1 \in \{1\}$ is independent of $C_2 \in \{1\}$.

$C_1 \in \{-1\}$ is independent of $C_2 \in \{1\}$.

C_1 and C_2 independent
Def’ns: P, Q, R are independent (events) if
P, Q, R are pairwise-independent
and $\Pr[P \& Q \& R] = (\Pr[P])(\Pr[Q])(\Pr[R])$.

S, T, U are independent (PCRVs) if,
$\forall A, B, C \subseteq \mathbb{R}, S \in A, T \in B$ and $U \in C$ are indep.
$\text{etc.}, \text{etc.}, \text{etc.}$

Definition:
$P \& Q$ are independent (events)
if $\Pr[P \& Q] = (\Pr[P])(\Pr[Q])$.

Definition:
$S \& T$ are independent (PCRVs)
if, $\forall A, B \subseteq \mathbb{R}$,
$S \in A$ is independent of $T \in B$.

$\Pr[(C_2 = 1) \mid (C_1 = 1)] = \frac{0.25}{0.5} = 0.5$

$\text{these are independent}$

$C_1 \in \{1\}$ is independent of $C_2 \in \{1\}$.

$C_1 \in \{-1\}$ is independent of $C_2 \in \{1\}$.

C_1 and C_2 independent
Exercise: Graph C_4.

Fact: C_1, C_2, C_3, \ldots are pairwise independent.

Stronger: Any finite set of C_1, C_2, \ldots is an independent set.
Definition: \(\forall n \in \mathbb{Z}, n > 0, \)

\[
C_1 := \frac{-1}{1}^{1/2} \cdot \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{1}{1} \cdot \cdots \cdot D_n := C_1^{1/2} \cdot \cdots \cdot C_n^{1/2}
\]
Definition: \(\forall \) integers \(n > 0 \),
\[D_n := C_1 + \cdots + C_n \]
models (\#heads) – (\#tails) after \(n \) flips of a fair coin

\[C_1 := \]
\[C_2 := \]
\[D_2 := \]

\[50\% \]
\[50\% \]
\[50\% \]
\[50\% \]
\[50\% \]
\[25\% \]
\[50\% \]
\[25\% \]
Definition: \(\forall \text{ integers } n > 0, \)
\[D_n := C_1 + \cdots + C_n \]

models (\#heads) \(-\) (\#tails) after \(n \) flips of a fair coin.

Fact: independent \(\Rightarrow \) uncorrelated. \(^{pf \text{ omitted}} \)
I.e., \(S, T \) independent \(\Rightarrow \)
\[\text{Var}[S + T] = \text{Var}[S] + \text{Var}[T]. \]

\(C_1, \ldots, C_n \) are all standard (i.e., mean 0, variance 1)
\[\mathbb{E}[D_n] = (\mathbb{E}[C_1]) + \cdots + (\mathbb{E}[C_n]) \]
\[= 0 + \cdots + 0 = 0 \]

\[\text{Var}[D_n] = (\text{Var}[C_1]) + \cdots + (\text{Var}[C_n]) \]
\[= 1 + \cdots + 1 = n \]

\[\mathbb{E} \left[\frac{D_n}{\sqrt{n}} \right] = 0 \quad \text{and} \quad \text{Var} \left[\frac{D_n}{\sqrt{n}} \right] = 1, \]
i.e., \(\frac{D_n}{\sqrt{n}} \) is standard. \((D_n)_o = \frac{D_n}{\sqrt{n}} \)

the standardization of \(D_n \)
Definition: \(\forall \) integers \(n > 0 \),
\[
D_n := C_1 + \cdots + C_n
\]
models (\#heads) – (\#tails) after \(n \) flips of a fair coin.

