Financial Mathematics
Basics of measures
Q: How far can length be ext’d, maintaining \(\sigma \)-additivity and translation invariance?

Def’n: \(\mathcal{I} := \{ \text{intervals} \} \subseteq 2^\mathbb{R} \).

Fact: \(\mathcal{I} \) is a near algebra on \(\mathbb{R} \), length \(\sigma \)-a., \(\sigma \)-f.

Def’ns:

A subset of \(\mathbb{R} \) is **Borel** if it’s an elt of \(\langle \mathcal{I} \rangle_\sigma \).

The unique extension of length to \{Borel sets in \(\mathbb{R} \}\} \langle \text{length} \rangle_\sigma \)

is called **Lebesgue measure** on \(\mathbb{R} \).

Let \(\mathcal{A} \) be a \(\sigma \)-alg. on a set \(M \).

Let \(\mu : \mathcal{A} \to [0, \infty] \) be \(\sigma \)-additive.

A subset \(Z \subseteq M \) is **null** (or \(\mu \)-null) if \(\exists A \in \mathcal{A} \) s.t. \(\mu(A) = 0 \) and \(Z \subseteq A \).

\[\exists \text{Borel set of msr zero with a non-Borel subset.} \]

Currently, that subset **cannot** be measured.

The fix: “completion”…
Q: How far can length be ext’d, maintaining
σ-additivity and translation invariance?

Def’n: $\mathcal{I} := \{\text{intervals}\} \subseteq 2^\mathbb{R}$.

Fact: \mathcal{I} is a near algebra on \mathbb{R}, length σ-a., σ-f.

Def’ns:

A subset of \mathbb{R} is **Borel** if it’s an elt of $\langle \mathcal{I} \rangle_\sigma$.
The unique extension of length to $\{\text{Borel sets in } \mathbb{R}\}$
is called **Lebesgue measure** on \mathbb{R}.

Let \mathcal{A} be a σ-alg. on a set M.

Let $\mu: \mathcal{A} \to [0, \infty]$ be σ-additive.

A subset $Z \subseteq M$ is **null** (or μ-null) if $\exists A \in \mathcal{A}$
s.t. $\mu(A) = 0$ and $Z \subseteq A$.

$P, Q \subseteq M$ are **essentially equal** (written $P \cong Q$)
if \exists null sets $Z, Z' \subseteq M$ s.t. $(P \setminus Z) \cup Z' = Q$.

A subset $C \subseteq M$ is **conull in** M (or μ-conull)
if $M \setminus C$ is null.
Q: How far can length be ext’d, maintaining \(\sigma \)-additivity and translation invariance?

Def’n: \(\mathcal{I} := \{ \text{intervals} \} \subseteq 2^{\mathbb{R}} \).

Fact: \(\mathcal{I} \) is a near algebra on \(\mathbb{R} \), length \(\sigma \)-a., \(\sigma \)-f.

Def’ns:

A subset of \(\mathbb{R} \) is **Borel** if it’s an elt of \(\langle \mathcal{I} \rangle_\sigma \).

The unique extension of length to \(\{ \text{Borel sets in } \mathbb{R} \} \) is called **Lebesgue measure** on \(\mathbb{R} \).

Let \(A \) be a \(\sigma \)-alg. on a set \(M \).

Let \(\mu : A \to [0, \infty] \) be \(\sigma \)-additive.

A subset \(Z \subseteq M \) is **null** (or \(\mu \)-null) if \(\exists A \in A \) s.t. \(\mu(A) = 0 \) and \(Z \subseteq A \).

\(P, Q \subseteq M \) are **essentially equal** (written \(P \cong Q \)) if \(\exists \) null sets \(Z, Z' \subseteq M \) s.t. \((P \setminus Z) \cup Z' = Q \).

Fact: \(A, B \in A, A \cong B \implies \mu(A) = \mu(B) \)

Def’n: A subset \(P \subseteq M \) is **measurable** (or \(\mu \)-measurable) if \(\exists A \in A \) s.t. \(P \cong A \).
Q: How far can length be ext’d, maintaining σ-additivity and translation invariance?

\(P, Q \subseteq M \) are **essentially equal** (written \(\underbrace{P \overset{\circ}{=} Q} \))

if \(\exists \) null sets \(Z, Z' \subseteq M \) s.t. \((P \setminus Z) \cup Z' = Q \).

Fact: \(A, B \in \mathcal{A}, \quad A \overset{\circ}{=} B \quad \Rightarrow \quad \mu(A) = \mu(B) \)

Def’n: A subset \(P \subseteq M \) is **measurable** (or \(\mu\)-**measurable**) if \(\exists A \in \mathcal{A} \) s.t. \(P \overset{\circ}{=} A \).