Preview of the **Central Limit Theorem**:
\[
\frac{D_n}{\sqrt{n}} \xrightarrow{\text{in distribution}} Z, \quad \text{as} \ n \to \infty.
\]

- **Z**: Standard normal random variable
- **Definition?**

\[
\begin{align*}
E \left[\frac{D_n}{\sqrt{n}} \right] &= 0 \quad \text{and} \quad \Var \left[\frac{D_n}{\sqrt{n}} \right] = 1, \\
i.e., \quad \frac{D_n}{\sqrt{n}} \quad \text{is standard.} \quad (D_n)_{\circ} &= \frac{D_n}{\sqrt{n}}
\end{align*}
\]
Definition: \(\forall \text{ integers } n > 0, \)
\[D_n := C_1 + \cdots + C_n \]
models (\#heads) − (\#tails) after \(n \) flips of a fair coin

Preview of the Central Limit Theorem:

\[\frac{D_n}{\sqrt{n}} \to Z \]
in distribution, as \(n \to \infty \).

\(\forall \) test functions \(\psi \),
\[E \left[\psi \left(\frac{D_n}{\sqrt{n}} \right) \right] \to E[\psi(Z)] \]
\(Z \) not yet def’d, so…
Definition: \(\forall \text{integers } n > 0, \) models \((\#\text{heads}) - (\#\text{tails})\) after \(n\) flips of a fair coin
\[D_n := C_1 + \cdots + C_n \]

Preview of the Central Limit Theorem:
\[\frac{D_n}{\sqrt{n}} \rightarrow Z \quad \text{in distribution}, \quad \text{as } n \rightarrow \infty. \]

\(\forall \text{test functions } \psi, \)
\[
E \left[\psi \left(\frac{D_n}{\sqrt{n}} \right) \right] \rightarrow E[\psi(Z)]
\]
\[
\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [\psi(x)][e^{-x^2/2}] \, dx
\]

Change every \(Z\) to \(x\) and then integrate against \(h(x) \, dx\), from \(-\infty\) to \(\infty\).

\(Z \) not yet def’d, so...

\(h(x) := \frac{e^{-x^2/2}}{\sqrt{2\pi}} \)
Definition: \(\forall \text{integers } n > 0, \)
\[
D_n := C_1 + \cdots + C_n
\]

Preview of the Central Limit Theorem:

\(\forall \) test functions \(\psi \),
\[
\mathbb{E} \left[\psi \left(\frac{D_n}{\sqrt{n}} \right) \right] \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [\psi(x)][e^{-x^2/2}] \, dx
\]

Relatively easy: “test function” = “continuous, compactly supported function”

\(\forall \) test functions \(\psi \),
\[
\mathbb{E} \left[\psi \left(\frac{D_n}{\sqrt{n}} \right) \right] \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [\psi(x)][e^{-x^2/2}] \, dx
\]
Definition: For all integers $n > 0$, let $D_n := C_1 + \cdots + C_n$, which models the difference between the number of heads and tails after n flips of a fair coin.

Preview of the Central Limit Theorem:

For all test functions ψ,

$$\mathbb{E} \left[\psi \left(\frac{D_n}{\sqrt{n}} \right) \right] \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [\psi(x)][e^{-x^2/2}] \, dx$$

Relatively easy: “test function” = “continuous, compactly supported function”

Harder to prove: “test function” = “continuous, exponentially-bounded function”

A function f is \textbf{exponentially bounded} if there exists A, B such that $|f(x)| \leq Ae^{B|x|}$.
Definition: \(\forall \) integers \(n > 0 \),

\[D_n := C_1 + \cdots + C_n \]

Preview of the Central Limit Theorem:

\(\forall \) continuous, exponentially-bounded \(\psi \),

\[E \left[\psi \left(\frac{D_n}{\sqrt{n}} \right) \right] \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \psi(x) \left[e^{-x^2/2} \right] dx \]

Exercise: Compute \(\lim_{n \to \infty} E \left[\left(e^{D_n/\sqrt{n}} - 7 \right)_+ \right] \).