Def’n: The **completion** of \(\mathcal{A} \) \(\textbf{(w.r.t.} \ \mu) \) is \(\sqcup \mathcal{A} := \{ \mu\text{-measurable sets} \} \)
Q: How far can length be ext’d, maintaining \(\sigma \)-additivity and translation invariance?

\[P, Q \subseteq M \text{ are } \textbf{essentially equal} \text{ (written } P \equiv Q \text{)} \text{ if } \exists \text{ null sets } Z, Z' \subseteq M \text{ s.t. } (P \setminus Z) \cup Z' = Q. \]

Fact: \(A, B \in \mathcal{A}, \quad A \equiv B \quad \Rightarrow \quad \mu(A) = \mu(B) \)

Def’n: A subset \(P \subseteq M \) is \textbf{measurable} (or \(\mu \)-measurable) if \(\exists A \in \mathcal{A} \text{ s.t. } P \equiv A. \)

Def’n: The \textbf{completion of} \(\mathcal{A} \) (w.r.t. \(\mu \)) is \(\overline{\mathcal{A}} := \{ \mu \text{-measurable sets} \} =: \overline{\mathcal{A}}^\mu \)

Fact: \(\overline{\mathcal{A}} \) is a \(\sigma \)-algebra.

Def’n: The \textbf{completion of} \(\mu \) is the function \(\overline{\mu} : \overline{\mathcal{A}} \rightarrow [0, \infty] \) “well-defined”

defined by: \(\overline{\mu}(P) = \mu(A), \quad \forall A \in \mathcal{A} \text{ s.t. } A \equiv P. \)

Note: \(A, B \in \mathcal{A}, \quad A \equiv P, \ B \equiv P \quad \Rightarrow \quad \mu(A) = \mu(B) \)

Fact: \(\overline{\mu} : \overline{\mathcal{A}} \rightarrow [0, \infty] \) is \(\sigma \)-additive.
Q: How far can length be ext’d, maintaining \(\sigma \)-additivity and translation invariance?

Def’ns:
A subset of \(\mathbb{R} \) is **measurable** if it’s an elt of the completion of \(\{ \text{Borel sets in } \mathbb{R} \} \) w.r.t. Lebesgue measure.

Note: It’s hard to make non-measurable sets, or even non-Borel sets.

Def’n: The **completion of** \(A \) (w.r.t. \(\mu \)) is

\[
\overline{A} := \{ \mu\text{-measurable sets} \} =: \overline{A}^\mu
\]

Fact: \(\overline{A} \) is a \(\sigma \)-algebra.

Def’n: The **completion of** \(\mu \) is the function

\[
\overline{\mu} : \overline{A} \to [0, \infty]
\]

defined by:

\[
\overline{\mu}(P) = \mu(A), \quad \forall A \in A \text{ s.t. } A \cong P.
\]

Note: \(A, B \in A, \quad A \cong P, \ B \cong P \quad \Rightarrow \quad \mu(A) = \mu(B)\)

Fact: \(\overline{\mu} : \overline{A} \to [0, \infty] \) is \(\sigma \)-additive.
Q: How far can length be ext’d, maintaining \(\sigma \)-additivity and translation invariance?

Def’ns:
A subset of \(\mathbb{R} \) is **measurable** if it’s an elt of the completion of \{Borel sets in \(\mathbb{R} \}\) w.r.t. Lebesgue measure.

Note: It’s hard to make non-measurable sets, or even non-Borel sets.

Fact: \{Borel sets in \(\mathbb{R} \}\} is countably generated.

\[\langle \{(a, b) \mid a, b \in \mathbb{Q}, a < b\} \rangle_{\sigma} \]

Def’n:
A \(\sigma \)-algebra \(\mathcal{A} \) on \(M \) is **countably generated** if \(\exists \) a countable set \(\mathcal{C} \subseteq \mathcal{A} \) s.t. \(\mathcal{A} = \langle \mathcal{C} \rangle_{\sigma} \).
Q: How far can length be ext’d, maintaining σ-additivity and translation invariance? 😊

Def’ns:
A subset of \mathbb{R} is **measurable** if it’s an elt of the completion of $\{\text{Borel sets in } \mathbb{R}\}$ w.r.t. Lebesgue measure.

Fact: $\{\text{Borel sets in } \mathbb{R}\}$ is countably generated.