f exponentially bounded means:

\[\exists A, B \text{ s.t. } |f(x)| \leq Ae^{B|x|} \]
Definition: \(\forall \) integers \(n > 0 \),
\[
D_n := C_1 + \cdots + C_n
\]

Preview of the **Central Limit Theorem**:
\(\forall \) continuous, exponentially-bounded \(\psi \),
\[
\mathbb{E} \left[\psi \left(\frac{D_n}{\sqrt{n}} \right) \right] \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [\psi(x)][e^{-x^2/2}] \, dx
\]

Solution:
\[
\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [(e^x - 7)_+] [e^{-x^2/2}] \, dx = \ldots
\]

\(\text{exp-bdd} \rightarrow \psi(x) = (e^x - 7)_+ \)

Exercise: Compute \(\lim_{n \to \infty} \mathbb{E} \left[\left(e^{D_n/\sqrt{n}} - 7 \right)_+ \right] \).

\(f \) exponentially bounded means:
\[
\exists A, B \text{ s.t. } |f(x)| \leq Ae^{B|x|}
\]
Definition: \(\forall \text{ integers } n > 0, \quad D_n := C_1 + \cdots + C_n \)

Preview of the Central Limit Theorem:
\(\forall \text{ continuous, exponentially-bounded } \psi, \)
\[
E \left[\psi \left(\frac{D_n}{\sqrt{n}} \right) \right] \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [\psi(x)][e^{-x^2/2}] \, dx
\]

Sophisticated solution: \(D_n/\sqrt{n} \rightarrow Z \) in distribution
\[
E \left[(e^Z - 7)_+ \right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [(e^x - 7)_+][e^{-x^2/2}] \, dx
\]

Change every \(Z \) to \(x \), etc.

Exercise: Compute \(\lim_{n \to \infty} E \left[(e^{D_n/\sqrt{n}} - 7)_+ \right] \).

\textbf{f exponentially bounded means:}
\[\exists A, B \text{ s.t. } |f(x)| \leq Ae^{B|x|} \]
Definition: \(\forall \) integers \(n > 0 \),
\[
D_n := C_1 + \cdots + C_n
\]

Preview of the Central Limit Theorem:
\(\forall \) continuous, exponentially-bounded \(\psi \),
\[
E \left[\psi \left(\frac{D_n}{\sqrt{n}} \right) \right] \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [\psi(x)][e^{-x^2/2}] \, dx
\]

Hint: \(\psi(x) := e^{ax+b} \)

Def’n: \(\forall X \), the **augmented expectation** of \(X \)
is defined by \(\text{AE}[X] := (E[X]) + \frac{1}{2}(\text{Var}[X]). \)

Fact: Fix \(a, b \in \mathbb{R} \). Let \(R_n := a \left(\frac{D_n}{\sqrt{n}} \right) + b \).

"E almost asymptotically commutes with \(e^{\cdot} \)"

Then
\[
\lim_{n \to \infty} E[e^{R_n}] = \lim_{n \to \infty} e^{\text{AE}[R_n]}
\]

Pf: \(\lim_{n \to \infty} E[e^{R_n}] \) by CLT, \(e^b e^{a^2/2} \) by CLT, exercise, exercise, \(\lim_{n \to \infty} e^{\text{AE}[R_n]} \).
Definition: \(\forall \) integers \(n > 0 \),
\[
D_n := C_1 + \cdots + C_n
\]

Preview of the Central Limit Theorem:
\(\forall \) continuous, exponentially-bounded \(\psi \),
\[
\mathbb{E} \left[\psi \left(\frac{D_n}{\sqrt{n}} \right) \right] \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [\psi(x)][e^{-x^2/2}] \, dx
\]

Hint: \(\psi(x) := (ax + b) \)

Def’n: \(\forall X \), the **augmented expectation of** \(X \)

is defined by \(\text{AE}[X] := (\mathbb{E}[X]) + \frac{1}{2}(\text{Var}[X]) \).

“asymptotically normal”

Fact: Fix \(a, b \in \mathbb{R} \). Let \(R_n := a \left(\frac{D_n}{\sqrt{n}} \right) + b \).

“\(\mathbb{E} \) nearly asymptotically commutes with \(e^{\bullet} \)”

Then
\[
\lim_{n \to \infty} \mathbb{E}[e^{R_n}] = \lim_{n \to \infty} e^{\text{AE}[R_n]}
\]

Pf:
\[
\lim_{n \to \infty} \mathbb{E}[e^{R_n}] \text{ \(\text{CLT} \)} = e^b e^{a^2/2} \text{ \(\text{CLT} \)} = \lim_{n \to \infty} e^{\text{AE}[R_n]}.
\]

QED
Sophisticated fact:

Fix $a, b \in \mathbb{R}$. Let $R := aZ + b$.

"E almost commutes with e^\cdot...

Then $\mathbb{E}[e^R] = e^{A\mathbb{E}[R]}$.

...but we need to go from the expectation to the augmented expectation”

Def’n: $\forall X$, the **augmented expectation** of X is defined by $[A\mathbb{E}[X]] := (\mathbb{E}[X]) + \frac{1}{2}(\text{Var}[X])$.

"asymptotically normal"

Fact: Fix $a, b \in \mathbb{R}$. Let $R_n := a\left(\frac{D_n}{\sqrt{n}}\right) + b$.

"E almost asymptotically commutes with e^\cdot"

Then $\lim_{n \to \infty} \mathbb{E}[e^{R_n}] = \lim_{n \to \infty} e^{A\mathbb{E}[R_n]}$.

Pf: $\lim_{n \to \infty} \mathbb{E}[e^{R_n}] \overset{\text{CLT}}{=} e^b e^{a^2/2} \overset{\text{CLT}}{=} \lim_{n \to \infty} e^{A\mathbb{E}[R_n]}$. QED
Exercise: Let $n := 12$. Assume X_1, \ldots, X_n iid.

\[
\mu := \mathbb{E}[X_1] = \cdots = \mathbb{E}[X_n]
\]
\[
\sigma := \text{SD}[X_1] = \cdots = \text{SD}[X_n]
\]

Let $S := X_1 + \cdots + X_n$.

Assume $\mathbb{E}[S] = 0.225181512$, $\text{SD}[S] = 0.158877565$. Find μ and σ.

Def’n: $\forall X$, the augmented expectation of X is defined by $\text{AE}[X] := (\mathbb{E}[X]) + \frac{1}{2}(\text{Var}[X])$.

Fact: Fix $a, b \in \mathbb{R}$. Let $R_n := a \left(\frac{D_n}{\sqrt{n}} \right) + b$.

“E almost asymptotically commutes with e”

Then \[\lim_{n \to \infty} \mathbb{E}[e^{R_n}] = \lim_{n \to \infty} e^{\text{AE}[R_n]} \]

Pf: $\lim_{n \to \infty} \mathbb{E}[e^{R_n}] \overset{\text{CLT}}{=} e^b e^{a^2/2} \overset{\text{CLT}}{=} \lim_{n \to \infty} e^{\text{AE}[R_n]}$. QED
Exercise: Let \(n := 12 \). Assume \(X_1, \ldots, X_n \) iid.

\[
\begin{align*}
\mu & := E[X_1] = \cdots = E[X_n] \\
\sigma & := SD[X_1] = \cdots = SD[X_n]
\end{align*}
\]

Let \(S := X_1 + \cdots + X_n \).

Assume \(E[S] = 0.225181512 \),
\(SD[S] = 0.158877565 \). Find \(\mu \) and \(\sigma \).

Solution:

\(E[S] = E[X_1] + \cdots + E[X_n] = n\mu = (12)\mu \),

so \(\mu = 0.225181512/12 \)
Exercise: Let $n := 12$. Assume X_1, \ldots, X_n iid.

$$\mu := E[X_1] = \cdots = E[X_n]$$

$$\sigma := SD[X_1] = \cdots = SD[X_n]$$

Let $S := X_1 + \cdots + X_n$.