Def’n: $\{\text{Borel sets in } \mathbb{R}\}$ is countably generated.
A σ-algebra \mathcal{A} on \mathcal{M} is **countably generated** if \exists a countable set $\mathcal{C} \subseteq \mathcal{A}$ s.t. $\mathcal{A} = \langle \mathcal{C} \rangle_\sigma$.

Traditional terminology:
Def’n: A countably generated σ-algebra on \mathcal{M}, if \exists a countable set $\mathcal{C} \subseteq \mathcal{A}$ s.t. $\mathcal{A} = \langle \mathcal{C} \rangle_\sigma$.
Q: How far can length be ext’d, maintaining \(\sigma \)-additivity and translation invariance?

Def’ns:
A subset of \(\mathbb{R} \) is **measurable** if it’s an elt of the completion of \(\{ \text{Borel sets in } \mathbb{R} \} \) w.r.t. Lebesgue measure.

Fact: \(\{ \text{Borel sets in } \mathbb{R} \} \) is countably generated.

Def’n:
A \(\sigma \)-algebra \(\mathcal{A} \) on \(M \) is **countably generated** if \(\exists \) a countable set \(\mathcal{C} \subseteq \mathcal{A} \) s.t. \(\mathcal{A} = \langle \mathcal{C} \rangle_\sigma \).

Traditional terminology:
If \(\mathcal{A} \) is a countably generated \(\sigma \)-algebra on \(M \), then the elements of \(\mathcal{A} \) are called **Borel sets**.
If, furthermore, \(\mu : \mathcal{A} \to [0, \infty] \) is \(\sigma \)-finite, then the els of the completion of \(\mathcal{A} \) w.r.t. \(\mu \) are called **measurable** sets.
Def’ns: A **Borel space** is a set with a countably generated σ-algebra on it. A **measure on a Borel space** (M, \mathcal{B}) is a σ-additive function $\mu : \mathcal{B} \rightarrow [0, \infty]$. A **measure space** is a Borel space with a σ-finite measure on it. A measure μ on a Borel space (M, \mathcal{B}) is a **probability measure** if $\mu(M) = 1$.

Def’n: A σ-algebra \mathcal{A} on M is **countably generated** if \exists a countable set $C \subseteq \mathcal{A}$ s.t. $\mathcal{A} = \langle C \rangle_\sigma$.

Traditional terminology:
If \mathcal{A} is a countably generated σ-algebra on M, then the elements of \mathcal{A} are called **Borel sets**. If, furthermore, $\mu : \mathcal{A} \rightarrow [0, \infty]$ is σ-finite, then the elts of the completion of \mathcal{A} w.r.t. μ are called **measurable sets**.
Def’ns: A **Borel space** is a set with a countably generated σ-algebra on it. A **measure on a Borel space** (M, B) is a σ-additive function $\mu : B \rightarrow [0, \infty]$. A **measure space** is a Borel space with a σ-finite measure on it. A measure μ on a Borel space (M, B) is a **probability measure** if $\mu(M) = 1$.

Def’n: A msr μ on M is **finite** if $\mu(M) < \infty$. Fact: μ is finite iff, $\forall A \in \mathcal{A}, \mu(A) < \infty$.

monotonicity: $\forall A, B \in \mathcal{A}, A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$

Fact: measures are monotone.

$$B = A \bigcup (B \setminus A), \mu(B \setminus A) \geq 0 \text{ QED}$$
Def’ns: A **Borel space** is a set with a countably generated σ-algebra on it. A **measure** on a Borel space (M, \mathcal{B}) is a σ-additive function $\mu : \mathcal{B} \to [0, \infty]$. A **measure space** is a Borel space with a σ-finite measure on it. A measure μ on a Borel space (M, \mathcal{B}) is a **probability measure** if $\mu(M) = 1$.

Def’n: A msr μ on M is **finite** if $\mu(M) < \infty$. Fact: μ is finite iff, $\forall A \in \mathcal{A}$, $\mu(A) < \infty$.

Def’n: For any countable set M, the **counting measure** on M is the measure $\mu : 2^M \to [0, \infty]$ def’d by $\mu(S) = \#S$.

monotonicity: $\forall A, B \in \mathcal{A}$, $A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$

Fact: measures are monotone. $B = A \bigcup (B \setminus A)$, $\mu(B \setminus A) \geq 0$ QED
Def’ns: A **Borel space** is a set with a countably generated σ-algebra on it. A **measure on a Borel space** (M, \mathcal{B}) is a σ-additive function $\mu : \mathcal{B} \to [0, \infty]$. A **measure space** is a Borel space with a σ-finite measure on it. A measure μ on a Borel space (M, \mathcal{B}) is a **probability measure** if $\mu(M) = 1$.