Assume $E[S] = 0.225181512$, $SD[S] = 0.158877565$. Find μ and σ.

Solution: $\mu = 0.225181512/12$

$$\operatorname{Var}[S] = \operatorname{Var}[X_1] + \cdots + \operatorname{Var}[X_n]$$

$$\mu = 0.225181512/12$$
Exercise: Let $n := 12$. Assume X_1, \ldots, X_n iid.

$$
\mu := \mathbb{E}[X_1] = \cdots = \mathbb{E}[X_n]
$$

$$
\sigma := \text{SD}[X_1] = \cdots = \text{SD}[X_n]
$$

Let $S := X_1 + \cdots + X_n$.

Assume $\mathbb{E}[S] = 0.225181512$, $\text{SD}[S] = 0.158877565$. Find μ and σ.

Solution:

$$
\mu = \frac{0.225181512}{12}
$$

$$
(0.158877565)^2
$$

$$
\downarrow
$$

$$
\text{Var}[S] = \text{Var}[X_1] + \cdots + \text{Var}[X_n]
$$

$$
= n\sigma^2 = (12)\sigma^2,
$$

so $\sigma^2 = \frac{(0.158877565)^2}{12}$

so $\sigma = \frac{0.158877565}{\sqrt{12}}$
Exercise: Let \(n := 12 \). Assume \(X_1, \ldots, X_n \) iid.

\[
\mu := \mathbb{E}[X_1] = \cdots = \mathbb{E}[X_n]
\]

\[
\sigma := \text{SD}[X_1] = \cdots = \text{SD}[X_n]
\]

Let \(S := X_1 + \cdots + X_n \).

Assume \(\mathbb{E}[S] = 0.225181512, \)

\(\text{SD}[S] = 0.158877565 \). Find \(\mu \) and \(\sigma \).

Solution: \[
\mu = \frac{0.225181512}{12}
\]

\[
\sigma = \frac{0.158877565}{\sqrt{12}}
\]
Exercise: Let \(n := 12 \). Assume \(X_1, \ldots, X_n \) independent, identically distributed.

\[
\mu := \mathbb{E}[X_1] = \cdots = \mathbb{E}[X_n] \\
\sigma := \text{SD}[X_1] = \cdots = \text{SD}[X_n]
\]

Let \(S := X_1 + \cdots + X_n \).

Assume \(\mathbb{E}[S] = 0.225181512 \), \(\text{SD}[S] = 0.158877565 \). Find \(\mu \) and \(\sigma \).

Solution: \[
\mu = \frac{0.225181512}{12} \\
\sigma = \frac{0.158877565}{\sqrt{12}}
\]

Mean and variance are cut by a factor of 12. Standard deviation is cut by a factor of \(\sqrt{12} \).

Conversely, on adding \(n \) uncorrelated PCRVs, SD increases by a factor of \(\sqrt{n} \), NOT \(n \). A portfolio of uncorrelated assets is better...

Later: “Volatility” is an example of standard deviation, NOT variance.
Def'n: Let \(S \) and \(T \) be PCRVs.
Let \(F := \{(a, b) \in \mathbb{R}^2 \mid \Pr[(S = a) \& (T = b)] > 0\} \).

The joint distribution of \((S, T)\)
associates, to each element \((a, b) \in F\),
the value \(\Pr[(S = a) \& (T = b)]\).

Remark: To compute the distribution of \(S + T \),
you need to know the JOINT distr. of \((S, T)\).
Knowing both the distribution of \(S \)
and the distribution of \(T \)
is insufficient. Same for \(ST \).

However, if \(S \) and \(T \) are independent,
then their joint distribution
is determined by
their individual distributions,
because
\[
\Pr[(S = a) \& (T = b)] = (\Pr[S = a])(\Pr[T = b]).
\]

All this generalizes to \(\geq 2 \) PCRVs.