Def’n: A msr μ on M is **finite** if $\mu(M) < \infty$.

Fact: μ is finite iff, $\forall A \in \mathcal{A}$, $\mu(A) < \infty$.

Def’n: For any countable set M, the **counting measure** on M is the measure $\mu : 2^M \to [0, \infty]$ def’d by $\mu(S) = \#S$. It is a measure on the (countably generated) Borel space $(M, 2^M)$. μ is finite iff M is finite.

more examples soon...
Def’n: For any countable set M,

counting measure on M is the measure

$$\mu : 2^M \to [0, \infty]$$

def’ed by $\mu(S) = \#S$.

It is a measure on the (countably generated) Borel space $(M, 2^M)$.

$$\mu$$ is finite iff M is finite.
Def’n: \(\forall \text{set } M, \)
\[2^M \text{ is the discrete } \sigma\text{-algebra on } M \]
and \(\{\emptyset, M\} \text{ is the indiscrete } \sigma\text{-algebra on } M. \)

Note: If \(M \) is uncountable,
then \(2^M \) is not countably generated,
so \((M, 2^M)\) is not a Borel space.

Note: If \(\#M > 1, \)
then \(\{\emptyset, M\} \) is pathological
but in a different way...

Def’n: For any countable set \(M, \)
\textbf{counting measure on } M \text{ is the measure}
\[\mu : 2^M \to [0, \infty] \text{ def’d by } \mu(S) = \#S. \]
It is a measure on the (countably generated) Borel space \((M, 2^M)\).
\[\mu \text{ is finite iff } M \text{ is finite. } \]
Def’n: \(\forall \text{set } M, \)
\[2^M \text{ is the discrete } \sigma\text{-algebra on } M \]
and \(\{\emptyset, M\} \) is the \textit{indiscrete} \(\sigma\text{-algebra on } M. \)

Note: If \(\#M > 1, \)
then \(\{\emptyset, M\} \) is pathological
\textit{but} in a different way...

Note: If \(\#M > 1, \)
Def’n: A Borel space \((M, \mathcal{A}) \) is \textit{standard} if
\textit{but} in a different way.

\textit{countably generated}
Def'n: \(\forall \text{set } M, \)

\[2^M \] is the **discrete** \(\sigma \)-algebra on \(M \)
and \(\{\emptyset, M\} \) is the **indiscrete** \(\sigma \)-algebra on \(M \).

Note: If \(\# M > 1 \),
then \(\{\emptyset, M\} \) is pathological
but in a different way...

Def'n: A Borel space \((M, \mathcal{A}) \) is **standard** if

\[\forall x, y \in M, \quad x \neq y \implies \exists A \in \mathcal{A} \quad \text{s.t. } x \in A \quad \text{and } y \notin A. \]

![Diagram showing separation of points in a Borel space](image-url)
Def’n: \(\forall M, \)
\[2^M \] is the **discrete** \(\sigma \)-algebra on \(M \)
and \(\{\emptyset, M\} \) is the **indiscrete** \(\sigma \)-algebra on \(M \).

Note: If \(\#M > 1 \),
then \(\{\emptyset, M\} \) does not separate points,
so \((M, \{\emptyset, M\})\) is not standard.

Def’n: A Borel space \((M, \mathcal{A})\) is **standard** if
\[\forall x, y \in M, \]
\[x \neq y \Rightarrow \exists A \in \mathcal{A} \quad \text{s.t.} \quad x \in A \quad \text{and} \quad y \notin A. \]

The \(\sigma \)-algebra “separates points”
Def’n: \(\forall \text{set } M, \)
\[2^M \text{ is the discrete } \sigma\text{-algebra on } M \text{ and } \{\emptyset, M\} \text{ is the indiscrete } \sigma\text{-algebra on } M. \]

Note: If \(\#M > 1, \)
then \(\{\emptyset, M\} \) does not separate points,
so \((M, \{\emptyset, M\}) \) is not standard.

Completions are usually not ctbly gen’d:
\[M := \mathbb{R}, \quad \mathcal{B} := \{\emptyset, M\}, \quad \lambda := \text{Lebesgue measure} \]
\[\overline{\mathcal{B}} = \{\text{null sets}\} \cup \{\text{conull sets}\} \]
\[\forall x \in \mathbb{R}, \quad \{x\} \in \overline{\mathcal{B}}, \quad \text{so } \overline{\mathcal{B}} \text{ separates points.} \]

However, \(\overline{\mathcal{B}} \) is not countably generated,
so \((\mathbb{R}, \overline{\mathcal{B}}) \) is not a Borel space.